1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Li X, Zheng K, Chen H, Li W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr Issues Mol Biol 2024; 46:11359-11374. [PMID: 39451557 PMCID: PMC11506191 DOI: 10.3390/cimb46100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
While Ginsenoside Re has been shown to protect the central nervous system, reports of its effects on memory in the model of scopolamine-induced memory impairment are rare. The aim of this study was to investigate the effects of Ginsenoside Re on scopolamine (SCOP)-induced memory damage and the mechanism of action. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days and with or without Ginsenoside Re for 14 days. As evidenced by behavioral studies (escape latency and cross platform position), brain tissue morphology, and oxidative stress indicators after Ginsenoside Re treatment, the memory damage caused by SCOP was significantly ameliorated. Further mechanism research indicated that Ginsenoside Re inhibited cell apoptosis by regulating the PI3K/Akt/Nrf2 pathway, thereby exerting a cognitive impairment improvement effect. This research suggests that Ginsenoside Re could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | | | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2024:S0962-8924(24)00185-5. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
4
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
5
|
Ianni M, Corraliza-Gomez M, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Alemãn-Serrano N, Sebastião AM, Garcia G, Diógenes MJ, Brites D. Spatiotemporal Dysregulation of Neuron-Glia Related Genes and Pro-/Anti-Inflammatory miRNAs in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:9475. [PMID: 39273422 PMCID: PMC11394861 DOI: 10.3390/ijms25179475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.
Collapse
Affiliation(s)
- Marta Ianni
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Miriam Corraliza-Gomez
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cadiz (INIBICA), 11003 Cadiz, Spain
| | - Tiago Costa-Coelho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- ULS Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gonçalo Garcia
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
7
|
Halder D, Das S, Joseph A. An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer's disease: a review. J Biomol Struct Dyn 2024; 42:6455-6471. [PMID: 37378526 DOI: 10.1080/07391102.2023.2230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Pietrzak-Wawrzyńska BA, Wnuk A, Przepiórska-Drońska K, Łach A, Kajta M. Posttreatment with PaPE-1 Protects from Aβ-Induced Neurodegeneration Through Inhibiting the Expression of Alzheimer's Disease-Related Genes and Apoptosis Process That Involves Enhanced DNA Methylation of Specific Genes. Mol Neurobiol 2024; 61:4130-4145. [PMID: 38064105 PMCID: PMC11236864 DOI: 10.1007/s12035-023-03819-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/19/2023] [Indexed: 07/11/2024]
Abstract
Targeting the non-nuclear estrogen receptor (ER) signaling has been postulated as novel therapeutic strategy for central nervous system pathologies. Recently, we showed that newly designed PaPE-1 (Pathway Preferential Estrogen-1), which selectively activates ER non-nuclear signaling pathways, elicited neuroprotection in a cellular model of Alzheimer's disease (AD) when it was applied at the same time as amyloid-β (Aβ). Since delayed treatment reflects clinical settings better than cotreatment does, current basic study proposes a novel therapeutic approach for AD that relies on a posttreatment with PaPE-1. In this study, mouse neuronal cell cultures treated with preaggregated Aβ1-42 (10 µM) showed the presence of extracellular Aβ1-42, confirming the adequacy of the AD model used. We are the first to demonstrate that a 24-h delayed posttreatment with PaPE-1 decreased the degree of Aβ-induced neurodegeneration, restored neurite outgrowth, and inhibited the expression of AD-related genes, i.e., Rbfox, Apoe, Bace2, App, and Ngrn, except for Chat, which was stimulated. In addition, PaPE-1 elicited anti-apoptotic effects by inhibiting Aβ-induced caspase activities as well as attenuating apoptotic chromatin condensation, and in these ways, PaPE-1 prevented neuronal cell death. Posttreatment with PaPE-1 also downregulated the Aβ-affected mRNA expression of apoptosis-specific factors, such as Bax, Gsk3b, Fas, and Fasl, except for Bcl2, which was upregulated by PaPE-1. In parallel, PaPE-1 decreased the protein levels of BAX, FAS, and FASL, which were elevated in response to Aβ. PaPE-1 elicited a decrease in the BAX/BCL2 ratio that corresponds to increased methylation of the Bax gene. However, the PaPE-1-evoked Bcl2 gene hypermethylation suggests other PaPE-1-dependent mechanisms to control Aβ-induced apoptosis.
Collapse
Affiliation(s)
- Bernadeta A Pietrzak-Wawrzyńska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Karolina Przepiórska-Drońska
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Andrzej Łach
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
10
|
Bretou M, Sannerud R, Escamilla-Ayala A, Leroy T, Vrancx C, Van Acker ZP, Perdok A, Vermeire W, Vorsters I, Van Keymolen S, Maxson M, Pavie B, Wierda K, Eskelinen EL, Annaert W. Accumulation of APP C-terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome-ER contact sites. Dev Cell 2024; 59:1571-1592.e9. [PMID: 38626765 DOI: 10.1016/j.devcel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.
