1
|
Rozas-Villanueva FM, Orellana VP, Alarcón R, Maripillan J, Martinez AD, Alfaro IE, Retamal MA. Cx40 Levels Regulate Hypoxia-Induced Changes in the Migration, Proliferation, and Formation of Gap Junction Plaques in an Extravillous Trophoblast Cell Model. Cells 2024; 13:1150. [PMID: 38995001 PMCID: PMC11240472 DOI: 10.3390/cells13131150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Extravillous trophoblasts (EVTs) form stratified columns at the placenta-uterus interface. In the closest part to fetal structures, EVTs have a proliferative phenotype, whereas in the closest part to maternal structures, they present a migratory phenotype. During the placentation process, Connexin 40 (Cx40) participates in both the proliferation and migration of EVTs, which occurs under hypoxia. However, a possible interaction between hypoxia and Cx40 has not yet been established. METHODS We developed two cellular models, one with "low Cx40" (Jeg-3), which reflected the expression of this protein found in migratory EVTs, and one with "high Cx40" (Jeg-3/hCx40), which reflected the expression of this protein in proliferative cells. We analyzed the migration and proliferation of these cells under normoxic and hypoxic conditions for 24 h. Jeg-3 cells under hypoxia increased their migratory capacity over their proliferative capacity. However, in Jeg-3/hCx40, the opposite effect was induced. On the other hand, hypoxia promoted gap junction (GJ) plaque formation between neighboring Jeg-3 cells. Similarly, the activation of a nitro oxide (NO)/cGMP/PKG-dependent pathway induced an increase in GJ-plaque formation in Jeg-3 cells. CONCLUSIONS The expression patterns of Cx40 play a crucial role in shaping the responses of EVTs to hypoxia, thereby influencing their migratory or proliferative phenotype. Simultaneously, hypoxia triggers an increase in Cx40 gap junction (GJ) plaque formation through a pathway dependent on NO.
Collapse
Affiliation(s)
- Fernanda M. Rozas-Villanueva
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (F.M.R.-V.); (V.P.O.); (R.A.); (I.E.A.)
| | - Viviana P. Orellana
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (F.M.R.-V.); (V.P.O.); (R.A.); (I.E.A.)
| | - Rodrigo Alarcón
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (F.M.R.-V.); (V.P.O.); (R.A.); (I.E.A.)
| | - Jaime Maripillan
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (J.M.); (A.D.M.)
| | - Agustin D. Martinez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (J.M.); (A.D.M.)
| | - Ivan E. Alfaro
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (F.M.R.-V.); (V.P.O.); (R.A.); (I.E.A.)
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7550000, Chile; (F.M.R.-V.); (V.P.O.); (R.A.); (I.E.A.)
- Center for Membrane Protein Research, Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Tan JY, Yeoh HXY, Chia WK, Tan JWD, Aizuddin AN, Farouk WI, Alfian N, Wong YP, Tan GC. Overexpression of Connexin 40 in the Vascular Endothelial Cells of Placenta with Acute Chorioamnionitis. Diagnostics (Basel) 2024; 14:811. [PMID: 38667457 PMCID: PMC11048802 DOI: 10.3390/diagnostics14080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Connexins (Cx) 43 and 40 play a role in leukocytes recruitment in acute inflammation. They are expressed in the endothelial cells. They are also found in the placenta and involved in the placenta development. Acute chorioamnionitis is associated with an increased risk of adverse perinatal outcomes. The aim of this study was to determine the expressions of Cx43 and Cx40 in the placenta of mothers with acute chorioamnionitis, and to correlate their association with the severity of chorioamnionitis and adverse perinatal outcomes. METHODS This study comprised a total of 81 cases, consisting of 39 placenta samples of mothers with acute chorioamnionitis and 42 non-acute chorioamnionitis controls. Cx43 and Cx40 immunohistochemistry were performed on all cases and their expressions were evaluated on cytotrophoblasts, syncytiotrophoblasts, chorionic villi endothelial cells, stem villi endothelial cells, maternal endothelial cells and decidua of the placenta. RESULTS Primigravida has a significantly higher risk of developing acute chorioamnionitis (p < 0.001). Neonates of mothers with a higher stage of fetal inflammatory response was significantly associated with lung complications (p = 0.041) compared to neonates of mothers with a lower stage. The expression of Cx40 was significantly higher in fetal and maternal vascular endothelial cells in acute chorioamnionitis (p < 0.001 and p = 0.037, respectively) compared to controls. Notably, Cx43 was not expressed in most of the types of cells in the placenta, except for decidua. Both Cx43 and Cx40 expressions did not have correlation with the severity of acute chorioamnionitis and adverse perinatal outcomes. CONCLUSION Cx40 was overexpressed in the fetal and maternal vascular endothelial cells in the placenta of mothers with acute chorioamnionitis, and it may have a role in the development of inflammation in placenta.
Collapse
Affiliation(s)
- Jia Yee Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Hannah Xin Yi Yeoh
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Jonathan Wei De Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Azimatun Noor Aizuddin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Wirda Indah Farouk
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Nurwardah Alfian
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (J.Y.T.); (H.X.Y.Y.); (W.K.C.); (J.W.D.T.); (W.I.F.); (N.A.)
