1
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
2
|
Lingampelly SS, Naviaux JC, Heuer LS, Monk JM, Li K, Wang L, Haapanen L, Kelland CA, Van de Water J, Naviaux RK. Metabolic network analysis of pre-ASD newborns and 5-year-old children with autism spectrum disorder. Commun Biol 2024; 7:536. [PMID: 38729981 DOI: 10.1038/s42003-024-06102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024] Open
Abstract
Classical metabolomic and new metabolic network methods were used to study the developmental features of autism spectrum disorder (ASD) in newborns (n = 205) and 5-year-old children (n = 53). Eighty percent of the metabolic impact in ASD was caused by 14 shared biochemical pathways that led to decreased anti-inflammatory and antioxidant defenses, and to increased physiologic stress molecules like lactate, glycerol, cholesterol, and ceramides. CIRCOS plots and a new metabolic network parameter,V ° net, revealed differences in both the kind and degree of network connectivity. Of 50 biochemical pathways and 450 polar and lipid metabolites examined, the developmental regulation of the purine network was most changed. Purine network hub analysis revealed a 17-fold reversal in typically developing children. This purine network reversal did not occur in ASD. These results revealed previously unknown metabolic phenotypes, identified new developmental states of the metabolic correlation network, and underscored the role of mitochondrial functional changes, purine metabolism, and purinergic signaling in autism spectrum disorder.
Collapse
Affiliation(s)
- Sai Sachin Lingampelly
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Luke S Heuer
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Macao Polytechnic University, Macau, China
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Lori Haapanen
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Chelsea A Kelland
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
- Department of Rheumatology and Allergy, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
| |
Collapse
|
3
|
Pall ML. Central Causation of Autism/ASDs via Excessive [Ca 2+]i Impacting Six Mechanisms Controlling Synaptogenesis during the Perinatal Period: The Role of Electromagnetic Fields and Chemicals and the NO/ONOO(-) Cycle, as Well as Specific Mutations. Brain Sci 2024; 14:454. [PMID: 38790433 PMCID: PMC11119459 DOI: 10.3390/brainsci14050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The roles of perinatal development, intracellular calcium [Ca2+]i, and synaptogenesis disruption are not novel in the autism/ASD literature. The focus on six mechanisms controlling synaptogenesis, each regulated by [Ca2+]i, and each aberrant in ASDs is novel. The model presented here predicts that autism epidemic causation involves central roles of both electromagnetic fields (EMFs) and chemicals. EMFs act via voltage-gated calcium channel (VGCC) activation and [Ca2+]i elevation. A total of 15 autism-implicated chemical classes each act to produce [Ca2+]i elevation, 12 acting via NMDA receptor activation, and three acting via other mechanisms. The chronic nature of ASDs is explained via NO/ONOO(-) vicious cycle elevation and MeCP2 epigenetic dysfunction. Genetic causation often also involves [Ca2+]i elevation or other impacts on synaptogenesis. The literature examining each of these steps is systematically examined and found to be consistent with predictions. Approaches that may be sed for ASD prevention or treatment are discussed in connection with this special issue: The current situation and prospects for children with ASDs. Such approaches include EMF, chemical avoidance, and using nutrients and other agents to raise the levels of Nrf2. An enriched environment, vitamin D, magnesium, and omega-3s in fish oil may also be helpful.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Pourtavakoli A, Ghafouri-Fard S, Eslami S, Brand S, Taheri M. Expression assay of calcium signaling related lncRNAs in autism. Mol Biol Rep 2024; 51:185. [PMID: 38265729 DOI: 10.1007/s11033-023-09182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Calcium signaling has essential roles in the neurodevelopmental processes and pathophysiology of related disorders for instance autism spectrum disorder (ASD). METHODS AND RESULTS We compared expression of SLC1A1, SLC25A12, RYR2 and ATP2B2, as well as related long non-coding RNAs, namely LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 in the peripheral blood of patients with ASD with healthy children. Expression of SLC1A1 was lower in ASD samples compared with control samples (Expression ratio (95% CI) 0.24 (0.08-0.77), adjusted P value = 0.01). Contrary, expression of LINC01231 was higher in cases compared with control samples (Expression ratio (95% CI) 25.52 (4.19-154), adjusted P value = 0.0006) and in male cases compared with healthy males (Expression ratio (95% CI) 28.24 (1.91-418), adjusted P value = 0.0009). RYR2 was significantly over-expressed in ASD children compared with control samples (Expression ratio (95% CI) 4.5 (1.16-17.4), adjusted P value = 0.029). Then, we depicted ROC curves for SLC1A1, LINC01231, RYR2 and lnc-SLC25A12 transcripts showing diagnostic power of 0.68, 0.75, 0.67 and 0.59, respectively. CONCLUSION To sum up, the current study displays possible role of calcium related genes and lncRNAs in the development of ASD.
Collapse
Affiliation(s)
- Ashkan Pourtavakoli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
6
|
Shin KC, Ali G, Ali Moussa HY, Gupta V, de la Fuente A, Kim HG, Stanton LW, Park Y. Deletion of TRPC6, an Autism Risk Gene, Induces Hyperexcitability in Cortical Neurons Derived from Human Pluripotent Stem Cells. Mol Neurobiol 2023; 60:7297-7308. [PMID: 37552395 PMCID: PMC10657791 DOI: 10.1007/s12035-023-03527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder linked to numerous rare, inherited, and arising de novo genetic variants. ASD often co-occurs with attention-deficit hyperactivity disorder and epilepsy, which are associated with hyperexcitability of neurons. However, the physiological and molecular mechanisms underlying hyperexcitability in ASD remain poorly understood. Transient receptor potential canonical-6 (TRPC6) is a Ca2+-permeable cation channel that regulates store-operated calcium entry (SOCE) and is a candidate risk gene for ASD. Using human pluripotent stem cell (hPSC)-derived cortical neurons, single-cell calcium imaging, and electrophysiological recording, we show that TRPC6 knockout (KO) reduces SOCE signaling and leads to hyperexcitability of neurons by increasing action potential frequency and network burst frequency. Our data provide evidence that reduction of SOCE by TRPC6 KO results in neuronal hyperexcitability, which we hypothesize is an important contributor to the cellular pathophysiology underlying hyperactivity in some ASD.
