1
|
Cornette R, Indo HP, Iwata KI, Hagiwara-Komoda Y, Nakahara Y, Gusev O, Kikawada T, Okuda T, Majima HJ. Oxidative stress is an essential factor for the induction of anhydrobiosis in the desiccation-tolerant midge, Polypedilum vanderplanki (Diptera, Chironomidae). Mitochondrion 2023; 73:84-94. [PMID: 37956777 DOI: 10.1016/j.mito.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.
Collapse
Affiliation(s)
- Richard Cornette
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan.
| | - Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken-Ichi Iwata
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Yuka Hagiwara-Komoda
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yuichi Nakahara
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; Rimco., Ltd, 12-75 Suzaki, Uruma, Okinawa 904-2234, Japan
| | - Oleg Gusev
- Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan; Regulatory Genomics Research Center, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, 420008 Russia
| | - Takahiro Kikawada
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Takashi Okuda
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; NEMLI PROJECT LLC, 2756 Okijuku, Tsuchiura, Ibaraki, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
2
|
Wang W, Zhang XS, Wang ZN, Zhang DX. Evolution and phylogenetic diversity of the aquaporin gene family in arachnids. Int J Biol Macromol 2023; 240:124480. [PMID: 37068537 DOI: 10.1016/j.ijbiomac.2023.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Water flux across cells predominantly occurs through the pore formed by the aquaporin channels. Since water balance is one of the most important challenges to terrestrial animals, aquaporin evolution and diversity is known to play roles in animal terrestrialisation. Arachnids (Arthropoda: Chelicerata: Arachnida) are the second most diverse group and represent the pioneer land colonists in animals; however, there remains no thorough investigation on aquaporin evolution and diversity in this evolutionarily important lineage. Here we reported a phylogenetic study of aquaporin evolution and diversity using genomic data from 116 arachnid species covering almost all (15/16) extant orders. A previously unrecognised subfamily related to aquaporin-4 (i.e. Aqp4-like subfamily) via phylogenetic analysis was identified, suggesting certain underestimate of the arachnid aquaporin diversity in earlier studies probably due to limited taxonomic sampling. Further analysis indicates that this subfamily emerged deep within the life tree of arthropods. Gene tree of another Aqp4-like subfamily (PripL) shows an unexpected basal split between acariform mites (Acariformes) and other arachnids. A closer inspection demonstrated that the PripL evolved quickly and has been under differential selection pressure in acariform mites. Evidence is provided that the evolutionarily ancient Glp subfamily (i.e. aquaglyceroporin) is significantly expanded in terrestrial arachnids compared with their marine relatives. Finally, in spite of the phylogenetic diversity, there exists conservation of some exons in size, functional domain, and intron-insertion phase: an 81-bp and a 218-bp exon, respectively, in apq4-like and glp genes across Eumetazoa lineages including arachnids and human beings. Both exons encode the carboxyl-terminal NPA motif, implying the coding and splicing pressure during hundreds of million years of animal evolution. Hypotheses were tested to explore the possible link between these findings and arachnid terrestrialisation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xue-Shu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhen-Nan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Tan LP, Chen ME. Regulation of Aquaporin Prip Expression and Its Physiological Function in Rhyzopertha dominica (Coleoptera: Bostrichidae). INSECTS 2023; 14:70. [PMID: 36661998 PMCID: PMC9865390 DOI: 10.3390/insects14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rhyzopertha dominica Prip (RdPrip) cDNA was cloned (GenBank accession no. OK318454), and the encoded 276-amino-acid protein indicated the typical aquaporin structure, including six transmembrane regions and two NPA motifs. The developmental and tissue profiles of RdPrip transcription were determined. RdPrip was highly transcribed in female adults, followed by larvae, pupae, and male adults. The transcriptional expression levels of RdPrip were significantly high in the ovary and hindgut (including cryptonephridial systems) compared with the foregut, testis, midgut, and Malpighian tubules. Knockdown of RdPrip in female adults did not decrease fecundity, but significantly decreased the hatching rate of eggs laid by the females. The results suggest that RdPrip functions in embryonic development, not in egg formation. In addition, the transcriptional expression level of RdPrip was lower in the spinosad-resistant strain than in the susceptible one, and the resistant strain produced fewer progeny than the susceptible strain did. These studies support the functional role of RdPrip in female reproduction. The absence of significant mortality reduction in the R. dominica exposed to spinosad after RdPrip RNAi suggests that other aquaporins that were not knocked down may exist for the excretion of metabolized pesticides.