| |
Collapse
|
3
|
Dong J, Xu Q, Chen S, Lei H, Wang J, Yan S, Qian C, Wang X. Comparative Proteomic and Phospho-proteomic Analysis of Mouse Placentas Generated via In Vivo and In Vitro Fertilization. Reprod Sci 2023; 30:1143-1156. [PMID: 36280645 DOI: 10.1007/s43032-022-01109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Offspring conceived by assisted reproductive technologies (ART) have increased risk of suffering from gestational complications, and placental dysfunction is related with the adverse outcomes. Studies have revealed that abnormal or adaptive changes can occur in ART placentas, but the potential reasons are not fully understood. Hereby, we tried to use proteomics and phospho-proteomics to find the underlying mechanisms responsible for the changes of ART placentas. Liquid chromatography-tandem mass spectrometry was utilized to perform proteome and phospho-proteome detection on mouse placentas. The differential expressed proteins (DEPs) or phospho-proteins (DEPPs) were analyzed based on subcellular localization, functional classification, and enrichment. Western blot was used to verify the DEPs (Afadin, ZO-1, Ace2, Agt, Slc7a5, and Slc38a10) and measure mTOR signaling activities (mTOR, Rps6, and 4Ebp1). The data showed that 161 DEPs and 304 DEPPs were found in proteome and phospho-proteome, respectively. Multiple biological processes were enriched based on those DEPs and DEPPs, and renin-angiotensin system, cell junction, and PI3K-Akt pathway were investigated. By protein expression identification, two key proteins associated with renin-angiotensin system (Ace2 and Agt) were down-regulated, and the levels of Afadin and ZO-1 (related with cell junction) as well as Slc38a10 were increased in IVF placentas. In addition, mTOR downstream activities were increased as shown by p-Rps6 and p-4Ebp1 in IVF placentas. In conclusion, IVF leads to the changes of cell junction, renin-angiotensin system, amino acid transport, and increased mTOR signaling in mouse placentas, which may be associated with the altered structure and function of IVF placentas.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Qian Xu
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Hui Lei
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
4
|
Abdelzaher WY, Bahaa HA, Elkhateeb R, Atta M, Fawzy MA, Ahmed AF, Rofaeil RR. Role of JNK, ERK, and p38 MAPK signaling pathway in protective effect of sildenafil in cyclophosphamide-induced placental injury in rats. Life Sci 2022; 293:120354. [PMID: 35074407 DOI: 10.1016/j.lfs.2022.120354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023]
Abstract
AIMS Chemotherapeutic agents; cyclophosphamide (CYC) is used for treatment of cancer and autoimmune diseases. Grievously, CYC is non-selective as it affects both tumor and healthy cells resulting in systemic toxicity including placenta. The present study aimed to evaluate the effect of phosphodiesterase 5 inhibitor, sildenafil (Sild) on CYC-induced placental injury in rats. MATERIALS AND METHODS Thirty-two female Wister rats were randomly divided into 4 experimental groups. Group 1: control pregnant group; Group 2: Sild-treated pregnant rats; Group 3: pregnant rats received CYC; Group 4: pregnant rats received Sild and CYC. Placental malondialdehyde (MDA), total nitrite/nitrate (NOx), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), platelet growth factor (PlGF), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK) and cleaved caspase-3 were measured. Histological changes, Nuclear Factor kappa-light-chain-enhancer of activated B (NF-κB), Connexin 43 (GJA1) and proliferating cell nuclear antigen (PCNA) immuno-expressions were also evaluated. KEY FINDINGS CYC showed significant decrease in placental GSH, NOx, PlGF, GJA1 and PCNA immuno-expressions but significant increase in placental MDA, TNF-α, JNK, P38MAPK, ERK, caspase-3 and NF-kB immuno-expression. Sild showed significant improvement in all oxidative, inflammatory and apoptotic parameters. SIGNIFICANCE Sild is a promising protective drug against placental injury induced by CYC through antagonizing MAPK (JNK, ERK, and p38) signaling pathway with anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Reham Elkhateeb
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61511, Egypt; Department of Pharmacology, Deraya University, New Minia, Egypt.
| |
Collapse
|
5
|
Ang MJY, Chan SY, Goh YY, Luo Z, Lau JW, Liu X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv Drug Deliv Rev 2021; 178:113907. [PMID: 34371084 DOI: 10.1016/j.addr.2021.113907] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer involves a collection of diseases with a common trait - dysregulation in cell proliferation. At present, traditional therapeutic strategies against cancer have limitations in tackling various tumors in clinical settings. These include chemotherapeutic resistance and the inability to overcome intrinsic physiological barriers to drug delivery. Nanomaterials have presented promising strategies for tumor treatment in recent years. Nanotheranostics combine therapeutic and bioimaging functionalities at the single nanoparticle level and have experienced tremendous growth over the past few years. This review highlights recent developments of advanced nanomaterials and nanotheranostics in three main directions: stimulus-responsive nanomaterials, nanocarriers targeting the tumor microenvironment, and emerging nanomaterials that integrate with phototherapies and immunotherapies. We also discuss the cytotoxicity and outlook of next-generation nanomaterials towards clinical implementation.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| | - Yi-Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
6
|
Schmidt A, Schmidt A, Markert UR. The road (not) taken - Placental transfer and interspecies differences. Placenta 2021; 115:70-77. [PMID: 34562829 DOI: 10.1016/j.placenta.2021.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.
Collapse
Affiliation(s)
- André Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
7
|
Kníže M, Piťha J, Hubacek JA, Fait T. The role of connexin 37 polymorphism in spontaneous abortion. Physiol Res 2021; 70:469-474. [PMID: 33982579 PMCID: PMC8820557 DOI: 10.33549/physiolres.934566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Among unique cardiovascular risk factors in women are complications during pregnancy, including miscarriage. Important risk factor is also genetic background. One of powerful candidate genes for cardiovascular disease of atherosclerotic origin (aCVD) is gene for connexin 37 (Cx37) with strong gene-environment interaction including smoking status, that is also strong risk factor for complications in pregnancy including spontaneous abortion (SA). We analyzed association between SA and Cx37 gene polymorphism (1019C>T; Pro319Ser) in 547 fetuses and its potential interaction with smoking status of mothers. Using genetic analyses from women from general population as controls, ORs for T allele, found in our previous studies to be protective against aCVD, were calculated. T allele carriers (fetuses), had OR 0.91 (95 % CI 0.72-1.14) and no interaction with smoking was observed. In conclusion, no significant association between Cx37 polymorphism and SA was observed and no modifying effect of smoking status on this association was detected.