Collapse
Affiliation(s)
- Marine Bretou
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Tom Leroy
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sophie Van Keymolen
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michelle Maxson
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Benjamin Pavie
- VIB-BioImaging Core, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
12
|
Li FR, Yu Y, Du YM, Kong L, Liu Y, Wang JH, Chen MH, Liu M, Zhang ZX, Li XT, Ju RJ. Borneol-Modified Schisandrin B Micelles Cross the Blood-Brain Barrier To Treat Alzheimer's Disease in Aged Mice. ACS Chem Neurosci 2024; 15:593-607. [PMID: 38214579 DOI: 10.1021/acschemneuro.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Feng-Rui Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yu-Meng Du
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| |
Collapse
|
13
|
Alharbi KM, Alshehri SA, Almarwani WA, Aljohani KK, Albalawi AZ, Alatawi AS, Al-Atwi SM, Alhwyty LS, Hassan HM, Al-Gayyar MMH. Effects of Cycloastragenol on Alzheimer's Disease in Rats by Reducing Oxidative Stress, Inflammation, and Apoptosis. Curr Alzheimer Res 2024; 21:141-154. [PMID: 38766828 DOI: 10.2174/0115672050315334240508162754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.
Collapse
Affiliation(s)
- Kadi M Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shahad A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Wasayf A Almarwani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khulud K Aljohani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Ajwan Z Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Areej S Alatawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Shekha M Al-Atwi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Lama S Alhwyty
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
14
|
Widjaya MA, Lee SD, Cheng WC, Wu BT. Effects of Exercise Training on Immune-Related Genes and Pathways in the Cortex of Animal Models of Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2024; 98:1219-1234. [PMID: 38578886 DOI: 10.3233/jad-230803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Alzheimer's disease (AD) is a chronic neurodegenerative disease that affects the immune system due to the accumulation of amyloid-β (Aβ) and tau associated molecular pathology and other pathogenic processes. To address AD pathogenesis, various approaches had been conducted from drug development to lifestyle modification to reduce the prevalence of AD. Exercise is considered a prominent lifestyle modification to combat AD. Objective This observation prompted us to review the literature on exercise related to immune genes in the cortex of animal models of AD. We focused on animal model studies due to their prevalence in this domain. Methods The systematic review was conducted according to PRISMA standards using Web of Science (WoS) and PubMed databases. Any kind of genes, proteins, and molecular molecules were included in this systematic review. The list of these immune-related molecules was analyzed in the STRING database for functional enrichment analysis. Results We found that 17 research studies discussed immune-related molecules and 30 immune proteins. These studies showed that exercise had the ability to ameliorate dysfunction in AD-related pathways, which led to decreasing the expression of microglia-related pathways and Th17-related immune pathways. As a result of decreasing the expression of immune-related pathways, the expression of apoptosis-related pathways was also decreasing, and neuronal survival was increased by exercise activity. Conclusions Based on functional enrichment analysis, exercise not only could reduce apoptotic factors and immune components but also could increase cell survival and Aβ clearance in cortex samples. PROSPERO ID: CRD42022326093.
Collapse
Affiliation(s)
- Michael Anekson Widjaya
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
15
|
Feng J, Goedegebuure SP, Zeng A, Bi Y, Wang T, Payne P, Ding L, DeNardo D, Hawkins W, Fields RC, Li F. sc2MeNetDrug: A computational tool to uncover inter-cell signaling targets and identify relevant drugs based on single cell RNA-seq data. PLoS Comput Biol 2024; 20:e1011785. [PMID: 38181047 PMCID: PMC10796047 DOI: 10.1371/journal.pcbi.1011785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/18/2024] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the transcriptional programs in stromal, immune, and disease cells, like tumor cells or neurons within the Alzheimer's Disease (AD) brain or tumor microenvironment (ME) or niche. Cell-cell communications within ME play important roles in disease progression and immunotherapy response and are novel and critical therapeutic targets. Though many tools of scRNA-seq analysis have been developed to investigate the heterogeneity and sub-populations of cells, few were designed for uncovering cell-cell communications of ME and predicting the potentially effective drugs to inhibit the communications. Moreover, the data analysis processes of discovering signaling communication networks and effective drugs using scRNA-seq data are complex and involve a set of critical analysis processes and external supportive data resources, which are difficult for researchers who have no strong computational background and training in scRNA-seq data analysis. To address these challenges, in this study, we developed a novel open-source computational tool, sc2MeNetDrug (https://fuhaililab.github.io/sc2MeNetDrug/). It was specifically designed using scRNA-seq data to identify cell types within disease MEs, uncover the dysfunctional signaling pathways within individual cell types and interactions among different cell types, and predict effective drugs that can potentially disrupt cell-cell signaling communications. sc2MeNetDrug provided a user-friendly graphical user interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq data-based discovery of novel inter-cell signaling communications and novel therapeutic regimens.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Amanda Zeng