Collapse
Affiliation(s)
- Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houda Yasmine Ali Moussa
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Alberto de la Fuente
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Lawrence W Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
- College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
7
|
Bhandari R, Varma M, Rana P, Dhingra N, Kuhad A. Taurine as a potential therapeutic agent interacting with multiple signaling pathways implicated in autism spectrum disorder (ASD): An in-silico analysis. IBRO Neurosci Rep 2023; 15:170-177. [PMID: 37711998 PMCID: PMC10497788 DOI: 10.1016/j.ibneur.2023.08.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
Autism spectrum disorders (ASD) are a complex sequelae of neurodevelopmental disorders which manifest in the form of communication and social deficits. Currently, only two agents, namely risperidone and aripiprazole have been approved for the treatment of ASD, and there is a dearth of more drugs for the disorder. The exact pathophysiology of autism is not understood clearly, but research has implicated multiple pathways at different points in the neuronal circuitry, suggesting their role in ASD. Among these, the role played by neuroinflammatory cascades like the NF-KB and Nrf2 pathways, and the excitotoxic glutamatergic system, are said to have a bearing on the development of ASD. Similarly, the GPR40 receptor, present in both the gut and the blood brain barrier, has also been said to be involved in the disorder. Consequently, molecules which can act by interacting with one or multiple of these targets might have a potential in the therapy of the disorder, and for this reason, this study was designed to assess the binding affinity of taurine, a naturally-occurring amino acid, with these target molecules. The same was scored against these targets using in-silico docking studies, with Risperidone and Aripiprazole being used as standard comparators. Encouraging docking scores were obtained for taurine across all the selected targets, indicating promising target interaction. But the affinity for targets actually varied in the order NRF-KEAP > NF-κB > NMDA > Calcium channel > GPR 40. Given the potential implication of these targets in the pathogenesis of ASD, the drug might show promising results in the therapy of the disorder if subjected to further evaluations.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Manasi Varma
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
- Pharmaceutical Chemistry & CADD-Lab, University Institute of Pharmaceutical Sciences, UGC, Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Priyanka Rana
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
- Pharmaceutical Chemistry & CADD-Lab, University Institute of Pharmaceutical Sciences, UGC, Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Neelima Dhingra
- Pharmaceutical Chemistry & CADD-Lab, University Institute of Pharmaceutical Sciences, UGC, Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
8
|
Dong S, Kifune T, Kato H, Wang L, Kong J, Hirofuji Y, Sun X, Sato H, Ito Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Effects of melatonin on dopaminergic neuron development via IP3-mediated mitochondrial Ca 2+ regulation in autism spectrum disorder. Biochem Biophys Res Commun 2023; 681:7-12. [PMID: 37742475 DOI: 10.1016/j.bbrc.2023.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology. Deciduous tooth-derived stem cells from children with ASD were used to model neurodevelopmental defects and differentiated into dopaminergic neurons (ASD-DNs) with or without melatonin. Without melatonin, ASD-DNs had reduced neurite outgrowth, mitochondrial dysfunction, lower mitochondrial Ca2+ levels, and Ca2+ accumulation in the endoplasmic reticulum (ER) compared to control DNs from typically developing children-derived stem cells. Melatonin enhanced IP3-dependent Ca2+ release from ER to mitochondria, improving mitochondrial function and neurite outgrowth in ASD-DNs. Luzindole, an MT1/MT2 antagonist, blocked these effects. Thus, melatonin supplementation may improve dopaminergic system development in ASD by modulating mitochondrial Ca2+ homeostasis via MT1/MT2 receptors.
Collapse
Affiliation(s)
- Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takashi Kifune
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Bukatova S, Bacova Z, Osacka J, Bakos J. Mini review of molecules involved in altered postnatal neurogenesis in autism. Int J Neurosci 2023:1-15. [PMID: 37815399 DOI: 10.1080/00207454.2023.2269304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Chronister BN, Yang K, Yang AR, Lin T, Tu XM, Lopez-Paredes D, Checkoway H, Suarez-Torres J, Gahagan S, Martinez D, Barr D, Moore RC, Suarez-Lopez JR. Urinary Glyphosate, 2,4-D and DEET Biomarkers in Relation to Neurobehavioral Performance in Ecuadorian Adolescents in the ESPINA Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107007. [PMID: 37819080 PMCID: PMC10566341 DOI: 10.1289/ehp11383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Herbicides are the most used class of pesticides worldwide, and insect repellents are widely used globally. Yet, there is a dearth of studies characterizing the associations between these chemical groups and human neurobehavior. Experimental studies suggest that glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides can affect neurobehavior and the cholinergic and glutamatergic pathways in the brain. We aim to assess whether herbicides and insect repellents are associated with neurobehavioral performance in adolescents. METHODS We assessed 519 participants (11-17 years of age) living in agricultural communities in Ecuador. We quantified urinary concentrations of glyphosate, 2,4-D, and two N,N-diethyl-meta-toluamide (DEET) insect repellent metabolites [3-(diethylcarbamoyl)benzoic acid (DCBA) and 3-(ethylcarbamoyl)benzoic acid (ECBA)] using isotope-dilution mass spectrometry. We assessed neurobehavioral performance using 9 subtests across 5 domains (attention/inhibitory control, memory/learning, language, visuospatial processing, and social perception). We characterized the associations using generalized estimating equations and multiple imputation for metabolites below detection limits. Models were adjusted for demographic and anthropometric characteristics, urinary creatinine, and sexual maturation. Mediation by salivary cortisol, dehydroepiandrosterone, 17 β -estradiol , and testosterone was assessed using structural equation modeling. RESULTS The mean of each neurobehavioral domain score was between 7.0 and 8.7 [standard deviation (SD) range: 2.0-2.3]. Glyphosate was detected in 98.3% of participants, 2,4-D in 66.2%, DCBA in 63.3%, and ECBA in 33.4%. 2,4-D was negatively associated with all neurobehavioral domains, but statistically significant associations were observed with attention/inhibition [score difference per 50% higher metabolite concentration ( β ) = - 0.19 95% confidence interval (CI): - 0.31 , - 0.07 ], language [β = - 0.12 (95% CI: - 0.23 , - 0.01 )], and memory/learning [β = - 0.11 (95% CI: - 0.22 , 0.01)]. Glyphosate had a statistically significant negative association only with social perception [β = - 0.08 (95% CI: - 0.14 , - 0.01 )]. DEET metabolites were not associated with neurobehavioral performance. Mediation by gender and adrenal hormones was not observed. CONCLUSION This study describes worse neurobehavioral performance associated with herbicide exposures in adolescents, particularly with 2,4-D. Replication of these findings among other pediatric and adult populations is needed. https://doi.org/10.1289/EHP11383.