Collapse
Affiliation(s)
- M Kníže
- Department of Obstetrics and Gynecology, Motol University Hospital, Prague 5, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Trumpff C, Sturm G, Picard M, Foss S, Lee S, Feng T, Cardenas A, McCormack C, Champagne FA, Monk C. Added sugar intake during pregnancy: Fetal behavior, birth outcomes, and placental DNA methylation. Dev Psychobiol 2021; 63:878-889. [PMID: 33415750 DOI: 10.1002/dev.22088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
Pregnancy is a critical time for the effects of environmental factors on children's development. The effect of added sugar intake on fetal development and pregnancy outcomes remains understudied despite increasing dietary intake in the United States. This study investigated the effect of added sugar on fetal programming by examining the association between maternal added sugar consumption, fetal movement, birth outcomes, and placental DNA methylation. Further, primary human fibroblasts were cultured under normal or high glucose conditions to assess the effect of high glucose exposure on cells' DNA methylation. We found that higher added sugar intake across pregnancy was associated with reduced 3rd-trimester fetal movement (p < .05) and shorter gestation (p < .01). Our sample size was not powered to detect the alteration of individual placental CpG with genome-wide significance. However, a secondary analysis suggested that added sugar consumption was associated with differential methylation of functionally related gene families across pregnancy. Consistent with this, high glucose exposure in primary cultured human fibroblasts altered the methylation of 17% of all CpGs, providing converging evidence for an effect of sugar on DNA methylation. Our results suggest that diets high in added sugar during pregnancy may have implications for offspring health via prenatal programming effects measurable before birth.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Neurology, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Sophie Foss
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA.,Research Foundation for Mental Hygiene Inc, New York, NY, USA.,Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Tianshu Feng
- Research Foundation for Mental Hygiene Inc, New York, NY, USA.,Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Andrès Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Clare McCormack
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA
| | - Frances A Champagne
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Catherine Monk
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA.,New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
9
|
Rozas-Villanueva MF, Casanello P, Retamal MA. Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece? Int J Mol Sci 2020; 21:ijms21134698. [PMID: 32630161 PMCID: PMC7369723 DOI: 10.3390/ijms21134698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- María F. Rozas-Villanueva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7690000, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile;
- Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Comunicación Celular de Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile
- Correspondence:
| |
Collapse
|
10
|
Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTTN, Matthews SG, Lye SJ, Bloise E. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J Nutr Biochem 2020; 78:108329. [PMID: 32004932 DOI: 10.1016/j.jnutbio.2019.108329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
The placenta promotes fetal growth through nutrient transfer and selective barrier systems. An optimally developed placenta can adapt to changes in the pregnancy environment, buffering the fetus from adverse exposures. We hypothesized that the placenta adapts differently to suboptimal maternal diets, evidenced by changes in placental morphology, developmental markers and key transport systems. Mice were fed a control diet (CON) during pregnancy, undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5 or fed 60% high-fat diet (HF) 8 weeks before and during pregnancy. At GD18.5, placental morphometry, development and transport were assessed. Junctional and labyrinthine areas of UN and HF placentae were smaller than CON by >10%. Fetal blood space area and fetal blood space:fetal weight ratios were reduced in HF vs. CON and UN. Trophoblast giant cell marker Ctsq mRNA expression was lower in UN vs. HF, and expression of glycogen cell markers Cx31.1 and Pcdh12 was lower in HF vs. UN. Efflux transporter Abcb1a mRNA expression was lower in HF vs. UN, and Abcg2 expression was lower in UN vs. HF. mRNA expression of fatty acid binding protein Fabppm was higher in UN vs. CON and HF. mRNA and protein levels of the lipid transporter FAT/CD36 were lower in UN, and FATP4 protein levels were lower in HF vs. UN. UN placentae appear less mature with aberrant transport, whereas HF placentae adapt to excessive nutrient supply. Understanding placental adaptations to common nutritional adversities may reveal mechanisms underlying the developmental origins of later disease.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Li Z, Zhang S, Cao L, Li W, Ye YC, Shi ZX, Wang ZR, Sun LX, Wang JW, Jia LT, Wang W. Tanshinone IIA and Astragaloside IV promote the angiogenesis of mesenchymal stem cell-derived endothelial cell-like cells via upregulation of Cx37, Cx40 and Cx43. Exp Ther Med 2017; 15:1847-1854. [PMID: 29434774 PMCID: PMC5776521 DOI: 10.3892/etm.2017.5636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Tanshinone IIA (Tan IIA) and Astragaloside IV (AGS-IV) were used as therapeutic treatments for coronary heart diseases (CHDs) in ancient China. However, the underlying mechanisms mediating the effects of Tan IIA and AGS-IV in angiogenesis remain unknown. In the present study, mesenchymal stem cells (MSCs) were induced to differentiate into endothelial cell (EC)-like cells in vitro and the effects of Tan IIA and/or AGS-IV on the functions of these cells, including cell proliferation and tube formation, were assessed. Compared with the single-agent groups (Tan IIA or AGS-IV only), combined-agent (Tan IIA and AGS-IV) treatment significantly enhanced the proliferation and tube formation capacity of EC-like cells. In addition, the expression of connexin 37 (Cx37), Cx40 and Cx43 in the combined-agent group was significantly increased compared with the single-agent groups. Furthermore, enhanced gap junctional intercellular communication (GJIC) was identified in the combined-agent group, as evidenced by increased dye transfer in scrape-loading dye transfer assays. In conclusion, Tan IIA and AGS-IV may promote the angiogenesis of EC-like cells by upregulating the expression of Cx37, Cx40 and Cx43 and enhancing GJIC function. The results of the present study may provide experimental evidence for the clinical application of Tan IIA and AGS-IV as a treatment for CHDs.
Collapse
Affiliation(s)
- Zhe Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 710026, P.R. China
| | - Sha Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liang Cao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Li
- Department of Histology and Embryology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu-Chen Ye
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zi-Xuan Shi
- Department of Acupuncture, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Zong-Ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lian-Xu Sun
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia-Wei Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
12
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
13
|
Johnson ML, Redmer DA, Reynolds LP, Grazul-Bilska AT. Gap junctional connexin messenger RNA expression in the ovine uterus and placenta: effects of estradiol-17β-treatment, early pregnancy stages, and embryo origin. Domest Anim Endocrinol 2017; 58:104-112. [PMID: 27835804 DOI: 10.1016/j.domaniend.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Gap junctions play a major role in direct, contact-dependent cell-cell communication, and they have been implicated in the regulation of cellular metabolism and the coordination of cellular functions during growth and differentiation of organs and tissues. Gap junctional channels, composed of connexin (Cx) proteins, have been detected and shown to be influenced by hormones (eg, estrogen and progesterone) in uterine and placental tissues in several species. We hypothesized that (1) the messenger RNA (mRNA) for Cx26, Cx32, Cx37, and Cx43 is expressed in the uterus of ovariectomized sheep treated with estradiol-17β (E2) and in ovine placenta during early pregnancy, (2) E2-treatment of ovariectomized ewes would cause time-specific changes in Cx26, Cx32, Cx37, and Cx43 mRNA expression (experiment 1), and (3) expression of these 4 Cx would vary across the days of early pregnancy (experiment 2) and will be affected by embryo origin (ie, after application of assisted reproductive technologies [ARTs]; experiment 3). Thus, we collected uterine tissues at 0 to 24 h after E2 treatments (experiment 1), and placental tissues during days 14 to 30 of early pregnancy after natural (NAT) breeding (experiment 2) and on day 22 of early pregnancy established after transfer of embryos generated through natural breeding (NAT-ET), in vitro fertilization (IVF), or in vitro activation (IVA, parthenotes; experiment 3). In experiment 1, the expression of Cx26, Cx37, and Cx43 mRNA increased (P < 0.05) and Cx32 mRNA decreased (P < 0.06) in both caruncular and intercaruncular tissues after E2 treatment. In experiment 2, during early pregnancy, there were significant changes (P < 0.01) across days in the expression of Cx26, Cx37, and Cx43 mRNA in the maternal placenta, accompanied by changes (P < 0.001) in Cx37 and Cx43 mRNA in the fetal placenta. In experiment 3, in maternal placenta, Cx32 mRNA expression was decreased (P < 0.001) in NAT-ET, IVF, and IVA groups compared to the NAT group; but in fetal placenta, Cx32 mRNA expression was increased (P < 0.05) in NAT-ET, IVF and IVF groups, and Cx26 mRNA expression was increased (P < 0.05) in IVA compared to NAT group. These data suggest that Cx26, Cx32, Cx37, and Cx43 play specific roles in E2-regulated uterine function and in placental development during early gestation both after natural mating and with application of ART.