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ye Bi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Philip Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David DeNardo
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - William Hawkins
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan C. Fields
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
16
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
17
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
18
|
Kamel NN, Aly HF, Fouad GI, Abd El-Karim SS, Anwar MM, Syam YM, Elseginy SA, Ahmed KA, Booles HF, Shalaby MB, Khalil WKB, Sandhir R, Deshwal S, Rizk MZ. Anti-Alzheimer activity of new coumarin-based derivatives targeting acetylcholinesterase inhibition. RSC Adv 2023; 13:18496-18510. [PMID: 37346948 PMCID: PMC10280131 DOI: 10.1039/d3ra02344c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
New 2-oxo-chromene-7-oxymethylene acetohydrazide derivatives 4a-d were designed and synthesized with a variety of bioactive chemical fragments. The newly synthesized compounds were evaluated as acetylcholinesterase (AChE) inhibitors and antioxidant agents in comparison to donepezil and ascorbic acid, respectively. Compound 4c exhibited a promising inhibitory impact with an IC50 value of 0.802 μM and DPPH scavenging activity of 57.14 ± 2.77%. Furthermore, biochemical and haematological studies revealed that compound 4c had no effect on the blood profile, hepatic enzyme levels (AST, ALT, and ALP), or total urea in 4c-treated rats compared to the controls. Moreover, the histopathological studies of 4c-treated rats revealed the normal architecture of the hepatic lobules and renal parenchyma, as well as no histopathological damage in the examined hepatic, kidney, heart, and brain tissues. In addition, an in vivo study investigated the amelioration in the cognitive function of AD-rats treated with 4c through the T-maze and beam balance behavioural tests. Also, 4c detectably ameliorated MDA and GSH, reaching 90.64 and 27.17%, respectively, in comparison to the standard drug (90.64% and 35.03% for MDA and GSH, respectively). The molecular docking study exhibited a good fitting of compound 4c in the active site of the AChE enzyme and a promising safety profile. Compound 4c exhibited a promising anti-Alzheimer's disease efficiency compared to the standard drug donepezil.
Collapse
Affiliation(s)
- Nahla N Kamel
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Ghadha I Fouad
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre P. O. Box 12622 Egypt
| | - Kawkab A Ahmed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Hoda F Booles
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Mohamed B Shalaby
- Toxicology Research Department, Research Institute of Medical Entomology (RIME), General Organization of Teaching Hospitals and Institutes (GOTHI), Ministry of Health and Population (MoHP) Dokki, P. O. Box 12311 Cairo Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre 12262 El-Bohouth St Cairo Egypt
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University Chandigarh India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University Chandigarh India
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, National Research Centre 12262 El-Bohouth St Cairo Egypt
| |
Collapse
|
19
|
Schroer J, Warm D, De Rosa F, Luhmann HJ, Sinning A. Activity-dependent regulation of the BAX/BCL-2 pathway protects cortical neurons from apoptotic death during early development. Cell Mol Life Sci 2023; 80:175. [PMID: 37269320 DOI: 10.1007/s00018-023-04824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
During early brain development, homeostatic removal of cortical neurons is crucial and requires multiple control mechanisms. We investigated in the cerebral cortex of mice whether the BAX/BCL-2 pathway, an important regulator of apoptosis, is part of this machinery and how electrical activity might serve as a set point of regulation. Activity is known to be a pro-survival factor; however, how this effect is translated into enhanced survival chances on a neuronal level is not fully understood. In this study, we show that caspase activity is highest at the neonatal stage, while developmental cell death peaks at the end of the first postnatal week. During the first postnatal week, upregulation of BAX is accompanied by downregulation of BCL-2 protein, resulting in a high BAX/BCL-2 ratio when neuronal death rates are high. In cultured neurons, pharmacological blockade of activity leads to an acute upregulation of Bax, while elevated activity results in a lasting increase of BCL-2 expression. Spontaneously active neurons not only exhibit lower Bax levels than inactive neurons but also show almost exclusively BCL-2 expression. Disinhibition of network activity prevents the death of neurons overexpressing activated CASP3. This neuroprotective effect is not the result of reduced caspase activity but is associated with a downregulation of the BAX/BCL-2 ratio. Notably, increasing neuronal activity has a similar, non-additive effect as the blockade of BAX. Conclusively, high electrical activity modulates BAX/BCL-2 expression and leads to higher tolerance to CASP3 activity, increases survival, and presumably promotes non-apoptotic CASP3 functions in developing neurons.