Collapse
Affiliation(s)
- Briana N.C. Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Kun Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Audrey R. Yang
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Tuo Lin
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Xin M. Tu
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | | | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Raeanne C. Moore
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Jose R. Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| |
Collapse
|
11
|
Li Y, Gao S, Meng Y. Integrated analysis of endoplasmic reticulum stress regulators' expression identifies distinct subtypes of autism spectrum disorder. Front Psychiatry 2023; 14:1136154. [PMID: 37139330 PMCID: PMC10149679 DOI: 10.3389/fpsyt.2023.1136154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to play important roles in a variety of human diseases. However, their relevance to autism spectrum disorder (ASD) remains largely unknown. Herein, we aimed to investigate the expression patterns and potential roles of the ER stress regulators in ASD. The ASD expression profiles GSE111176 and GSE77103 were compiled from the Gene Expression Omnibus (GEO) database. ER stress score determined by the single sample gene set enrichment analysis (ssGSEA) was significantly higher in ASD patients. Differential analysis revealed that there were 37 ER stress regulators dysregulated in ASD. Based on their expression profile, the random forest and artificial neuron network techniques were applied to build a classifier that can effectively distinguish ASD from control samples among independent datasets. Weighted gene co-expression network analysis (WGCNA) screened out the turquoise module with 774 genes was closely related to the ER stress score. Through the overlapping results of the turquoise module and differential expression ER stress genes, hub regulators were gathered. The TF/miRNA-hub gene interaction networks were created. Furthermore, the consensus clustering algorithm was performed to cluster the ASD patients, and there were two ASD subclusters. Each subcluster has unique expression profiles, biological functions, and immunological characteristics. In ASD subcluster 1, the FAS pathway was more enriched, while subcluster 2 had a higher level of plasma cell infiltration as well as the BCR signaling pathway and interleukin receptor reaction reactivity. Finally, the Connectivity map (CMap) database was used to find prospective compounds that target various ASD subclusters. A total of 136 compounds were significantly enriched. In addition to some specific drugs which can effectively reverse the differential gene expression of each subcluster, we found that the PKC inhibitor BRD-K09991945 that targets Glycogen synthase kinase 3β (GSK3B) might have a therapeutic effect on both ASD subtypes that worth of the experimental validation. Our finding proved that ER stress plays a crucial role in the diversity and complexity of ASD, which may inform both mechanistic and therapeutic assessments of the disorder.
Collapse
|
12
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
13
|
Zhang Y, Maimaiti R, Lou S, Abula R, Abulaiti A, Kelimu A. Risk prediction of autism spectrum disorder behaviors among children based on blood elements by nomogram: A cross-sectional study in Xinjiang from 2018 to 2019. J Affect Disord 2022; 318:1-6. [PMID: 36057283 DOI: 10.1016/j.jad.2022.08.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/29/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes of toxic metals and essential elements during childhood may be the risk factor of autism spectrum disorder (ASD). This research established an accurate personalized predictive model of ASD behaviors among children by using the blood element detection index of children in Xinjiang, China. METHODS A total of 1537 children (240 ASD behavior children and 1297 non-ASD behavior children) aged 0-7 were collected from September 2018 to September 2019 in Urumqi Children's Hospital and the health management institute of Xinjiang Medical University. For measuring the copper (Cu), zinc (Zn), magnesium (Mg), iron (Fe), calcium (Ca), lead (Pb), and cadmium (Cd), 80 μL of blood was taken from each participant's ring finger. Univariate logistic regression analysis was used to select predictors, then the multivariate logistic regression was used to establish the predictive model. The discriminability, calibration and clinical validity of the model were evaluated by the receiver operating characteristic (ROC) curve, Hosmer-Lemeshow test and decision curve analysis (DCA). RESULTS Gender, concentrations of Pb, Ca and Zn in children's blood specimens were found to be the independent risk factors of ASD behaviors and were used to develop the nomogram model. The area under the ROC curve (AUC) in the development group (AUC = 0.778) and the validation group (AUC = 0.775) showed the model had discrimination ability. The calibration curve indicated the model was accurate, and the DCA proved its clinical application value. CONCLUSION The nomogram model can be used as a reliable tool to predict the risk of ASD behaviors among children.