Collapse
Affiliation(s)
- M L Johnson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - D A Redmer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - L P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
14
|
Rozner AE, Durning M, Kropp J, Wiepz GJ, Golos TG. Macrophages modulate the growth and differentiation of rhesus monkey embryonic trophoblasts. Am J Reprod Immunol 2016; 76:364-375. [PMID: 27637575 DOI: 10.1111/aji.12564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Immune cells within the endometrium at implantation are thought to play an important role in implantation, although their exact role is not well understood. METHOD OF STUDY A co-culture system of rhesus monkey embryos and maternal immune cells was established. Blastocysts obtained by in vitro fertilization were co-cultured with peripheral blood cells or decidual macrophages. Culture media were collected to assess secretions. Embryo growth was monitored, and trophoblasts were evaluated for proliferation, apoptosis, and differentiation. RESULTS Embryonic trophoblast outgrowths were visible within 6 days of culture, and the area of embryo outgrowth was reduced when blastocysts were cultured with peripheral-derived or decidual macrophages. Trophoblast proliferation was not significantly affected with macrophage co-culture while chorionic gonadotropin secretion was increased. Trophoblast expression of CDH 11 and GJA1 was increased, suggesting that macrophages accelerate differentiation of peri-implantation trophoblasts. CONCLUSIONS These results indicate an important role of macrophages in placentation and pregnancy success.
Collapse
Affiliation(s)
- Ann E Rozner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Maureen Durning
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA. .,Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Otto T, Gellhaus A, Lüschen N, Scheidler J, Bendix I, Dunk C, Wolf N, Lennartz K, Köninger A, Schmidt M, Kimmig R, Fandrey J, Winterhager E. Oxygen Sensitivity of Placental Trophoblast Connexins 43 and 46: A Role in Preeclampsia? J Cell Biochem 2015; 116:2924-37. [PMID: 26018820 DOI: 10.1002/jcb.25240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022]
Abstract
Several gap junction connexins have been shown to be essential for appropriate placental development and function. It is known that the expression and distribution of connexins change in response to environmental oxygen levels. The placenta develops under various oxygen levels, beginning at a low oxygen tension of approximately 2% and increasing to a tension of 8% after the onset of the uteroplacental circulation. Moreover, it has been shown that during preeclampsia (PE) placentas are subjected to chronic hypoxia. Therefore, we investigated oxygen sensitivity of placental connexins 43 and 46. Using the trophoblast cell line Jar, we demonstrated that the expression of connexin43 increased during acute hypoxia but decreased during chronic hypoxia. Chronic hypoxia resulted in the translocation of connexin43 from the membrane to the cytoplasm and in a reduction in its communication properties. In contrast, the expression of connexin46 was down-regulated during chronic hypoxia and was translocated from perinuclear areas to the cell membrane. Hypoxia-inducible factor (HIF) knockdown showed that the translocation of connexin43 but not that of connexin46 was HIF-2α dependent and was mediated by phosphoinositide 3-kinase. The up-regulation of connexin43 in combination with the down-regulation of connexin46 was confirmed in placental explants cultivated under low oxygen and in placentas with early-onset PE. Taken together, in Jar cells, placental connexins 43 and 46 are regulated during periods of low oxygen in opposite manners. The oxygen sensing of connexins in the trophoblast may play a role in physiological and pathophysiological oxygen conditions and thus may contribute to PE.
Collapse
Affiliation(s)
- Teresa Otto
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Navina Lüschen
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Jan Scheidler
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen, Essen, Germany
| | - Caroline Dunk
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nadine Wolf
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Klaus Lennartz
- Institute of Cell Biology, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Markus Schmidt
- Department of Gynecology and Obstetrics, Klinikum Duisburg, Duisburg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Absence of connexin43 and connexin45 does not disturb pre- and peri-implantation development. ZYGOTE 2015; 24:457-64. [DOI: 10.1017/s0967199415000386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryGap junctional intercellular communication is assumed to play an important role during pre- and peri-implantation development. In this study, we eliminated connexin43 (Cx43) and connexin45 (Cx45), major gap junctional proteins in the pre- and peri-implantation embryo. We generated Cx43−/−Cx45−/− embryos by Cx43+/−Cx45+/− intercrossing, because mice deficient in Cx43 (Cx43−/−) exhibit perinatal lethality and those deficient in Cx45 (Cx45−/−) exhibit early embryonic lethality. Wild-type, Cx43−/−, Cx45−/−, and Cx43−/−Cx45−/− blastocysts all showed similar outgrowths in in vitro culture. Moreover, Cx43−/−Cx45−/− embryos were obtained at the expected Mendelian ratio up to embryonic day 9.5, when the Cx45−/− mutation proved lethal. The Cx43−/−Cx45−/− embryos seemed to have no additional developmental abnormalities in comparison with the single knockout strains. Thus, pre- and peri-implantation development does not require Cx43 and Cx45. Other gap junctional proteins are expressed around these stages and these may compensate for the lack of Cx43 and Cx45.
Collapse
|
17
|
Cao M, Chan RWS, Yeung WSB. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev 2014; 24:768-80. [PMID: 25386902 DOI: 10.1089/scd.2014.0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human and mouse endometrium undergo dramatic cellular reorganization during pregnancy and postpartum. Somatic stem cells maintain homeostasis of the tissue by providing a cell reservoir for regeneration. We hypothesized that endometrial cells with quiescent properties (stem/progenitor cells) were involved in the regeneration of the endometrial tissue. Given that stem cells divide infrequently, they can retain the DNA synthesis label [bromodeoxyuridine (BrdU)] after a prolonged chase period. In this study, prepubertal mice were pulsed with BrdU and after a 6-week chase a small population of label-retaining stromal cells (LRSC) was located primarily beneath the luminal epithelium, adjacent to blood vessels, and near the endometrial-myometrial junction. Marker analyses suggested that they were of mesenchymal origin expressing CD44(+), CD90(+), CD140b(+), CD146(+), and Sca-1(+). During pregnancy, nonproliferating LRSC predominately resided at the interimplantation/placental loci of the gestational endometrium. Immediately after parturition, a significant portion of the LRSC underwent proliferation (BrdU(+)/Ki-67(+)) and expressed total and active β-catenin. The β-catenin expression in the LRSC was transiently elevated at postpartum day (PPD) 1. The proliferation of LRSC resulted in a significant decline in the proportion of LRSC in the postpartum uterus. The LRSC returned to dormancy at PPD7, and the percentage of LRSC remained stable thereafter until 11 weeks. This study demonstrated that LRSC can respond efficiently to physiological stimuli upon initiation of uterine involution and return to its quiescent state after postpartum repair.
Collapse
Affiliation(s)
- Mingzhu Cao
- 1 Department of Obstetrics and Gynaecology, University of Hong Kong , Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
18
|
Nishii K, Shibata Y, Kobayashi Y. Connexin mutant embryonic stem cells and human diseases. World J Stem Cells 2014; 6:571-578. [PMID: 25426253 PMCID: PMC4178256 DOI: 10.4252/wjsc.v6.i5.571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.