Collapse
Affiliation(s)
- Jonas Schroer
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Federico De Rosa
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
20
|
Chernyuk D, Callens M, Polozova M, Gordeev A, Chigriai M, Rakovskaya A, Ilina A, Pchitskaya E, Van den Haute C, Vervliet T, Bultynck G, Bezprozvanny I. Neuroprotective properties of anti-apoptotic BCL-2 proteins in 5xFAD mouse model of Alzheimer's disease. IBRO Neurosci Rep 2023; 14:273-283. [PMID: 36926591 PMCID: PMC10011438 DOI: 10.1016/j.ibneur.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. An early feature of the AD pathology is the dysregulation of intracellular Ca2+ signaling in neurons. In particular, increased Ca2+ release from endoplasmic reticulum-located Ca2+ channels, including inositol-1,4,5-trisphosphate type 1 receptors (IP3R1) and ryanodine receptors type 2 (RyR2), have been extensively reported. Known for its anti-apoptotic properties, Bcl-2 also has the ability to bind to and inhibit the Ca2+-flux properties of IP3Rs and RyRs. In this study, the hypothesis that the expression of Bcl-2 proteins can normalize dysregulated Ca2+ signaling in a mouse model of AD (5xFAD) and thereby prevent or slow the progression of AD was examined. Therefore, stereotactic injections of adeno-associated viral vectors expressing Bcl-2 proteins were performed in the CA1 region of the 5xFAD mouse hippocampus. In order to assess the importance of the association with IP3R1, the Bcl-2K17D mutant was also included in these experiments. This K17D mutation has been previously shown to decrease the association of Bcl-2 with IP3R1, thereby impairing its ability to inhibit IP3R1 while not affecting Bcl-2's ability to inhibit RyRs. Here, we demonstrate that Bcl-2 protein expression leads to synaptoprotective and amyloid-protective effects in the 5xFAD animal model. Several of these neuroprotective features are also observed by Bcl-2K17D protein expression, suggesting that these effects are not associated with Bcl-2-mediated inhibition of IP3R1. Potential mechanisms for this Bcl-2 synaptoprotective action may be related to its ability to inhibit RyR2 activity as Bcl-2 and Bcl-2K17D are equally potent in inhibiting RyR2-mediated Ca2+ fluxes. This work indicates that Bcl-2-based strategies hold neuroprotective potential in AD models, though the underlying mechanisms requires further investigation.
Collapse
Affiliation(s)
- D Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - M Callens
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - M Polozova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Gordeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - M Chigriai
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Rakovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Ilina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - E Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - C Van den Haute
- KU Leuven, Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, Campus Gasthuisberg O/N-5 box 1023, Herestraat 49, BE-3000 Leuven, Belgium.,Leuven Viral Vector Core, BE-3000 Leuven, Belgium
| | - T Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - G Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - I Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia.,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
21
|
Zhang Y, Kiryu H. Identification of oxidative stress-related genes differentially expressed in Alzheimer's disease and construction of a hub gene-based diagnostic model. Sci Rep 2023; 13:6817. [PMID: 37100862 PMCID: PMC10133299 DOI: 10.1038/s41598-023-34021-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia disorder globally, and there are still no effective interventions for slowing or stopping the underlying pathogenic mechanisms. There is strong evidence implicating neural oxidative stress (OS) and ensuing neuroinflammation in the progressive neurodegeneration observed in the AD brain both during and prior to symptom emergence. Thus, OS-related biomarkers may be valuable for prognosis and provide clues to therapeutic targets during the early presymptomatic phase. In the current study, we gathered brain RNA-seq data of AD patients and matched controls from the Gene Expression Omnibus (GEO) to identify differentially expressed OS-related genes (OSRGs). These OSRGs were analyzed for cellular functions using the Gene Ontology (GO) database and used to construct a weighted gene co-expression network (WGCN) and protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were then constructed to identify network hub genes. A diagnostic model was established based on these hub genes using Least Absolute Shrinkage and Selection Operator (LASSO) and ROC analyses. Immune-related functions were examined by assessing correlations between hub gene expression and immune cell brain infiltration scores. Further, target drugs were predicted using the Drug-Gene Interaction database, while regulatory miRNAs and transcription factors were predicted using miRNet. In total, 156 candidate genes were identified among 11046 differentially expressed genes, 7098 genes in WGCN modules, and 446 OSRGs, and 5 hub genes (MAPK9, FOXO1, BCL2, ETS1, and SP1) were identified by ROC curve analyses. These hub genes were enriched in GO annotations "Alzheimer's disease pathway," "Parkinson's Disease," "Ribosome," and "Chronic myeloid leukemia." In addition, 78 drugs were predicted to target FOXO1, SP1, MAPK9, and BCL2, including fluorouracil, cyclophosphamide, and epirubicin. A hub gene-miRNA regulatory network with 43 miRNAs and hub gene-transcription factor (TF) network with 36 TFs were also generated. These hub genes may serve as biomarkers for AD diagnosis and provide clues to novel potential treatment targets.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 2023:10.1007/s10495-023-01848-y. [PMID: 37186274 DOI: 10.1007/s10495-023-01848-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
23
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
24
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
25
|
Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci 2023; 17:1105247. [PMID: 36950516 PMCID: PMC10025411 DOI: 10.3389/fncel.2023.1105247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Neuronal loss is one of the striking causes of various central nervous system (CNS) disorders, including major neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). Although these diseases have different features and clinical manifestations, they share some common mechanisms of disease pathology. Progressive regional loss of neurons in patients is responsible for motor, memory, and cognitive dysfunctions, leading to disabilities and death. Neuronal cell death in neurodegenerative diseases is linked to various pathways and conditions. Protein misfolding and aggregation, mitochondrial dysfunction, generation of reactive oxygen species (ROS), and activation of the innate immune response are the most critical hallmarks of most common neurodegenerative diseases. Thus, endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation are the major pathological factors of neuronal cell death. Even though the exact mechanisms are not fully discovered, the notable role of mentioned factors in neuronal loss is well known. On this basis, researchers have been prompted to investigate the neuroprotective effects of targeting underlying pathways to determine a promising therapeutic approach to disease treatment. This review provides an overview of the role of ER stress, oxidative stress, and neuroinflammation in neuronal cell death, mainly discussing the neuroprotective effects of targeting pathways or molecules involved in these pathological factors.
Collapse
Affiliation(s)
- Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Majid Mahdavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Majid Mahdavi
| |
Collapse
|
26
|
Liu S, Ba Y, Li C, Xu G. Inactivation of CACNA1H induces cell apoptosis by initiating endoplasmic reticulum stress in glioma. Transl Neurosci 2023; 14:20220285. [PMID: 37250140 PMCID: PMC10224624 DOI: 10.1515/tnsci-2022-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
Background Ca2+ channels are abnormally expressed in various tumor cells and are involved in the progression of human glioma. Here, we explored the role of a calcium channel, voltage-dependent, T-type, alpha 1H subunit (CACNA1H), which encodes T-type Ca2+ channel Cav3.2 in glioma cells. Methods Cell viability and apoptosis were detected using cell-counting kit-8 and flow cytometry, respectively. The expression of target protein was determined using western blot analysis. Results Cell viability of U251 cells was inhibited significantly after the knockdown of CACNA1H. The apoptosis of U251 cells was enhanced significantly after the knockdown of CACNA1H. Importantly, knockdown of CACNA1H decreased the levels of p-PERK, GRP78, CHOP, and ATF6, indicating that CACNA1H knockdown activated endoplasmic reticulum stress (ERS) in U251 cells. In addition, T-type Ca2+ channel inhibitor NNC55-0396 also induced apoptosis through the activation of ERS in U251 cells. ERS inhibitor UR906 could block CACNA1H inhibitor ABT-639-induced apoptosis. Conclusion Suppression of CACNA1H activated the ERS and thus induced apoptosis in glioma cells. T-type Ca2+ channel inhibitors ABT-639 and NNC55-0396 also induced apoptosis through ERS in glioma cells. Our data highlighted the effect of CACNA1H as an oncogenic gene in human glioma.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Ying Ba
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Chenglong Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, No. 324, Jingwuweiqi Road, Jinan, 250021, China
| |
Collapse
|
27
|
Zhang L, Lin S, Huang K, Chen A, Li N, Shen S, Zheng Z, Shi X, Sun J, Kong J, Chen M. Effects of HAR1 on cognitive function in mice and the regulatory network of HAR1 determined by RNA sequencing and applied bioinformatics analysis. Front Genet 2023; 14:947144. [PMID: 36968607 PMCID: PMC10030831 DOI: 10.3389/fgene.2023.947144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background: HAR1 is a 118-bp segment that lies in a pair of novel non-coding RNA genes. It shows a dramatic accelerated change with an estimated 18 substitutions in the human lineage since the human-chimpanzee ancestor, compared with the expected 0.27 substitutions based on the slow rate of change in this region in other amniotes. Mutations of HAR1 lead to a different HAR1 secondary structure in humans compared to that in chimpanzees. Methods: We cloned HAR1 into the EF-1α promoter vector to generate transgenic mice. Morris water maze tests and step-down passive avoidance tests were conducted to observe the changes in memory and cognitive abilities of mice. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) between the experimental and control groups. Systematic bioinformatics analysis was used to confirm the pathways and functions that the DEGs were involved in. Results: Memory and cognitive abilities of the transgenic mice were significantly improved. The results of Gene Ontology (GO) analysis showed that Neuron differentiation, Dentate gyrus development, Nervous system development, Cerebral cortex neuron differentiation, Cerebral cortex development, Cerebral cortex development and Neurogenesis are all significant GO terms related to brain development. The DEGs enriched in these terms included Lhx2, Emx2, Foxg1, Nr2e1 and Emx1. All these genes play an important role in regulating the functioning of Cajal-Retzius cells (CRs). The DEGs were also enriched in glutamatergic synapses, synapses, memory, and the positive regulation of long-term synaptic potentiation. In addition, "cellular response to calcium ions" exhibited the second highest rich factor in the GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed that the neuroactive ligand-receptor interaction pathway was the most significantly enriched pathway, and DEGs also notably enriched in neuroactive ligand-receptor interaction, axon guidance, and cholinergic synapses. Conclusion: HAR1 overexpression led to improvements in memory and cognitive abilities of the transgenic mice. The possible mechanism for this was that the long non-coding RNA (lncRNA) HAR1A affected brain development by regulating the function of CRs. Moreover, HAR1A may be involved in ligand-receptor interaction, axon guidance, and synapse formation, all of which are important in brain development and evolution. Furthermore, cellular response to calcium may play an important role in those processes.