Collapse
|
4
|
Rehydration of the sleeping chironomid, Polypedilum vanderplanki Hinton, 1951 larvae from cryptobiotic state up to full physiological hydration (Diptera: Chironomidae). Sci Rep 2022; 12:3766. [PMID: 35260641 PMCID: PMC8904844 DOI: 10.1038/s41598-022-07707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
During desiccation the Polypedilum vanderplanki larva loses 97% of its body water, resulting in the shutdown of all metabolic and physiological processes. The larvae are able to resume active life when rehydrated. As dehydration process has already been largely understood, rehydration mechanisms are still poorly recognized. X-ray microtomograms and electron scanning microscopy images recorded during the hydration showed that the volume of the larva's head hardly changes, while the remaining parts of the body increase in volume. In the 1H-NMR spectrum, as recorded for active larvae, component characteristic of solid state matter is absent. The spectrum is superposition of components coming from tightly and loosely bound water fraction, as well as from lipids. The value of the c coefficient (0.66 ± 0.02) of the allometric function describing the hydration models means that the increase in the volume of rehydrated larvae over time is linear. The initial phase of hydration does not depend on the chemical composition of water, but the amount of ions affects the further process and the rate of return of larva’s to active life. Diffusion and ion channels play a major role in the permeability of water through the larva's body integument.
Collapse
|
5
|
Giovannini I, Boothby TC, Cesari M, Goldstein B, Guidetti R, Rebecchi L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci Rep 2022; 12:1938. [PMID: 35121798 PMCID: PMC8816950 DOI: 10.1038/s41598-022-05734-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Water unavailability is an abiotic stress causing unfavourable conditions for life. Nevertheless, some animals evolved anhydrobiosis, a strategy allowing for the reversible organism dehydration and suspension of metabolism as a direct response to habitat desiccation. Anhydrobiotic animals undergo biochemical changes synthesizing bioprotectants to help combat desiccation stresses. One stress is the generation of reactive oxygen species (ROS). In this study, the eutardigrade Paramacrobiotus spatialis was used to investigate the occurrence of ROS associated with the desiccation process. We observed that the production of ROS significantly increases as a function of time spent in anhydrobiosis and represents a direct demonstration of oxidative stress in tardigrades. The degree of involvement of bioprotectants, including those combating ROS, in the P. spatialis was evaluated by perturbing their gene functions using RNA interference and assessing the successful recovery of animals after desiccation/rehydration. Targeting the glutathione peroxidase gene compromised survival during drying and rehydration, providing evidence for the role of the gene in desiccation tolerance. Targeting genes encoding glutathione reductase and catalase indicated that these molecules play roles during rehydration. Our study also confirms the involvement of aquaporins 3 and 10 during rehydration. Therefore, desiccation tolerance depends on the synergistic action of many different molecules working together.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy.
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michele Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| |
Collapse
|
6
|
Desiderato A, Mamos T, Rewicz T, Burzynski A, Mucciolo S. First Glimpse at the Diverse Aquaporins of Amphipod Crustaceans. Cells 2021; 10:3417. [PMID: 34943925 PMCID: PMC8699810 DOI: 10.3390/cells10123417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
The importance of aquaporins (AQPs) in the transport of water and solutes through cell membranes is well recognized despite being relatively new. To date, despite their abundance, diversity, and presence in disparate environments, amphipods have only been mentioned in studies about the AQPs of other animals and have never been further investigated. In this work, we aimed to recover from public data available AQPs of these crustaceans and reconstruct phylogenetic affinities. We first performed BLAST searches with several queries of diverse taxa against different NCBI databases. Then, we selected the clades of AQPs retrieving the amphipod superfamily Gammaroidea as monophyletic and ran phylogenetic analyses to assess their performances. Our results show how most of the AQPs of amphipods are similar to those of other crustaceans, despite the Prip-like displayed different paralogs, and report for the first time a putative Aqp8-like for arthropods. We also found that the candidate genes of Prip-like, Bib-like, Aqp12-like, and Glp-like help solve deeper relationships in phylogenies of amphipods while leaving uncertainties in shallower parts. With our findings, we hope to increase attention to the study of amphipods as models for AQP functioning and evolution.