Collapse
|
19
|
Substrate trapping proteomics reveals targets of the βTrCP2/FBXW11 ubiquitin ligase. Mol Cell Biol 2014; 35:167-81. [PMID: 25332235 DOI: 10.1128/mcb.00857-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation and computation and in protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. The processivity of the ubiquitylation reaction necessitates transient physical interactions between FBXW11 and its substrates, thus making biochemical purification of FBXW11-bound substrates difficult. Using the PAC-based approach, we inhibited the proteasome to "trap" ubiquitylated substrates on the SCF(FBXW11) E3 complex. Comparative mass spectrometry analysis of immunopurified FBXW11 protein complexes before and after proteasome inhibition revealed 21 known and 23 putatively novel substrates. In focused studies, we found that SCF(FBXW11) bound, polyubiquitylated, and destabilized RAPGEF2, a guanine nucleotide exchange factor that activates the small GTPase RAP1. High RAPGEF2 protein levels promoted cell-cell fusion and, consequently, multinucleation. Surprisingly, this occurred independently of the guanine nucleotide exchange factor (GEF) catalytic activity and of the presence of RAP1. Our data establish new functions for RAPGEF2 that may contribute to aneuploidy in cancer. More broadly, this report supports the continued use of substrate trapping proteomics to comprehensively define targets for E3 ubiquitin ligases. All proteomic data are available via ProteomeXchange with identifier PXD001062.
Collapse
|
20
|
Kibschull M, Colaco K, Matysiak-Zablocki E, Winterhager E, Lye SJ. Connexin31.1 (Gjb5) deficiency blocks trophoblast stem cell differentiation and delays placental development. Stem Cells Dev 2014; 23:2649-60. [PMID: 24866916 DOI: 10.1089/scd.2014.0013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The gap junction channel forming connexins (Cx) Cx31 (Gjb3) and Cx31.1 (Gjb5) are co-expressed in the mouse trophoblast lineage. Inactivation of either gene results in partial embryonic loss at mid gestation (60% and 30%, respectively, between embryonic days E10.5and E13.5) caused by placental phenotypes. Cx31 deficiency results in loss of stem cell potential and enhanced trophoblast giant cell (TGC) differentiation, whereas the molecular role of the co-expressed Cx31.1 remained unclear. It was assumed that both isoforms have overlapping functions and can compete for each loss in placentation as both knockout mice show similar survival rates, reduced placental weights, and growth restricted embryos. Instead, here we show that Cx31.1 has opposed functions in regulating trophoblast differentiation. Cx31.1 deficiency causes a shift in placental subpopulations, reduced area of fetal blood spaces, and a reduced number of secondary TGC in the junctional zone, as shown by stereology at E10.5. Cx31.1 is critical for terminal differentiation of trophoblast cells during placentation resulting in a delayed induction of marker genes Tpbpa, Prl3b1/Pl-2, and Ctsq in Cx31.1-deficient placentas. Derivation and analysis of Cx31.1-deficient trophoblast stem lines clearly indicates a delayed trophoblast differentiation manifested by repression of marker genes for placental subpopulations and continued expression of stem cell marker genes Id2 and Ascl2, which is correlated to enhanced proliferation capacity of differentiating stem cells These findings clarify the disparate actions of Cx31.1 and Cx31 that act in opposition to balance the fate of trophoblast cells during differentiation, with Cx31.1 promoting, and Cx31 delaying terminal differentiation.
Collapse
Affiliation(s)
- Mark Kibschull
- 1 Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | |
Collapse
|
21
|
Segond N, Degrelle SA, Berndt S, Clouqueur E, Rouault C, Saubamea B, Dessen P, Fong KSK, Csiszar K, Badet J, Evain-Brion D, Fournier T. Transcriptome analysis of PPARγ target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion. PLoS One 2013; 8:e79413. [PMID: 24265769 PMCID: PMC3827157 DOI: 10.1371/journal.pone.0079413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
Human placental development is characterized by invasion of extravillous cytotrophoblasts (EVCTs) into the uterine wall during the first trimester of pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) plays a major role in placental development, and activation of PPARγ by its agonists results in inhibition of EVCT invasion in vitro. To identify PPARγ target genes, microarray analysis was performed using GeneChip technology on EVCT primary cultures obtained from first-trimester human placentas. Gene expression was compared in EVCTs treated with the PPARγ agonist rosiglitazone versus control. A total of 139 differentially regulated genes were identified, and changes in the expression of the following 8 genes were confirmed by reverse transcription-quantitative polymerase chain reaction: a disintegrin and metalloproteinase domain12 (ADAM12), connexin 43 (CX43), deleted in liver cancer 1 (DLC1), dipeptidyl peptidase 4 (DPP4), heme oxygenase 1 (HMOX-1), lysyl oxidase (LOX), plasminogen activator inhibitor 1 (PAI-1) and PPARγ. Among the upregulated genes, lysyl oxidase (LOX) was further analyzed. In the LOX family, only LOX, LOXL1 and LOXL2 mRNA expression was significantly upregulated in rosiglitazone-treated EVCTs. RNA and protein expression of the subfamily members LOX, LOXL1 and LOXL2 were analyzed by absolute RT-qPCR and western blotting, and localized by immunohistochemistry and immunofluorescence-confocal microscopy. LOX protein was immunodetected in the EVCT cytoplasm, while LOXL1 was found in the nucleus and nucleolus. No signal was detected for LOXL2 protein. Specific inhibition of LOX activity by β-aminopropionitrile in cell invasion assays led to an increase in EVCT invasiveness. These results suggest that LOX, LOXL1 and LOXL2 are downstream PPARγ targets and that LOX activity is a negative regulator of trophoblastic cell invasion.
Collapse
Affiliation(s)
- Nadine Segond
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Séverine A. Degrelle
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Sarah Berndt
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Elodie Clouqueur
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Christine Rouault
- INSERM, UMR 872, Equipe 7, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Bruno Saubamea
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, U705, Paris, France
- CNRS, UMR 8206, Paris, France
| | | | - Keith S. K. Fong
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Katalin Csiszar
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Josette Badet
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Danièle Evain-Brion
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Thierry Fournier
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| |
Collapse
|
22
|
17-β-Estradiol counteracts the effects of high frequency electromagnetic fields on trophoblastic connexins and integrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:280850. [PMID: 23819010 PMCID: PMC3683487 DOI: 10.1155/2013/280850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/11/2013] [Indexed: 01/17/2023]
Abstract
We investigated the effect of high-frequency electromagnetic fields (HF-EMFs) and 17-β-estradiol on connexins (Cxs), integrins (Ints), and estrogen receptor (ER) expression, as well as on ultrastructure of trophoblast-derived HTR-8/SVneo cells. HF-EMF, 17-β-estradiol, and their combination induced an increase of Cx40 and Cx43 mRNA expression. HF-EMF decreased Int alpha1 and β1 mRNA levels but enhanced Int alpha5 mRNA expression. All the Ints mRNA expressions were increased by 17-β-estradiol and exposure to both stimuli. ER-β mRNA was reduced by HF-EMF but augmented by 17-β-estradiol alone or with HF-EMF. ER-β immunofluorescence showed a cytoplasmic localization in sham and HF-EMF exposed cells which became nuclear after treatment with hormone or both stimuli. Electron microscopy evidenced a loss of cellular contact in exposed cells which appeared counteracted by 17-β-estradiol. We demonstrate that 17-β-estradiol modulates Cxs and Ints as well as ER-β expression induced by HF-EMF, suggesting an influence of both stimuli on trophoblast differentiation and migration.