Collapse
Affiliation(s)
- Luting Zhang
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengmou Lin
- Department of Obstetrics and Gynecology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kailing Huang
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Allen Chen
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Nan Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Zhouxia Zheng
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Xiaoshun Shi
- Guangzhou Mendel Genomics and Medical Technology Co., Ltd., Guangzhou, China
| | - Jimei Sun
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyin Kong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guang-Dong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Min Chen,
| |
Collapse
|
28
|
Jiao Y, Xin M, Xu J, Xiang X, Li X, Jiang J, Jia X. Polyphyllin II induced apoptosis of NSCLC cells by inhibiting autophagy through the mTOR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1781-1789. [PMID: 36102594 PMCID: PMC9487979 DOI: 10.1080/13880209.2022.2120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS The effects of PPII (0, 1, 5, and 10 μM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 μM) and 3-MA (5 mM). RESULTS PPII (0, 1, 5, and 10 μM) inhibited the proliferation and induced apoptosis. The IC50 values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 μM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment.
Collapse
Affiliation(s)
- Yuhan Jiao
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ming Xin
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Juanjuan Xu
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xindong Xiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Jingjing Jiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
29
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
30
|
Companys-Alemany J, Turcu AL, Schneider M, Müller CE, Vázquez S, Griñán-Ferré C, Pallàs M. NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci 2022; 79:408. [PMID: 35810220 PMCID: PMC9271115 DOI: 10.1007/s00018-022-04438-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022]
Abstract
Overstimulation of N-methyl-d-aspartate receptors (NMDARs) is the leading cause of brain excitotoxicity and often contributes to neurodegenerative diseases such as Alzheimer’s Disease (AD), the most common form of dementia. This study aimed to evaluate a new NMDA receptor antagonist (UB-ALT-EV) and memantine in 6-month-old female 5XFAD mice that were exposed orally to a chronic low-dose treatment. Behavioral and cognitive tests confirmed better cognitive performance in both treated groups. Calcium-dependent protein calpain-1 reduction was found after UB-ALT-EV treatment but not after memantine. Changes in spectrin breakdown products (SBDP) and the p25/p35 ratio confirmed diminished calpain-1 activity. Amyloid β (Aβ) production and deposition was evaluated in 5XFAD mice and demonstrated a robust effect of NMDAR antagonists on reducing Aβ deposition and the number and size of Thioflavin-S positive plaques. Furthermore, glycogen synthase kinase 3β (GSK3β) active form and phosphorylated tau (AT8) levels were diminished after UB-ALT-EV treatment, revealing tau pathology improvement. Because calpain-1 is involved in autophagy activation, autophagic proteins were studied. Strikingly, results showed changes in the protein levels of unc-51-like kinase (ULK-1), beclin-1, microtubule-associated protein 1A/1B-light chain 3(LC3B-II)/LC3B-I ratio, and lysosomal-associated membrane protein 1 (LAMP-1) after NMDAR antagonist treatments, suggesting an accumulation of autophagolysosomes in 5XFAD mice, reversed by UB-ALT-EV. Likewise, treatment with UB-ALT-EV recovered a WT mice profile in apoptosis markers Bcl-2, Bax, and caspase-3. In conclusion, our results revealed the potential neuroprotective effect of UB-ALT-EV by attenuating NMDA-mediated apoptosis and reducing Aβ deposition and deposition jointly with the autophagy rescue to finally reduce cognitive alterations in a mice model of familial AD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
31
|
The Combination of Salidroside and Hedysari Radix Polysaccharide Inhibits Mitochondrial Damage and Apoptosis via the PKC/ERK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9475703. [PMID: 35795284 PMCID: PMC9252633 DOI: 10.1155/2022/9475703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Background. Beta-amyloid (Aβ) peptide is a widely recognized pathological marker of Alzheimer’s disease (AD). Salidroside and Hedysari Radix polysaccharide (HRP) were extracted from Chinese herb medicine Rhodiola rosea L and Hedysarum polybotrys Hand-Mazz, respectively. The neuroprotective effects and mechanisms of the combination of salidroside and Hedysari Radix polysaccharide (CSH) against Aβ25–35 induced neurotoxicity remain unclear. Objective. This study aims to investigate