Collapse
Affiliation(s)
- Yushan Zhang
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China
| | - Rena Maimaiti
- Department of Child Health, Health Management Institute, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830001, PR China
| | - Shan Lou
- Department of Child Health, Health Management Institute, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830001, PR China
| | - Reyila Abula
- Department of Child Health, Urumqi Children's Hospital, Urumqi 830001, PR China
| | - Adila Abulaiti
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China
| | - Asimuguli Kelimu
- Department of Child and Maternal Health, School of Public Health, Xinjiang Medical University, Urumqi 830011, PR China; Key Laboratory of Special Environment and Health Research in Xinjiang, Urumqi 830001, PR China.
| |
Collapse
|
14
|
Zhou B, Yan X, Yang L, Zheng X, Chen Y, Liu Y, Ren Y, Peng J, Zhang Y, Huang J, Tang L, Wen M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J Cell Mol Med 2022; 26:5493-5505. [PMID: 36239083 PMCID: PMC9639040 DOI: 10.1111/jcmm.17578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have also demonstrated that AVP can significantly improve social interaction disorders and stereotypical behaviours in rats with VPA‐induced autism model. To further explore the mechanisms of action of AVP, we compared the PFC transcriptome changes before and after AVP treatment in VPA‐induced autism rat model. The autism model was induced by intraperitoneally injected with VPA at embryonic day 12.5 and randomly assigned to two groups: the VPA‐induced autism model group and the AVP treatment group. The AVP treatment group were treated with intranasal AVP at postnatal day 21 and for 3 weeks. The gene expression levels and function changes on the prefrontal cortex were measured by RNA‐seq and bioinformatics analysis at PND42 and the mRNA expression levels of synaptic and myelin development related genes were validated by qPCR. Our results confirmed that AVP could significantly improve synaptic and axon dysplasia and promote oligodendrocyte development in the prefrontal cortex in VPA‐induced autism models by regulating multiple signalling pathways.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Xuehui Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Liu Yang
- Department of Neurology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Xiaoli Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yunhua Chen
- College of Basic Medical, Guizhou Medical University, Guizhou, China
| | - Yibu Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yibing Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jingang Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jiayu Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| |
Collapse
|
15
|
Hamoudi W, Tripathi MK, Ojha SK, Amal H. A cross-talk between nitric oxide and the glutamatergic system in a Shank3 mouse model of autism. Free Radic Biol Med 2022; 188:83-91. [PMID: 35716826 DOI: 10.1016/j.freeradbiomed.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is a multifunctional signaling molecule that plays a crucial role in synaptic transmission and neuronal function. Pioneering studies show that nitric oxide (NO) and S-nitrosylation (SNO, the NO-mediated posttranslational modification) can engender nitrosative stress in the brain, contributing to neurodegenerative diseases. Little is known, however, about the aberrant NO signaling in neurodevelopmental disorders including autism spectrum disorder (ASD). We have recently shown that the Shank3 mutation in mice representing a model of ASD causes excessive NO levels and aberrant protein SNO. The glutamatergic system is involved in ASD, specifically in SHANK3 pathology. We used SNOTRAP technology to identify the SNO-proteome in the brain of the Shank3 mutant mice to understand the role of SNO in the glutamatergic system during the development of these mice. We conducted a systems biology analysis of the SNO-proteome to investigate the biological processes and signaling pathways in the brain of juvenile and adult Shank3 mutant and wild-type mice. The Shank3 mutation caused significant SNO-enrichment of a glutamate signaling pathway in the juvenile and adult mutant mice, although different protein subsets were S-nitrosylated in both ages. Cellular compartments analysis showed that "glutamatergic Synapse" is SNO-enriched significantly in the mutant mice of both ages. We also found eight S-nitrosylated proteins involved in glutamate transmission in both ages. 38 SNO-proteins found in the mutant mice are among the high-risk SFARI gene list. Biochemical examination shows a reduction in the levels of NMDA Receptor (NR1) in the cortex and striatum of the mutant mice of both ages. Neuronal NOS knockdown in SHSY-5Y rescued NR1 levels. In conclusion, this study reveals novel SNO of key glutamatergic proteins in Shank3 mutant mice and a cross-talk between nitric oxide and the glutamatergic system.
Collapse
Affiliation(s)
- Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Shashank Kumar Ojha
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
16
|
Pourtavakoli A, Ghafouri-Fard S. Calcium signaling in neurodevelopment and pathophysiology of autism spectrum disorders. Mol Biol Rep 2022; 49:10811-10823. [PMID: 35857176 DOI: 10.1007/s11033-022-07775-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) covers a group of neurodevelopmental disorders with complex genetic background. Several genetic mutations, epigenetic alterations, copy number variations and single nucleotide polymorphisms have been reported that cause ASD or modify its phenotype. Among signaling pathways that influence pathogenesis of ASD, calcium signaling has a prominent effect. METHODS We searched PubMed and Google Scholar databases with key words "Calcium signaling" and "Autism spectrum disorder". CONCLUSION This type of signaling has essential roles in the cell physiology. Endoplasmic reticulum and mitochondria are the key organelles involved in this signaling. It is vastly accepted that organellar disorders intensely influence the central nervous system (CNS). Several lines of evidence indicate alterations in the function of calcium channels in polygenic disorders affecting CNS. In the current review, we describe the role of calcium signaling in normal function of CNS and pathophysiology of ASD.
Collapse
Affiliation(s)
- Ashkan Pourtavakoli
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Rayff da Silva P, do Nascimento Gonzaga TKS, Maia RE, Araújo da Silva B. Ionic Channels as Potential Targets for the Treatment of Autism Spectrum Disorder: A Review. Curr Neuropharmacol 2022; 20:1834-1849. [PMID: 34370640 PMCID: PMC9886809 DOI: 10.2174/1570159x19666210809102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological condition that directly affects brain functions and can culminate in delayed intellectual development, problems in verbal communication, difficulties in social interaction, and stereotyped behaviors. Its etiology reveals a genetic basis that can be strongly influenced by socio-environmental factors. Ion channels controlled by ligand voltage-activated calcium, sodium, and potassium channels may play important roles in modulating sensory and cognitive responses, and their dysfunctions may be closely associated with neurodevelopmental disorders such as ASD. This is due to ionic flow, which is of paramount importance to maintaining physiological conditions in the central nervous system and triggers action potentials, gene expression, and cell signaling. However, since ASD is a multifactorial disease, treatment is directed only to secondary symptoms. Therefore, this research aims to gather evidence concerning the principal pathophysiological mechanisms involving ion channels in order to recognize their importance as therapeutic targets for the treatment of central and secondary ASD symptoms.