Collapse
|
23
|
Golos TG, Giakoumopoulos M, Gerami-Naini B. Review: Trophoblast differentiation from human embryonic stem cells. Placenta 2013; 34 Suppl:S56-61. [PMID: 23261342 PMCID: PMC3586288 DOI: 10.1016/j.placenta.2012.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022]
Abstract
The human embryo is not a feasible experimental system for the detailed study of implantation and early placentation, so surrogate systems have been sought for investigating the determination of the trophectoderm lineage, its differentiation into trophoblasts of the early implantation site, and subsequently the morphogenesis of the definitive placenta. An alternative to the use of embryos for studying early placental development was revealed by work with human embryonic stem cells (hESC), demonstrating BMP2/4-stimulated trophoblast differentiation, and spontaneous formation from embryoid bodies (EBs). These cells display a trophoblastic transcriptome, as well as a placental protein and steroid hormone secretory profile, and invasive and chemotactic behavior resembling human placental trophoblasts. With EB-derived trophoblasts, two-dimensional and three-dimensional paradigms and other modifications of the culture environment, including extracellular matrix and aggregation with placental fibroblasts, impact on trophoblast differentiation. Recent studies have questioned the identity of the trophoblasts directed by BMP treatment of hESC, and careful attention to culture conditions is needed to interpret different results among research groups. Although the precise placental counterpart of the hESC-derived trophoblast remains unclear, hESC-derived trophoblasts remain an intriguing platform for modeling early implantation.
Collapse
Affiliation(s)
- T G Golos
- Wisconsin National Primate Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53715-1299, USA.
| | | | | |
Collapse
|
24
|
|
25
|
Gerbaud P, Pidoux G, Guibourdenche J, Pathirage N, Costa JM, Badet J, Frendo JL, Murthi P, Evain-Brion D. Mesenchymal activin-A overcomes defective human trisomy 21 trophoblast fusion. Endocrinology 2011; 152:5017-28. [PMID: 21952245 DOI: 10.1210/en.2011-1193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Placental development is markedly abnormal in trisomy 21 (T21) pregnancies. We hypothesized that abnormal paracrine cross talk between the fetal mesenchymal core and the trophoblast might be involved in the defect of syncytiotrophoblast formation and function. In a large series of primary cultured human cytotrophoblasts isolated from second-trimester control (n = 44) and T21 placentae (n = 71), abnormal trophoblast fusion and differentiation was observed in more than 90% of T21 cases. We then isolated and cultured villous mesenchymal cells from control (n = 10) and T21 placentae (n = 8) and confirmed their fetal origin. Conditioned medium of control mesenchymal cells overcame the abnormal trophoblast fusion of T21 cytotrophoblasts by activating the TGFβ signaling pathway, as shown by the phosphospecific protein microarray analysis and the use of TGFβ signaling pathway antagonists. Using protein arrays, we further analyzed the cytokines present in the conditioned medium from control and T21 mesenchymal cells. Activin-A was identified as strongly secreted by cells from both sources, but at a significantly (P < 0.01) lower level in the case of T21 mesenchymal cells. Recombinant activin-A stimulated T21 trophoblast fusion. Blocking activin-A antibody inhibited the fusion induced by conditioned medium and exogenous activin-A. Furthermore, follistatin, an activin-A binding protein largely secreted by T21 mesenchymal cells, inhibited the conditioned medium fusogenic activity. These results show that the defective trophoblast fusion and differentiation associated with T21 can be overcome in vitro and reveal the key role of the fetal mesenchymal core in human trophoblast differentiation.
Collapse
Affiliation(s)
- Pascale Gerbaud
- Institut National de la Santé et de la Recherche Médicale Unité 767, 4 Avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sood A, Salih S, Roh D, Lacharme-Lora L, Parry M, Hardiman B, Keehan R, Grummer R, Winterhager E, Gokhale PJ, Andrews PW, Abbott C, Forbes K, Westwood M, Aplin JD, Ingham E, Papageorgiou I, Berry M, Liu J, Dick AD, Garland RJ, Williams N, Singh R, Simon AK, Lewis M, Ham J, Roger L, Baird DM, Crompton LA, Caldwell MA, Swalwell H, Birch-Machin M, Lopez-Castejon G, Randall A, Lin H, Suleiman MS, Evans WH, Newson R, Case CP. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. NATURE NANOTECHNOLOGY 2011; 6:824-33. [PMID: 22056725 DOI: 10.1038/nnano.2011.188] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/28/2011] [Indexed: 05/28/2023]
Abstract
The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.
Collapse
Affiliation(s)
- A Sood
- Bristol Musculoskeletal Research Unit, Clinical Science at North Bristol University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bedner P, Steinhäuser C, Theis M. Functional redundancy and compensation among members of gap junction protein families? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1971-84. [PMID: 22044799 DOI: 10.1016/j.bbamem.2011.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/08/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
28
|
Gnidehou S, Gerbaud P, Ducarme G, Ferreira F, Badet J, Malassiné A, Evain-Brion D, Frendo JL. Expression in Escherichia coli and purification of human recombinant connexin-43, a four-pass transmembrane protein. Protein Expr Purif 2011; 78:174-80. [DOI: 10.1016/j.pep.2011.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
29
|
Cervellati F, Pavan B, Lunghi L, Manni E, Fabbri E, Mascoli C, Biondi C, Patella A, Vesce F. Betamethasone, progesterone and RU-486 (mifepristone) exert similar effects on connexin expression in trophoblast-derived HTR-8/SVneo cells. Reprod Fertil Dev 2011; 23:319-28. [PMID: 21211465 DOI: 10.1071/rd10077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/13/2010] [Indexed: 12/16/2023] Open
Abstract
Connexins (Cx) are membrane proteins able to influence cell trophoblast responses, such as proliferation, differentiation, migration and invasiveness. Likewise, glucocorticoids are also known to modulate many factors involved in implantation, including trophoblast gap-junction intercellular communication, although their influence on pregnancy is controversial. In order to investigate the effects of betamethasone, a synthetic glucocorticoid, on Cx and glucocorticoid receptor (GR) expression and localisation, as well as on cell proliferation, the extravillous trophoblast-derived HTR-8/SVneo cell line was used as a model. The results, confirmed by means of immunofluorescence, demonstrate that betamethasone selectively modifies GR and Cx expression, enhancing the GRα isoform without affecting GRβ, and inhibiting Cx40 expression whilst increasing that of Cx43 and Cx45. Furthermore, betamethasone was shown to exert an inhibitory action on cell proliferation. In this model the abortion drug RU-486 (mifepristone), reported to be a GR antagonist, did not counteract this effect of betamethasone. On the contrary, it induced responses similar to those of the hormone. Knowing that RU-486 is also a potent progesterone-receptor antagonist, the effect of progesterone alone and in combination with the drug on Cx expression and cell proliferation was then tested. Progesterone showed the same effect as betamethasone on Cx expression, but it did not affect proliferation. Based on these results, neither the abortion effects of RU-486 nor the protective action of betamethasone and progesterone are exerted by modulation of Cx. RU-486 did not antagonise the progesterone effect, suggesting that its abortive action does not involve alteration of trophoblast Cx expression.