Collapse
Affiliation(s)
- Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Tomasz Rewicz
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| | - Artur Burzynski
- Department of Genetics and Marine Biotechnology, Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland; (T.M.); (T.R.); (S.M.)
| |
Collapse
|
7
|
Differential expression of aquaporin genes during ovary activation in the honeybee Apis mellifera (Hymenoptera: Apidae) queens. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110551. [DOI: 10.1016/j.cbpb.2020.110551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022]
|
8
|
Yoshida M, Lee RE, Denlinger DL, Goto SG. Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110928. [PMID: 33647463 DOI: 10.1016/j.cbpa.2021.110928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Larvae of the Antarctic midge Belgica antarctica Jacobs (Diptera: Chironomidae) are highly tolerant of diverse environmental stresses, including freezing, severe desiccation, and osmotic extremes. Furthermore, dehydration confers subsequent desiccation and freeze tolerance. While a role for aquaporins-channels for water and other solutes-has been proposed in these dehydration processes, the types of aquaporins involved in dehydration-driven stress tolerance remain unknown. In the present study, we investigated expression of six aquaporins (Drip, Prip, Eglp1, Eglp2, Aqp12L, and Bib) in larvae of B. antarctica subjected to three different dehydration conditions: desiccation, cryoprotective dehydration, and osmotic dehydration. The expression of Drip and Prip was up-regulated under desiccation and cryoprotective dehydration, suggesting a role for these aquaporins in efficient water loss under these dehydration conditions. Conversely, expression of Drip and Prip was down-regulated under osmotic dehydration, suggesting that their expression is suppressed in larvae to combat dehydration. Larval water content was similarly decreased under all three dehydration conditions. Differences in responses of the aquaporins to the three forms of dehydration suggests distinct water management strategies associated with different forms of dehydration stress.
Collapse
Affiliation(s)
- Mizuki Yoshida
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Shin G Goto
- Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
9
|
Voronina TA, Nesmelov AA, Kondratyeva SA, Deviatiiarov RM, Miyata Y, Tokumoto S, Cornette R, Gusev OA, Kikawada T, Shagimardanova EI. New group of transmembrane proteins associated with desiccation tolerance in the anhydrobiotic midge Polypedilum vanderplanki. Sci Rep 2020; 10:11633. [PMID: 32669703 PMCID: PMC7363813 DOI: 10.1038/s41598-020-68330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.
Collapse
Affiliation(s)
- Taisiya A Voronina
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Nesmelov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sabina A Kondratyeva
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ruslan M Deviatiiarov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yugo Miyata
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shoko Tokumoto
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Richard Cornette
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg A Gusev
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takahiro Kikawada
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Elena I Shagimardanova
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
10
|
Yamada TG, Hiki Y, Hiroi NF, Shagimardanova E, Gusev O, Cornette R, Kikawada T, Funahashi A. Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line Pv11. PLoS One 2020; 15:e0230218. [PMID: 32191739 PMCID: PMC7082025 DOI: 10.1371/journal.pone.0230218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Water is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation. Larvae of the African midge, Polypedilum vanderplanki, and its embryonic cell line Pv11 tolerate desiccation stress by entering an ametabolic state, anhydrobiosis, and return to active life after rehydration. The genes related to desiccation tolerance have been comprehensively analyzed, but transcriptional regulatory mechanisms to induce these genes after desiccation or rehydration remain unclear. Here, we comprehensively analyzed the gene regulatory network in Pv11 cells and compared it with that of Drosophila melanogaster, a desiccation sensitive species. We demonstrated that nuclear transcription factor Y subunit gamma-like, which is important for drought stress tolerance in plants, and its transcriptional regulation of downstream positive feedback loops have a pivotal role in regulating various anhydrobiosis-related genes. This study provides an initial insight into the systemic mechanism of desiccation tolerance.