Collapse
Affiliation(s)
| | | | | | - Bagnólia Araújo da Silva
- Address correspondence to this author at the Postgraduate Program in Natural Synthetic and Bioactive Products, Heath Sciences Center, Federal University of Paraíba - Campus I, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil; Tel: ++55-83-99352-5595; E-mail:
| |
Collapse
|
18
|
Genetic determinants of autism spectrum disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2021. [DOI: 10.2478/cpp-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: It is estimated that various types of abnormalities from the autistic spectrum disorder occur in up to 2% of the population. These include difficulties in maintaining relationships, communication, and repetitive behaviours. Literature describes them quite well, in contrast to the causes of these disorders, which include both environmental factors and a very long list of genetic aberrations.
Materials and methods: The papers available on the PubMed platform and other sources were reviewed to describe the most important genetic factors responsible for the development of autism spectrum disorders.
Results: There are many genes and their mutations associated with the prevalence of autism spectrum disorders in patients. One of the main factors is the SHANK gene family, with the type and degree of abnormality in patients depending on the damage to particular genes: SHANK1-SHANK3. Research also shows the potential of targeted symptom-relieving therapies in patients with SHANK3 mutations. A correlation with the occurrence of autism has also been demonstrated for genes responsible for calcium signaling - especially the group of IP3R calcium channels. Their calcium transmission is abnormal in the majority of patients with autism spectrum disorders. A number of mutations in the 7q region were discovered - including the AUTS2, GNAI1, RELN, KMT2E, BRAF genes - the occurrence of which is associated with the presence of symptoms of autism. Autism spectrum disorders occur in about 10% of patients suffering from monogenic syndromes such as fragile X chromosome syndrome, Timothy syndrome, tuberous sclerosis, Rett syndrome or hamartomatic tumor syndrome.
Conclusions: Research shows that many mutations can contribute to the development of autism spectrum disorders. Further studies are necessary to discover their therapeutic and diagnostic potential for autism.
Collapse
|
19
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Alymov AA, Kapitsa IG, Voronina TA. Neurochemical Mechanisms of Pathogenesis and Pharmacological Correction of Autism Spectrum Disorders: Current Concepts and Prospects. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc Natl Acad Sci U S A 2021; 118:2021429118. [PMID: 33536343 PMCID: PMC8017921 DOI: 10.1073/pnas.2021429118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) have increasingly been associated with mitochondrial dysfunction, corroborated by mitochondrial DNA (mtDNA) germline and somatic variants being found in ASD patients. If mitochondrial defects can generate ASD, then specific mtDNA mutations should induce ASD endophenotypes in mice. We tested this prediction by introduction of an mtDNA ND6 gene missense mutation (ND6P25L) into the mouse germline and found ASD endophenotypes. The ND6P25L mice exhibit impaired social interaction, compulsive behavior, and increased anxiety. They have reduced electroencephalographic delta and theta wave power, increased predilection to seizures, but without diminution of hippocampal interneurons. These endophenotypes correlate with impaired cortical and hippocampal mitochondrial respiration and increased reactive oxygen species production. Thus, mitochondrial defects can be sufficient to produce ASD phenotypes. Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.
Collapse
|
22
|
Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody Discovery, Assay Development and Adoption: Death Valley, the Sea of Survival and Beyond. Front Immunol 2021; 12:679613. [PMID: 34122443 PMCID: PMC8191456 DOI: 10.3389/fimmu.2021.679613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Dating to the discovery of the Lupus Erythematosus (LE) cell in 1948, there has been a dramatic growth in the discovery of unique autoantibodies and their cognate targets, all of which has led to the availability and use of autoantibody testing for a broad spectrum of autoimmune diseases. Most studies of the sensitivity, specificity, commutability, and harmonization of autoantibody testing have focused on widely available, commercially developed and agency-certified autoantibody kits. However, this is only a small part of the spectrum of autoantibody tests that are provided through laboratories world-wide. This manuscript will review the wider spectrum of testing by exploring the innovation pathway that begins with autoantibody discovery followed by assessment of clinical relevance, accuracy, validation, and then consideration of regulatory requirements as an approved diagnostic test. Some tests are offered as "Research Use Only (RUO)", some as "Laboratory Developed Tests (LDT)", some enter Health Technology Assessment (HTA) pathways, while others are relegated to a "death valley" of autoantibody discovery and become "orphan" autoantibodies. Those that achieve regulatory approval are further threatened by the business world's "Darwinian Sea of Survival". As one example of the trappings of autoantibody progression or failure, it is reported that more than 200 different autoantibodies have been described in systemic lupus erythematosus (SLE), a small handful (~10%) of these have achieved regulatory approval and are widely available as commercial diagnostic kits, while a few others may be available as RUO or LDT assays. However, the vast majority (90%) are orphaned and languish in an autoantibody 'death valley'. This review proposes that it is important to keep an inventory of these "orphan autoantibodies" in 'death valley' because, with the increasing availability of multi-analyte arrays and artificial intelligence (MAAI), some can be rescued to achieve a useful role in clinical diagnostic especially in light of patient stratification and precision medicine.
Collapse
Affiliation(s)
- Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, Calgary, AB, Canada
| | - May Y Choi
- Department of Medicine, Cumming School of Medicine, Calgary, AB, Canada
| | - Minoru Satoh
- Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, United States
| |
Collapse
|
23
|
Agarwala S, Ramachandra NB. Role of CNTNAP2 in autism manifestation outlines the regulation of signaling between neurons at the synapse. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00138-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Autism is characterized by high heritability and a complex genetic mutational landscape with restricted social behavior and impaired social communication. Whole-exome sequencing is a reliable tool to pinpoint variants for unraveling the disease pathophysiology. The present meta-analysis was performed using 222 whole-exome sequences deposited by Simons Simplex Collection (SSC) at the European Nucleotide Archive. This sample cohort was used to identify causal mutations in autism-specific genes to create a mutational landscape focusing on the CNTNAP2 gene.