the neuroprotective effects and pharmacological mechanisms of CSH on Aβ25–35-induced HT22 cells. Materials and Methods. HT22 cells were pretreated with various concentrations of salidroside or HRP for 24 h, followed by exposed to 20 μm Aβ25–35 in the presence of salidroside or RHP for another 24 h. In a CSH protective assay, HT22 cells were pretreated with 40 μm salidroside and 20 μg/mL HRP for 24 h. The cell viability assay, cell morphology observation, determination of mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and cell apoptosis rate were performed. The mRNA expression of protein kinase C-beta (PKCβ), Bax, and Bcl-2 were measured by qRT-PCR. The protein expression levels of cleaved caspase-3, Cyt-C, PKCβ, phospho-ERK1/2, Bax, and Bcl-2 were measured by Western blot. Results. CSH treatment increased cell viability, MMP, and decreased ROS generation in Aβ25–35-induced HT22 cells. PKCβ and Bcl-2 mRNA expression were elevated by CSH while Bax was decreased. CSH increased the protein expression levels of PKCβ, Bcl-2, and phospho-ERK1/2, and decreased those of Bax, Cyt-C, and cleaved caspase-3. Conclusions. CSH treatment have protective effects against Aβ25–35-induced cytotoxicity through decreasing ROS levels, increasing MMP, inhibiting early apoptosis, and regulating PKC/ERK pathway in HT22 cells. CSH may be a potential therapeutic agent for treating or preventing neurodegenerative diseases.
Collapse
|
32
|
Callens M, Loncke J, Bultynck G. Dysregulated Ca 2+ Homeostasis as a Central Theme in Neurodegeneration: Lessons from Alzheimer's Disease and Wolfram Syndrome. Cells 2022; 11:cells11121963. [PMID: 35741091 PMCID: PMC9221778 DOI: 10.3390/cells11121963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Calcium ions (Ca2+) operate as important messengers in the cell, indispensable for signaling the underlying numerous cellular processes in all of the cell types in the human body. In neurons, Ca2+ signaling is crucial for regulating synaptic transmission and for the processes of learning and memory formation. Hence, the dysregulation of intracellular Ca2+ homeostasis results in a broad range of disorders, including cancer and neurodegeneration. A major source for intracellular Ca2+ is the endoplasmic reticulum (ER), which has close contacts with other organelles, including mitochondria. In this review, we focus on the emerging role of Ca2+ signaling at the ER–mitochondrial interface in two different neurodegenerative diseases, namely Alzheimer’s disease and Wolfram syndrome. Both of these diseases share some common hallmarks in the early stages, including alterations in the ER and mitochondrial Ca2+ handling, mitochondrial dysfunction and increased Reactive oxygen species (ROS) production. This indicates that similar mechanisms may underly these two disease pathologies and suggests that both research topics might benefit from complementary research.
Collapse
|
33
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
34
|
Li Q, Li X, Tian B, Chen L. Protective effect of pterostilbene in a streptozotocin-induced mouse model of Alzheimer's disease by targeting monoamine oxidase B. J Appl Toxicol 2022; 42:1777-1786. [PMID: 35665945 DOI: 10.1002/jat.4355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in elderly population. Pterostilbene (PTS) is a resveratrol analogue with neuroprotective activity. However, the biological mechanisms of PTS in AD progression are largely uncertain. An animal model of AD was established using streptozotocin (STZ)-treated C57BL/6J mice. Monoamine oxidase B (MAOB) expression was analyzed by bioinformatics analysis and detected by western blotting assay. The memory impairment was investigated by Morris water maze test. The levels of Tau hyperphosphorylation and death-related proteins were detected by western blotting analysis. The levels of amyloid β (Aβ)1-42 accumulation, oxidative stress-related markers (ROS, MDA, SOD and GSH), and inflammation-relative markers (TNF-α, IL-1β, IL-6 and p-NF-κB) were measured by ELISA. MAOB expression was increased in hippocampus of AD mice, and it was decreased by PTS. PTS attenuated STZ-induced body weight loss and memory impairment by regulating MAOB. PTS mitigated Aβ1-42 accumulation and Tau hyperphosphorylation by regulating MAOB in STZ-treated mice. PTS attenuated neuronal death by decreasing cleaved caspase-3 and Bax levels and increasing Bcl2 expression in hippocampus by regulating MAOB in STZ-treated mice. PTS weakened STZ-induced oxidative stress in hippocampus by decreasing ROS and MDA levels and increasing SOD and GSH levels by regulating MAOB. PTS protected against STZ-induced neuroinflammation in hippocampus by inhibiting TNF-α, IL-1β, IL-6 and p-NF-κB levels through regulating MAOB. In conclusion, PTS alleviates STZ-induced memory impairment, Aβ1-42 accumulation, Tau hyperphosphorylation, neuronal death, oxidative stress and inflammation by decreasing MAOB in AD mice, proving anti-AD potential of PTS.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Buxian Tian