Collapse
Affiliation(s)
- Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Noriko F. Hiroi
- Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | | | - Oleg Gusev
- Kazan Federal University, Kazan, Russia
- RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail: (TK); (AF)
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
- * E-mail: (TK); (AF)
| |
Collapse
|
11
|
García-Roger EM, Lubzens E, Fontaneto D, Serra M. Facing Adversity: Dormant Embryos in Rotifers. THE BIOLOGICAL BULLETIN 2019; 237:119-144. [PMID: 31714860 DOI: 10.1086/705701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An in-depth look at the basic aspects of dormancy in cyclic parthenogenetic organisms is now possible thanks to research efforts conducted over the past two decades with rotifer dormant embryos. In this review, we assemble and compose the current knowledge on four central themes: (1) distribution of dormancy in animals, with an overview on the phylogenetic distribution of embryo dormancy in metazoans, and (2) physiological and cellular processes involved in dormancy, with a strong emphasis on the dormant embryos of cyclically parthenogenetic monogonont rotifers; and discussions of (3) the selective pressures and (4) the evolutionary and population implications of dormancy in these animals. Dormancy in metazoans is a widespread phenomenon with taxon-specific features, and rotifers are among the animals in which dormancy is an intrinsic feature of their life cycle. Our review shows that embryo dormancy in rotifers shares common functional pathways with other taxa at the molecular and cellular level, despite the independent evolution of dormancy across phyla. These pathways include the arrest of similar metabolic routes and the usage of common metabolites for the stabilization of cellular structures and to confer stress resistance. We conclude that specific features of recurrent harsh environmental conditions are a powerful selective pressure for the fine-tuning of dormancy patterns in rotifers. We hypothesize that similar mechanisms at the organism level will lead to similar adaptive consequences at the population level across taxa, among which the formation of egg banks, the coexistence of species, and the possibility of differentiation among populations and local adaptation stand out. Our review shows how studies of rotifers have contributed to improved knowledge of all of these aspects.
Collapse
|
12
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
13
|
Fu D, Dai L, Gao H, Sun Y, Liu B, Chen H. Identification, Expression Patterns and RNA Interference of Aquaporins in Dendroctonus armandi (Coleoptera: Scolytinae) Larvae During Overwintering. Front Physiol 2019; 10:967. [PMID: 31427984 PMCID: PMC6688586 DOI: 10.3389/fphys.2019.00967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to survive annual temperature minima could be a key determinant of distribution limits for insects under global climate change. Recent studies have suggested that insect aquaporins are indispensable for cellular water management under conditions that lead to dehydration and cold stress. Aquaporins are integral membrane water channel proteins in the major intrinsic protein superfamily and promote selected solutes and the movement of water across biological membranes. We cloned and characterized nine full-length aquaporins from Dendroctonus armandi (DaAqps), the most destructive forest pest in the Qinling Mountains of Shaanxi Province, China. Eight of the DaAqps belong to three classical aquaporin grades, including the Drosophila integral protein, the Pyrocoelia rufa integral protein, the entomoglyceroporins and one that belongs to the unorthodox grade of aquaporin 12-like channels. The DaAqps were increasingly expressed during different developmental stages and in different larval tissues, and expression peaked in mid-winter. They were tested under cold conditions for different lengths of time, and the expression of almost all DaAqps was down regulated with decreasing temperatures and long-term exposure to cold conditions. However, when the lowest temperatures were reached, the levels were immediately upregulated. These genes indicate that cold tolerance can improve through mortality responses at low temperatures after RNA interference of DaAqps. In our study, we analyzed the molecular response, expression patterns, and RNA interference of DaAqps and clarified the crucial role of protective compounds (aquaporins) underlying D. armandi cold tolerance and provide a new pest control method.
Collapse
Affiliation(s)
- Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
|
15
|
Lu MX, Song J, Xu J, Wang G, Liu Y, Du YZ. A Novel Aquaporin 12-like Protein from Chilo suppressalis: Characterization and Functional Analysis. Genes (Basel) 2019; 10:genes10040311. [PMID: 31010093 PMCID: PMC6523266 DOI: 10.3390/genes10040311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQPs), which are members of the major intrinsic protein (MIP) family, play an important role in the transport of water and other small, uncharged solutes across membranes. In this study, we identified gene encoding two aquaporin 12-like (AQP12L) proteins, CsAqp12L_v1 and CsAqp12L_v2, from Chilo suppressalis, a serious rice pest in Asia. Phylogenetic analysis indicated that CsAQP12L_V1 and CsAQP12L_V2 were grouped in a well-supported cluster that included other members of Lepidoptera. The two proteins are almost identical, except that CsAQP12L_V1 lacks 34 amino acids that are present in CsAQP12L_V2 at site 217. The qRT-PCR indicated that both CsAqp12L and CsAqp12L_v2 were expressed in heads, epidermis, foregut, midgut, and hindguts, with the highest level of expression in hindguts, heads, and epidermis. Expression of CsAqp12L and CsAqp12L_v2 was detected in all life stages and both sexes and was highest in first instar larvae and lowest in eggs. Expression of CsAqp12L and CsAqp12L_v2 was not significantly altered by exposure to brief changes in temperature. There were no significant differences in the third instar larvae, male and female pupae, and female adults in response to adverse humidity. However, the mRNA level of CsAqp12L in the fifth instar larvae and CsAqp12L_v2 in male adults was induced significantly by low humidity, respectively. Moreover, Xenopus oocytes injected with cRNAs of CsAQP12L_V1 and CsAQP12L_V2 showed no significant changes in permeability to water, glycerol, trehalose, or urea. The two CsAQP12L variants likely localize to an intracellular location in C. suppressalis and may respond to novel stimuli.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Jie Song