Results
The authors account for the identification of 15 high confidence genes with 24 variants for autism with Simons Foundation Autism Research Initiative (SFARI) gene scoring. These genes encompass critical autism pathways such as neuron development, synapse complexity, cytoskeleton, and microtubule activation. Among these 15 genes, overlapping variants were present across multiple samples: KMT2C in 167 cases, CNTNAP2 in 192 samples, CACNA1C in 152 cases, and SHANK3 in 124 cases. Pathway analysis identifies clustering and interplay of autism genes—WDFY3, SHANK2, CNTNAP2, HOMER1, SYNGAP1, and ANK2 with CNTNAP2. These genes coincide across autism-relevant pathways, namely abnormal social behavior and intellectual and cognitive impairment. Based on multiple layers of selection criteria, CNTNAP2 was chosen as the master gene for the study. It is an essential gene for autism with speech-language delays, a typical phenotype in most cases under study. It showcases nine variants across multiple samples with one damaging variant, T589P, with a GERP rank score range of 0.065–0.95. This unique variant was present across 86.5% of the samples impairing the epithelial growth factor (EGF) domain. Established microRNA (miRNA) genes hsa-mir-548aq and hsa-mir-548f were mutated within the CNTNAP2 region, adding to the severity. The mutated protein showed reduced stability by 0.25, increased solvent accessibility by 9%, and reduced depth by 0.2, which rendered the protein non-functional. Secondary physical interactors of CNTNAP2 through CNTN2 proteins were mutated in the samples, further intensifying the severity.
Conclusion
CNTNAP2 has been identified as a master gene in autism manifestation responsible for speech-language delay by impairing the EGF protein domain and downstream cascade. The decrease in EGF is correlated with vital autism symptoms, especially language disabilities.
Collapse
|
24
|
Bjørklund G, Doşa MD, Maes M, Dadar M, Frye RE, Peana M, Chirumbolo S. The impact of glutathione metabolism in autism spectrum disorder. Pharmacol Res 2021; 166:105437. [PMID: 33493659 DOI: 10.1016/j.phrs.2021.105437] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
This paper reviews the potential role of glutathione (GSH) in autism spectrum disorder (ASD). GSH plays a key role in the detoxification of xenobiotics and maintenance of balance in intracellular redox pathways. Recent data showed that imbalances in the GSH redox system are an important factor in the pathophysiology of ASD. Furthermore, ASD is accompanied by decreased concentrations of reduced GSH in part caused by oxidation of GSH into glutathione disulfide (GSSG). GSSG can react with protein sulfhydryl (SH) groups, thereby causing proteotoxic stress and other abnormalities in SH-containing enzymes in the brain and blood. Moreover, alterations in the GSH metabolism via its effects on redox-independent mechanisms are other processes associated with the pathophysiology of ASD. GSH-related regulation of glutamate receptors such as the N-methyl-D-aspartate receptor can contribute to glutamate excitotoxicity. Synergistic and antagonistic interactions between glutamate and GSH can result in neuronal dysfunction. These interactions can involve transcription factors of the immune pathway, such as activator protein 1 and nuclear factor (NF)-κB, thereby interacting with neuroinflammatory mechanisms, ultimately leading to neuronal damage. Neuronal apoptosis and mitochondrial dysfunction are recently outlined as significant factors linking GSH impairments with the pathophysiology of ASD. Moreover, GSH regulates the methylation of DNA and modulates epigenetics. Existing data support a protective role of the GSH system in ASD development. Future research should focus on the effects of GSH redox signaling in ASD and should explore new therapeutic approaches by targeting the GSH system.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University of Constanta, Campus, 900470, Constanta, Romania.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Richard E Frye
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|
25
|
Risal S, Manti M, Lu H, Fornes R, Larsson H, Benrick A, Deng Q, Cesta CE, Rosenqvist MA, Stener-Victorin E. Prenatal androgen exposure causes a sexually dimorphic transgenerational increase in offspring susceptibility to anxiety disorders. Transl Psychiatry 2021; 11:45. [PMID: 33441551 PMCID: PMC7806675 DOI: 10.1038/s41398-020-01183-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
If and how obesity and elevated androgens in women with polycystic ovary syndrome (PCOS) affect their offspring's psychiatric health is unclear. Using data from Swedish population health registers, we showed that daughters of mothers with PCOS have a 78% increased risk of being diagnosed with anxiety disorders. We next generated a PCOS-like mouse (F0) model induced by androgen exposure during late gestation, with or without diet-induced maternal obesity, and showed that the first generation (F1) female offspring develop anxiety-like behavior, which is transgenerationally transmitted through the female germline into the third generation of female offspring (F3) in the androgenized lineage. In contrast, following the male germline, F3 male offspring (mF3) displayed anxiety-like behavior in the androgenized and the obese lineages. Using a targeted approach to search for molecular targets within the amygdala, we identified five differentially expressed genes involved in anxiety-like behavior in F3 females in the androgenized lineage and eight genes in the obese lineage. In mF3 male offspring, three genes were dysregulated in the obese lineage but none in the androgenized lineage. Finally, we performed in vitro fertilization (IVF) using a PCOS mouse model of continuous androgen exposure. We showed that the IVF generated F1 and F2 offspring in the female germline did not develop anxiety-like behavior, while the F2 male offspring (mF2) in the male germline did. Our findings provide evidence that elevated maternal androgens in PCOS and maternal obesity may underlie the risk of a transgenerational transmission of anxiety disorders in children of women with PCOS.