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
35
|
Qiu Y, Yang J, Ma L, Song M, Liu G. Limonin Isolated From Pomelo Seed Antagonizes Aβ25-35-Mediated Neuron Injury via PI3K/AKT Signaling Pathway by Regulating Cell Apoptosis. Front Nutr 2022; 9:879028. [PMID: 35634407 PMCID: PMC9133815 DOI: 10.3389/fnut.2022.879028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Pomelo seed as a by-product from pomelo consumption is rich in bioactive compounds, however, a huge volume of pomelo seed was disposed as wastes, the comprehensive utilization of pomelo seed could not only generate valued-added products/ingredients, but also decrease the environmental pollution. In this study, the main active substance limonin in pomelo seed was considered as a high-value bioactive compound. The purification of limonin from pomelo seed was investigated, and the neuroprotective and mechanism were characterized. The UPLC-MS/MS results indicated that 29 compounds in pomelo seed were identified, including 14 flavonoids, 3 limonids, 9 phenols and 3 coumarins. Moreover, high purity of limonin was obtained by crystallization and preparative-HPLC. Furthermore, limonin pretreatment can antagonize the cell damage mediated by Aβ25-35 in a concentration-dependent relationship. The regulation of Bax/Bcl-2, expression of caspase-3 protein and the activation of PI3K/Akt signaling pathway were observed in the cells pretreated with limonin. Treatment of PC12 cells with PI3K inhibitor LY294002 weakened the protective effect of limonin. These results indicated that limonin prevented Aβ25-35-induced neurotoxicity by activating PI3K/Akt, and further inhibiting caspase-3 and up-regulating Bcl-2. This study enables comprehensive utilization of pomelo seed as by-product and offers a theoretical principle for a waste-to-wealth solution, such as potential health benefits of food ingredient and drug.
Collapse
Affiliation(s)
- Yuanxin Qiu
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, China
| | - Jingxian Yang
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Lukai Ma
- School of Food Science and Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Liu J, Wang YQ, Niu HB, Zhang CX. PAX9 functions as a tumor suppressor gene for cervical cancer via modulating cell proliferation and apoptosis. Kaohsiung J Med Sci 2021; 38:357-366. [PMID: 34931758 DOI: 10.1002/kjm2.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
To investigate the effect of PAX9 on the progression of cervical cancer (CC). PAX9 expression was quantified in CC tissues and adjacent normal tissues, as well as human CC cell lines and human cervical epithelial cells (HCerEpiC). PAX9-overexpression lentiviral vectors were transfected into CC cell lines, followed by the measurement of proliferation and apoptosis and the quantification of apoptosis-related proteins. In vivo, mice were subcutaneously injected with CaSki cells transfected with PAX9-overexpression lentiviral vectors and control vectors. Then, the volume and weight of tumors were measured followed by hematoxylin and eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemistry. PAX9 expression in the CC tissues was lower than that in the adjacent normal tissues, which was correlated with the FIGO stage, tumor size, infiltration depth, parametrium invasion, lympho-vascular space invasion tumor-positive lymph nodes, and prognosis. Furthermore, PAX9 in CC cell lines was also lower than in HCerEpiC. PAX9 inhibits the CC cell proliferation and promotes the apoptosis, with the up-regulations of caspase-3, poly(ADP-ribose) polymerase (PARP), and Bax and the down-regulation of Bcl-2. In vivo experiments demonstrated that in the PAX9 group, the tumor weight and volume were lower than those in the vector group accompanying the decreased Ki-67, cleaved-caspase-3, and Bax expressions and the increased TUNEL and Bcl-2 expression. PAX9 was lowly expressed in the CC tissues and associated with the clinicopathological characteristics and prognosis. PAX9 could inhibit proliferation of CC cell lines and promote the apoptosis, thus suppressing the tumor growth in vivo, indicating its potential therapeutic role for CC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Ya-Qi Wang
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Hai-Bo Niu
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Chun-Xiao Zhang
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
37
|
Parys JB, Bultynck G. Preface to the Special Issue of the European Calcium Society in honor of Professor Sir Michael J. Berridge. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119172. [PMID: 34774604 DOI: 10.1016/j.bbamcr.2021.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|