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Jing Xu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Sreedharan S, Sankaranarayanan K. Water channel activity of putative aquaporin-6 present in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21519. [PMID: 30456765 DOI: 10.1002/arch.21519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aquaporins (AQPs) are integral membrane channels that facilitate the bidirectional transport of water and sometimes other small solutes across biological membranes. AQPs are important in mediating environmental adaptations in mosquitoes and are considered as a novel target for the development of effective insecticides against mosquitoes. Here, we expressed Aedes aegypti AQP6 ( AaAQP6) in human embryonic kidney (HEK) 293 cells and analyzed the water permeability by a conventional swelling assay, that is, a real-time change in cell size corresponding to the cell swelling induced by hyposmotic solution. The swelling assay revealed that AaAQP6 is a mercury-sensitive water channel. Gene expression studies showed that AaAQP6 is highly expressed in the pupae than other developmental stages. Heterologous expression of AaAQP6 in HEK cell was mainly observed intracellularly suggesting AaAQP6 possibly could be a subcellular water channel and may play an osmoregulatory function in the pupae of A. aegypti.
Collapse
Affiliation(s)
- Sandhya Sreedharan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Department of Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, India
| |
Collapse
|
17
|
Thorat L, Nath BB. Insects With Survival Kits for Desiccation Tolerance Under Extreme Water Deficits. Front Physiol 2018; 9:1843. [PMID: 30622480 PMCID: PMC6308239 DOI: 10.3389/fphys.2018.01843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The year 2002 marked the tercentenary of Antonie van Leeuwenhoek's discovery of desiccation tolerance in animals. This remarkable phenomenon to sustain 'life' in the absence of water can be revived upon return of hydrating conditions. Today, coping with climate change-related factors, especially temperature-humidity imbalance, is a global challenge. Under such adverse circumstances, desiccation tolerance remains a prime mechanism of several plants and a few animals to escape the hostile consequences of fluctuating hydroperiodicity patterns in their habitats. Among small animals, insects have demonstrated impressive resilience to dehydration and thrive under physiological water deficits without compromising on revival and survival upon rehydration. The focus of this review is to compile research insights on insect desiccation tolerance, gathered over the past several decades from numerous laboratories worldwide working on different insect groups. We provide a comparative overview of species-specific behavioral changes, adjustments in physiological biochemistry and cellular and molecular mechanisms as few of the noteworthy desiccation-responsive survival kits in insects. Finally, we highlight the role of insects as potential mechanistic models in tracking global warming which will form the basis for translational research to mitigate periods of climatic uncertainty predicted for the future.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
18
|
Yamada TG, Suetsugu Y, Deviatiiarov R, Gusev O, Cornette R, Nesmelov A, Hiroi N, Kikawada T, Funahashi A. Transcriptome analysis of the anhydrobiotic cell line Pv11 infers the mechanism of desiccation tolerance and recovery. Sci Rep 2018; 8:17941. [PMID: 30560869 PMCID: PMC6298976 DOI: 10.1038/s41598-018-36124-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
The larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to overcome fatal desiccation stress. The Pv11 cell line, derived from P. vanderplanki embryo, shows desiccation tolerance when treated with trehalose before desiccation and resumes proliferation after rehydration. However, the molecular mechanisms of this desiccation tolerance remain unknown. Here, we performed high-throughput CAGE-seq of mRNA and a differentially expressed gene analysis in trehalose-treated, desiccated, and rehydrated Pv11 cells, followed by gene ontology analysis of the identified differentially expressed genes. We detected differentially expressed genes after trehalose treatment involved in various stress responses, detoxification of harmful chemicals, and regulation of oxidoreduction that were upregulated. In the desiccation phase, L-isoaspartyl methyltransferase and heat shock proteins were upregulated and ribosomal proteins were downregulated. Analysis of differentially expressed genes during rehydration supported the notion that homologous recombination, nucleotide excision repair, and non-homologous recombination were involved in the recovery process. This study provides initial insights into the molecular mechanisms underlying the extreme desiccation tolerance of Pv11 cells.