Collapse
Affiliation(s)
- Sanjiv Risal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Manti
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Romina Fornes
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Anna Benrick
- grid.8761.80000 0000 9919 9582Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.412798.10000 0001 2254 0954School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Qiaolin Deng
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolyn E. Cesta
- grid.4714.60000 0004 1937 0626Department of Medicine, Solna, Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Mina A. Rosenqvist
- grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
26
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
27
|
Panov J, Kaphzan H. Bioinformatics analyses show dysregulation of calcium-related genes in Angelman syndrome mouse model. Neurobiol Dis 2020; 148:105180. [PMID: 33212289 DOI: 10.1016/j.nbd.2020.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by the loss of function of the UBE3A protein in the brain. In a previous study, we showed that activity-dependent calcium dynamics in hippocampal CA1 pyramidal neurons of AS mice is compromised, and its normalization rescues the hippocampal-dependent deficits. Therefore, we expected that the expression profiles of calcium-related genes would be altered in AS mice hippocampi. METHODS We analyzed mRNA sequencing data from AS model mice and WT controls in light of the newly published CaGeDB database of calcium-related genes. We validated our results in two independent RNA sequencing datasets from two additional different AS models: first one, a human neuroblastoma cell line where UBE3A expression was knocked down by siRNA, and the second, an iPSC-derived neurons from AS patient and healthy donor control. FINDINGS We found signatures of dysregulated calcium-related genes in AS mouse model hippocampus. Additionally, we show that these calcium-related genes function as signatures for AS in other human cellular models of AS, thus strengthening our findings. INTERPRETATION Our findings suggest the downstream implications and significance of the compromised calcium signaling in Angelman syndrome. Moreover, since AS share similar features with other autism spectrum disorders, we believe that these findings entail meaningful data and approach for other neurodevelopmental disorders, especially those with known alterations of calcium signaling. FUNDING This work was supported by the Angelman Syndrome Foundation and by the Israel Science Foundation, Grant Number 248/20.
Collapse
Affiliation(s)
- Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
28
|
Khalid M, Raza H, M. Driessen T, J. Lee P, Tejwani L, Sami A, Nawaz M, Mehmood Baig S, Lim J, Kaukab Raja G. Genetic Risk of Autism Spectrum Disorder in a Pakistani Population. Genes (Basel) 2020; 11:genes11101206. [PMID: 33076578 PMCID: PMC7602870 DOI: 10.3390/genes11101206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental and neuropsychiatric disorders in children characterized by impairment of communication and social interaction. Several genes with associated single nucleotide polymorphisms (SNPs) have been identified for ASD in different genetic association studies, meta-analyses, and genome-wide association studies (GWAS). However, associations between different SNPs and ASD vary from population to population. Four SNPs in genes CNTNAP2, EIF4E, ATP2B2, CACNA1C, and SNP rs4307059 (which is found between CDH9 and CDH10 genes) have been identified and reported as candidate risk factors for ASD. The aim of the present study was, for the first time, to assess the association of SNPs in these genes with ASD in the Pakistani population. PCR-based genotyping was performed using allele-specific primers in 93 ASD and 93 control Pakistani individuals. All genetic associations, genotype frequencies, and allele frequencies were computed as odds’ ratios (ORs) using logistic regression with a threshold of p ≤ 0.01 to determine statistical significance. We found that the homozygous genotypes of mutant T alleles of CNTNAP2 and ATP2B2 were significantly associated with Pakistani ASD patients in unadjusted ORs (p < 0.01), but their significance score was lost in the adjusted model. Other SNPs such as rs4307059, rs17850950 of EIF4E, and rs1006737 of CACNA1C were not statistically significant. Based on this, we conclude that SNPs are not associated with, or are not the main cause of, autism in the Pakistani population, indicating the involvement of additional players, which need to be investigated in future studies in a large population size. One of the limitations of present study is its small sample size. However, this study, being the first on Pakistani ASD patients, may lay the foundations for future studies in larger samples.
Collapse
Affiliation(s)
- Madiha Khalid
- Department of Biochemistry, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; (M.K.); (A.S.)
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Hashim Raza
- Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan;
| | - Terri M. Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Paul J. Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; (P.J.L.); (L.T.)
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; (P.J.L.); (L.T.)
| | - Abdul Sami
- Department of Biochemistry, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; (M.K.); (A.S.)
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden;
| | - Shahid Mehmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan;
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; (P.J.L.); (L.T.)
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
- Correspondence: (J.L.); (G.K.R.); Tel.: +1-203-737-6268 (J.L.); +92-(051)-9062-742 (G.K.R.)
| | - Ghazala Kaukab Raja
- Department of Biochemistry, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; (M.K.); (A.S.)
- Correspondence: (J.L.); (G.K.R.); Tel.: +1-203-737-6268 (J.L.); +92-(051)-9062-742 (G.K.R.)
| |
Collapse
|
29
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
30
|
Piras IS, Picinelli C, Iennaco R, Baccarin M, Castronovo P, Tomaiuolo P, Cucinotta F, Ricciardello A, Turriziani L, Nanetti L, Mariotti C, Gellera C, Lintas C, Sacco R, Zuccato C, Cattaneo E, Persico AM. Huntingtin gene CAG repeat size affects autism risk: Family-based and case-control association study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:341-351. [PMID: 32652810 DOI: 10.1002/ajmg.b.32806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022]
Abstract
The Huntingtin (HTT) gene contains a CAG repeat in exon 1, whose expansion beyond 39 repeats consistently leads to Huntington's disease (HD), whereas normal-to-intermediate alleles seemingly modulate brain structure, function and behavior. The role of the CAG repeat in Autism Spectrum Disorder (ASD) was investigated applying both family-based and case-control association designs, with the SCA3 repeat as a negative control. Significant overtransmission of "long" CAG alleles (≥17 repeats) to autistic children and of "short" alleles (≤16 repeats) to their unaffected siblings (all p < 10-5 ) was observed in 612 ASD families (548 simplex and 64 multiplex). Surprisingly, both 193 population controls and 1,188 neurological non-HD controls have significantly lower frequencies of "short" CAG alleles compared to 185 unaffected siblings and higher rates of "long" alleles compared to 548 ASD patients from the same families (p < .05-.001). The SCA3 CAG repeat displays no association. "Short" HTT alleles seemingly exert a protective effect from clinically overt autism in families carrying a genetic predisposition for ASD, while "long" alleles may enhance autism risk. Differential penetrance of autism-inducing genetic/epigenetic variants may imply atypical developmental trajectories linked to HTT functions, including excitation/inhibition imbalance, cortical neurogenesis and apoptosis, neuronal migration, synapse formation, connectivity and homeostasis.