Collapse
Affiliation(s)
- F Cervellati
- Department of Biology and Evolution, Section of General Physiology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes. Med Oncol 2010; 28:502-8. [PMID: 20373058 DOI: 10.1007/s12032-010-9492-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
Connexin 43(Cx43) and E-cadherin are concurrently expressed in many tumors and were ever classified as tumor suppressors in primary tumors (PT), whereas recent studies showed that these two proteins played specific roles in tumor metastasis. The aim of our study is to determine the expression of Cx43 and E-cadherin in primary gastric tumors (PTs) and matched metastatic lymph nodes (MLNs) and to explore the clinical and pathological implications of expression of these proteins. Immunohistochemical assay was conducted to detect the expression of Cx43 and E-cadherin in PTs and MLNs, and the clinical and pathological implications were analyzed by statistical methods. In PTs, the expression of Cx43 and E-cadherin was significantly reduced, compared to adjacent normal tissues (P < 0.01). The expression of Cx43 and E-cadherin was significantly increased in MLNs compared with PTs (P < 0.01 and P < 0.01, for Cx43 and E-cadherin, respectively), and some Cx43 and E-cadherin-negative PTs developed Cx43 and E-cadherin-positive MLNs. Furthermore, reduced expression of both Cx43 and E-cadherin significantly correlated with poor differentiation, advanced TNM stage, and lymph note metastasis of gastric cancers. Cx43 and E-cadherin expression significantly correlated with each other. We concluded that concurrent reduction in Cx43 and E-cadherin may contribute to the occurrence of gastric cancer. However, concurrent increased expression of Cx43 and E-cadherin may contribute to the efficient metastasis of gastric cancer to the lymph nodes.
Collapse
|
32
|
Pidoux G, Gerbaud P, Gnidehou S, Grynberg M, Geneau G, Guibourdenche J, Carette D, Cronier L, Evain-Brion D, Malassiné A, Frendo JL. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol 2010; 298:C1517-26. [PMID: 20200207 DOI: 10.1152/ajpcell.00484.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trophoblastic cell-cell fusion is an essential event required during human placental development. Several membrane proteins have been described to be directly involved in this process, including connexin 43 (Cx43), syncytin 1 (Herv-W env), and syncytin 2 (Herv-FRD env glycoprotein). Recently, zona occludens (ZO) proteins (peripheral membrane proteins associated with tight junctions, adherens junctions, and gap junctions) were shown to be involved in mouse placental development. Moreover, zona occludens 1 (ZO-1) was localized mainly at the intercellular boundaries between human trophoblastic cells. Therefore the role of ZO-1 in the dynamic process of human trophoblastic cell-cell fusion was investigated using primary trophoblastic cells in culture. In vitro as in situ, ZO-1 was localized mainly at the intercellular boundaries between trophoblastic cells where its expression substantially decreased during differentiation and during fusion. At the same time, Cx43 was localized at the interface of trophoblastic cells and its expression increased during differentiation. To determine a functional role for ZO-1 during trophoblast differentiation, small interfering RNA (siRNA) was used to knock down ZO-1 expression. Cytotrophoblasts treated with ZO-1 siRNA fused poorly, but interestingly, decreased Cx43 expression without altering the functionality of trophoblastic cell-cell communication as measured by relative permeability time constant determined using gap-FRAP experiments. Because kinetics of Cx43 and ZO-1 proteins show a mirror image, a potential association of these two proteins was investigated. By using coimmunoprecipitation experiments, a physical interaction between ZO-1 and Cx43 was demonstrated. These results demonstrate that a decrease in ZO-1 expression reduces human trophoblast cell-cell fusion and differentiation.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Institut National de la Santé et de la Recherche Médicale, U767, Paris, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, Hails LA, Ingham E, Verkade P, Lane J, Heesom K, Newson R, Case CP. Nanoparticles can cause DNA damage across a cellular barrier. NATURE NANOTECHNOLOGY 2009; 4:876-883. [PMID: 19893513 DOI: 10.1038/nnano.2009.313] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.
Collapse
Affiliation(s)
- Gevdeep Bhabra
- Bristol Implant Research Centre, Southmead Hospital, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hejmej A, Kopera I, Kotula-Balak M, Giżejewski Z, Bilińska B. Age-dependent pattern of connexin43 expression in testes of European bison (Bison bonasus, L.). ACTA ACUST UNITED AC 2009; 311:667-75. [DOI: 10.1002/jez.554] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Aplin J, Jones C, Harris L. Adhesion Molecules in Human Trophoblast – A Review. I. Villous Trophoblast. Placenta 2009; 30:293-8. [DOI: 10.1016/j.placenta.2008.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/22/2008] [Accepted: 12/03/2008] [Indexed: 01/19/2023]
|
36
|
Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M. Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 2009; 11:323-38. [PMID: 18834328 DOI: 10.1089/ars.2008.2153] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer was one of the first pathologies to be associated with gap-junction defect. Despite the evidence accumulated over the last 40-year period, the molecular involvement of gap junctions and their structural proteins (connexins) in cancer has not been elucidated. The lack of a satisfying explanation may come from the complexity of the disease, evolving through various stages during tumor progression, with cancer cells exhibiting different phenotypes. Here, the question of the involvement of gap junctions has been readdressed by considering the connexin expression/function level at different fundamental stages of carcinogenesis (cell proliferation, cell invasion, and cancer cell dissemination). By performing this analysis, it becomes clear that gap junctions are probably differently involved, depending on the stage of the cancer progression considered. In particular, the most recent data suggest that connexins may act on cell growth by controlling gene expression through a variety of processes (independent of or dependent on the gap-junctional communication capacity). During invasion, connexins have been demonstrated to enhance adherence of cancer cells to the stroma, migration, and probably their dissemination by establishing communication with the endothelial barrier. All these data present a complex picture of connexins in various functions, depending on the cell phenotype.