Collapse
Affiliation(s)
- Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yoshitaka Suetsugu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | | | - Oleg Gusev
- Kazan Federal University, Kazan, Tatarstan, 420008, Russia.,RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | | | - Noriko Hiroi
- Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
19
|
Toxopeus J, Des Marteaux LE, Sinclair BJ. How crickets become freeze tolerant: The transcriptomic underpinnings of acclimation in Gryllus veletis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:55-66. [PMID: 30423515 DOI: 10.1016/j.cbd.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
Some ectotherms can survive internal ice formation. In temperate regions, freeze tolerance is often induced by decreasing temperature and/or photoperiod during autumn. However, we have limited understanding of how seasonal changes in physiology contribute to freeze tolerance, and how these changes are regulated. During a six week autumn-like acclimation, late-instar juveniles of the spring field cricket Gryllus veletis (Orthoptera: Gryllidae) become freeze tolerant, which is correlated with accumulation of low molecular weight cryoprotectants, elevation of the temperature at which freezing begins, and metabolic rate suppression. We used RNA-Seq to assemble a de novo transcriptome of this emerging laboratory model for freeze tolerance research. We then focused on gene expression during acclimation in fat body tissue due to its role in cryoprotectant production and regulation of energetics. Acclimated G. veletis differentially expressed >3000 transcripts in fat body. This differential expression may contribute to metabolic suppression in acclimated G. veletis, but we did not detect changes in expression that would support cryoprotectant accumulation or enhanced control of ice formation, suggesting that these latter processes are regulated post-transcriptionally. Acclimated G. veletis differentially regulated transcripts that likely coordinate additional freeze tolerance mechanisms, including upregulation of enzymes that may promote membrane and cytoskeletal remodelling, cryoprotectant transporters, cytoprotective proteins, and antioxidants. Thus, while accumulation of cryoprotectants and controlling ice formation are commonly associated with insect freeze tolerance, our results support the hypothesis that many other systems contribute to surviving internal ice formation. Together, this information suggests new avenues for understanding the mechanisms underlying insect freeze tolerance.
Collapse
Affiliation(s)
- Jantina Toxopeus
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 5B7, Canada.
| | - Lauren E Des Marteaux
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 5B7, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Janis B, Belott C, Menze MA. Role of Intrinsic Disorder in Animal Desiccation Tolerance. Proteomics 2018; 18:e1800067. [DOI: 10.1002/pmic.201800067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Brett Janis
- Department of Biology University of Louisville Louisville KY 40292 USA
| | - Clinton Belott
- Department of Biology University of Louisville Louisville KY 40292 USA
| | - Michael A. Menze
- Department of Biology University of Louisville Louisville KY 40292 USA
| |
Collapse
|
21
|
Yao XX, Meng QW, Li GQ. RNA interference-mediated functional characterization of aquaporin genes in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2018; 27:234-246. [PMID: 29235691 DOI: 10.1111/imb.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An obvious challenge faced by most terrestrial insects is maintaining water homeostasis in an arid environment. Current research suggests aquaporins may be evolved to meet the challenge. However, up to now, this suggestion has not been verified in any insect that feeds upon solid food with mandibulate mouthparts. In the present paper, nine putative aquaporin genes [Tribolium castaneum big brain, T. castaneum Drosophila integral protein (TcDrip), T. castaneum Pyrocoelia rufa integral protein (TcPrip), T. castaneum aquaporin 12-like, T. castaneum entomoglyceroporin 1 (TcEglp1), TcEglp2, TcEglp3, TcEglp4 and TcEglp5] were identified in T. castaneum. The transcripts of the nine genes were easily detectable in the foregut, midgut, hindgut-Malpighian tubule complex, fat body and carcass (except gut and fat body). Amongst them TcDrip, TcPrip, TcEglp1, TcEglp3 and TcEglp5 were highly transcribed in the hindgut-Malpighian tubule complex; TcEglp4 was abundantly expressed in both the fat body and hindgut-Malpighian tubule complex. RNA interference (RNAi)-mediated knockdown of TcEglp3 caused a grey larval cuticle, in contrast to a smooth and bright cuticle in control larvae. Approximately 40% of the TcEglp3 RNAi larvae had their hindguts protruding from the anus; their fresh wet faeces were attached to the hindgut. Another 20% of these treated larvae did not defaecate normally; wet brown faeces were adhered to the anal area. As a result, the larval growth was inhibited and about 60% larval lethality occurred. Silencing of TcEglp4 or TcDrip exhibited similar but weaker defective phenotypes as those of the TcEglp3-silenced larvae. Therefore, Eglp3, Eglp4 and Drip may contribute to the conductance of water in the alimentary canal and Malpighian tubules in T. castaneum.