Collapse
Affiliation(s)
- Ignazio Stefano Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Raffaele Iennaco
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Laura Turriziani
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carla Lintas
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Chiara Zuccato
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Ventura G, Calvano CD, Porcelli V, Palmieri L, De Giacomo A, Xu Y, Goodacre R, Palmisano F, Cataldi TRI. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 2020; 412:6859-6874. [DOI: 10.1007/s00216-020-02817-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
|
32
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2020; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
34
|
Janickova L, Rechberger KF, Wey L, Schwaller B. Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Mol Autism 2020; 11:47. [PMID: 32517751 PMCID: PMC7285523 DOI: 10.1186/s13229-020-00323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Background In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca2+ signal modulator with slow-onset kinetics. In Purkinje cells of PV−/− mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca2+ sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. Methods The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV−/−) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. Results PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV−/− Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV−/− Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV−/− mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV−/− mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. Conclusion PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca2+ signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.
Collapse
Affiliation(s)
- Lucia Janickova
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Karin Farah Rechberger
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Lucas Wey
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
35
|
Zhang Y, Wang Y, Read E, Fu M, Pei Y, Wu L, Wang R, Yang G. Golgi Stress Response, Hydrogen Sulfide Metabolism, and Intracellular Calcium Homeostasis. Antioxid Redox Signal 2020; 32:583-601. [PMID: 31870162 DOI: 10.1089/ars.2019.7824] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims: The physiological and pathological importance of hydrogen sulfide (H2S) as a novel gasotransmitter has been widely recognized. Cystathionine gamma-lyase (CSE) is one of the major H2S-producing enzymes and it regulates diverse functions in connection with intracellular calcium (Ca2+). The aim of this study is to examine the role of H2S in Golgi stress-related cell injury and skeletal muscle disorders. Results: Golgi stressors (brefeldin A [BFA] and monensin) decreased the expression of GM130 and ATP2C1 (two markers of Golgi stress response), induced Golgi apparatus fragmentation, and caused a higher level of oxidative stress and cell apoptosis in mouse myoblast cells. In addition, Golgi stressors upregulated CSE expression and endogenous H2S generation, and exogenously applied H2S was able to protect but inhibition of CSE/H2S system deteriorated Golgi stress response. Activating transcription factor 4 (ATF4) acted as an upstream molecule to increase CSE expression on Golgi stress response. Mechanically, Golgi stressors induced intracellular level of Ca2+, and chelating cellular Ca2+ markedly attenuated Golgi stress response, indicating the key role of Ca2+ in initiating Golgi stress and cell apoptosis. Further, administration of either angiotensin II or BFA initiated Golgi stress response and induced skeletal muscle atrophy in mice, which was further deteriorated by CSE deficiency but rescued by exogenously applied sodium hydrosulfide (NaHS). Innovation and Conclusion: The activation of the CSE/H2S pathway and the decrease of intracellular Ca2+ are two cellular protective mechanisms against Golgi stress, and the CSE/H2S system would be a target for preventing skeletal muscle dysfunctions.
Collapse
Affiliation(s)
- Yanjie Zhang
- School of Life Science, Shanxi University, Taiyuan, China.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ethan Read
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Ming Fu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Sciences North Research Institute, Sudbury, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Sciences North Research Institute, Sudbury, Canada
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
36
|
Lv X, Zheng Q, Li M, Huang Z, Peng M, Sun J, Shi P. Clioquinol induces S-phase cell cycle arrest through the elevation of the calcium level in human neurotypic SH-SY5Y cells. Metallomics 2020; 12:173-182. [DOI: 10.1039/c9mt00260j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clioquinol elevates intracellular calcium levels in a non-chelating manner, leading to S-phase cell cycle arrest in human neurotypic SH-SY5Y cells.
Collapse
Affiliation(s)
- Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ming Li
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Min Peng
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- The Chinese Academy of Sciences
- Xining 810001
- China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- The Chinese Academy of Sciences
- Xining 810001
- China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
37
|
Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome. eNeuro 2019; 6:ENEURO.0217-19.2019. [PMID: 31685673 PMCID: PMC6917895 DOI: 10.1523/eneuro.0217-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common source of intellectual disability and autism. Extensive studies have been performed on the network and behavioral correlates of the syndrome, but our knowledge about intrinsic conductance changes is still limited. In this study, we show a differential effect of FMRP knockout in different subsections of hippocampus using whole-cell patch clamp in mouse hippocampal slices. We observed no significant change in spike numbers in the CA1 region of hippocampus, but a significant increase in CA3, in juvenile mice. However, in adult mice we see a reduction in spike number in the CA1 with no significant difference in CA3. In addition, we see increased variability in spike numbers in CA1 cells following a variety of steady and modulated current step protocols. This effect emerges in adult mice (8 weeks) but not juvenile mice (4 weeks). This increased spiking variability was correlated with reduced spike number and with elevated AHP. The increased AHP arose from elevated SK currents (small conductance calcium-activated potassium channels), but other currents involved in medium AHP, such as Ih and M, were not significantly different. We obtained a partial rescue of the cellular variability phenotype when we blocked SK current using the specific blocker apamin. Our observations provide a single-cell correlate of the network observations of response variability and loss of synchronization, and suggest that the elevation of SK currents in FXS may provide a partial mechanistic explanation for this difference.
Collapse
|
38
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
39
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
40
|
Parys JB, Bultynck G. Calcium signaling in health, disease and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1657-1659. [DOI: 10.1016/j.bbamcr.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|