Collapse
Affiliation(s)
- Laurent Cronier
- Institute of Cellular Physiology and Biology, University of Poitiers/CNRS, Poitiers, France
| | | | | | | | | |
Collapse
|
37
|
Bartholin L, Melhuish TA, Powers SE, Goddard-Léon S, Treilleux I, Sutherland AE, Wotton D. Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 2008; 319:285-97. [PMID: 18508043 DOI: 10.1016/j.ydbio.2008.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/25/2022]
Abstract
The mammalian placenta is the site of exchange of nutrients and waste between mother and embryo. In humans, placental insufficiency can result in intrauterine growth retardation, perinatal death and spontaneous abortion. We show that in C57BL/6J mice a null mutation in the gene encoding the transcriptional corepressor, Tgif, causes placental defects. The major defects are decreased vascularization of the placenta, due to a decrease in the fetal blood vessels, and decreased expression of the gap junction protein Gjb2 (Cx26). These defects result in severe growth retardation in a proportion of Tgif null embryos in Tgif heterozygous mothers, and an overall growth delay in Tgif null animals. Placental defects are much more severe if the mother also completely lacks Tgif function, and placentas from heterozygous Tgif embryos are defective in a Tgif null mother. Embryo transfer experiments show that even the placenta from a wild type embryo is compromised in the absence of maternal Tgif. These results demonstrate that Tgif functions in the normal development of the placenta, and suggest a role for maternal factors in regulating the morphogenesis of embryonically-derived placental tissues.
Collapse
Affiliation(s)
- Laurent Bartholin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol 2008; 294:C1313-22. [PMID: 18400990 DOI: 10.1152/ajpcell.00035.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The main disorders of human pregnancy are rooted in defective placentation. Normal placental development depends on proliferation, differentiation, and fusion of cytotrophoblasts to form and maintain an overlying syncytiotrophoblast. There is indirect evidence that the insulin-like growth factors (IGFs), which are aberrant in pregnancy disorders, are involved in regulating trophoblast turnover, but the processes that control human placental growth are poorly understood. Using an explant model of human first-trimester placental villus in which the spatial and ontological relationships between cell populations are maintained, we demonstrate that cytotrophoblast proliferation is enhanced by IGF-I/IGF-II and that both factors can rescue cytotrophoblast from apoptosis. Baseline cytotrophoblast proliferation ceases in the absence of syncytiotrophoblast, although denuded cytotrophoblasts can proliferate when exposed to IGF and the rate of cytotrophoblast differentiation/fusion and, consequently, syncytial regeneration, increases. Use of signaling inhibitors suggests that IGFs mediate their effect on cytotrophoblast proliferation/syncytial formation through the MAPK pathway, whereas effects on survival are regulated by the phosphoinositide 3-kinase pathway. These results show that directional contact between cytotrophoblast and syncytium is important in regulating the relative amounts of the two cell populations. However, IGFs can exert an exogenous regulatory influence on placental growth/development, suggesting that manipulation of the placental IGF axis may offer a potential therapeutic route to the correction of inadequate placental growth.
Collapse
Affiliation(s)
- Karen Forbes
- Maternal and Fetal Health Research Group, University of Manchester, St. Mary's Hospital, Manchester, UK
| | | | | | | |
Collapse
|
39
|
Abstract
Gap junctions that allow the direct communication between cytoplasmic compartments of neighboring cells are present in a variety of tissues and organs and play pivotal roles in a wide range of physiological processes. In the ovary, gap junctions consist mainly of connexin (Cx) 43 and Cx37, and their indispensable role in regulating folliculogenesis and oogenesis is well established. The ovarian Cx43 is regulated by gonadotropins at the transcriptional, translational and post-translational levels whereas the regulation of the ovarian Cx37 is yet unknown. In addition to their involvement in normal ovarian functions, gap junction proteins, particularly Cx43, seem to act as cancer suppressors. A summary of our present knowledge regarding gap junctional communication (GJC) and the ovarian gap junction proteins in normally developing ovaries and under pathological conditions is presented in this review.
Collapse
Affiliation(s)
- Eran Gershon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
40
|
Abstract
Hearing impairment is a frequent condition in humans. Identification of the causative genes for the early onset forms of isolated deafness began 15 years ago and has been very fruitful. To date, approximately 50 causative genes have been identified. Yet, limited information regarding the underlying pathogenic mechanisms can be derived from hearing tests in deaf patients. This chapter describes the success of mouse models in the elucidation of some pathophysiological processes in the auditory sensory organ, the cochlea. These models have revealed a variety of defective structures and functions at the origin of deafness genetic forms. This is illustrated by three different examples: (1) the DFNB9 deafness form, a synaptopathy of the cochlear sensory cells where otoferlin is defective; (2) the Usher syndrome, in which deafness is related to abnormal development of the hair bundle, the mechanoreceptive structure of the sensory cells to sound; (3) the DFNB1 deafness form, which is the most common form of inherited deafness in Caucasian populations, mainly caused by connexin-26 defects that alter gap junction communication between nonsensory cochlear cells.
Collapse
Affiliation(s)
- Michel Leibovici
- Institut Pasteur, Unite de Genetique et Physiologie de l'Audition, Paris, France
| | | | | |
Collapse
|
41
|
Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A, Wagner C. Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol 2007; 18:1103-11. [PMID: 17329574 DOI: 10.1681/asn.2006090953] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the adult kidney, renin-producing cells are typically located in the walls of afferent arterioles at the transition into the glomerular capillary network. The mechanisms that are responsible for restricting renin expression to the juxtaglomerular position are largely unknown. This study showed that in mice that lack connexin 40 (Cx40), the predominant connexin of renin-producing cells, renin-positive cells are absent in the vessel walls and instead are found in cells of the extraglomerular mesangium, glomerular tuft, and periglomerular interstitium. Blocking macula densa transport function by acute administration of loop diuretics strongly enhances renin secretion in vivo and in isolated perfused kidneys of wild-type mice. This effect of loop diuretics is markedly attenuated in vivo and even blunted in vitro in Cx40-deficient mice. Even after prolonged stimulation of renin secretion by severe sodium depletion, renin expression is not seen in juxtaglomerular cells or in cells of more proximal parts of the arterial vessel wall as occurs normally. Instead, renin remains restricted to the extra-/periglomerular interstitium in Cx40-deficient mice. In contrast to the striking displacement of renin-expressing cells in the adult kidney, renin expression in the vessels of the developing kidney was found to be normal. This is the first evidence to indicate that cell-to-cell communication via gap junctions is essential for the correct juxtaglomerular positioning and recruitment of renin-producing cells. Moreover, these findings support the notion that gap junctions are relevant for the macula densa signaling to renin-producing cells.
Collapse
Affiliation(s)
- Lisa Kurtz
- Physiologisches Institut der Universität Regensburg, D-93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|