Collapse
Affiliation(s)
- X-X Yao
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Lu MX, Pan DD, Xu J, Liu Y, Wang GR, Du YZ. Identification and Functional Analysis of the First Aquaporin from Striped Stem Borer, Chilo suppressalis. Front Physiol 2018; 9:57. [PMID: 29467668 PMCID: PMC5808226 DOI: 10.3389/fphys.2018.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 01/20/2023] Open
Abstract
Aquaporins are integral membrane proteins some of which form high capacity water-selective channels, promoting water permeation across cell membranes. In this study, we isolated the aquaporin transcript (CsDrip1) of Chilo suppressalis, one of the important rice pests. CsDrip1 included two variants, CsDrip1_v1 and CsDrip1_v2. Although CsDrip1_v2 sequence (>409 bp) was longer than CsDrip1_v1, they possessed the same open reading frame (ORF). Protein structure and topology of CsDrip1 was analyzed using a predicted model, and the results demonstrated the conserved properties of insect water-specific aquaporins, including 6 transmembrane domains, 2 NPA motifs, ar/R constriction region (Phe69, His194, Ser203, and Arg209) and the C-terminal peptide sequence ending in "SYDF." Our data revealed that the Xenopus oocytes expressing CsDrip1 indicated CsDrip1 could transport water instead of glycerol, trehalose and urea. Further, the transcript of CsDrip1 expressed ubiquitously but differentially in different tissues or organs and developmental stages of C. suppressalis. CsDrip1 mRNA exhibited the highest level of expression within hindgut and the third instar larvae. Regardless of pupae and adults, there were significantly different expression levels of CsDrip1 gene between male and female. Different from at low temperature, the transcript of CsDrip1 in larvae exposed to high temperature was increased significantly. Moreover, the mRNA levels of CsDrip1 in the third instar larvae, the fifth instar larvae, pupae (male and female), and adults (male and female) under different humidities were investigated. However, the mRNA levels of CsDrip1 of only female and male adults were changed remarkably. In conclusions, CsDrip1 plays important roles in maintaining water homeostasis in this important rice pest.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dan-Dan Pan
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jing Xu
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Involvement of Heat Shock Proteins in Invertebrate Anhydrobiosis. HEAT SHOCK PROTEINS AND STRESS 2018. [DOI: 10.1007/978-3-319-90725-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Xia W, Zhao P, Yi Z, Cui Y. Phylogenetic and specific sequence analysis of four paralogs in insect Aquaporins. Mol Med Rep 2017; 16:4903-4908. [PMID: 28791346 DOI: 10.3892/mmr.2017.7148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/27/2017] [Indexed: 11/05/2022] Open
Abstract
Aquaporins (AQP) are proteins that form channels to facilitate the movement of water across cell membranes in plants, bacteria and animals. Insect AQPs are indispensable for cellular water management under stress, including dehydration and cold. To better understand the biological significance of molecular evolution of gene sequences, followed by structural and functional specialization, the present study used ClustalX2.1, MEGA7.0, Jalview and Mesquite software to build an insect AQP phylogenetic tree and visualize the evolutionary associations among insect AQPs. It was demonstrated that 45 AQPs were classified as four major paralogs with each amino acid sequence containing two conserved NPA (Asp‑Pro‑Ala) motifs located in the center and C‑terminal domains, and other residues conserved within the paralogous groups, however not among them. All these differences in amino acid content may affect the structure, function and classification of the AQPs. The findings provide a basis for further study to understand insect AQPs through sequence comparison, structure and predicted function.
Collapse
Affiliation(s)
- Wei Xia
- Department of Central Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu 224000, P.R. China
| | - Panwen Zhao
- Department of Central Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu 224000, P.R. China
| | - Zhongquan Yi
- Department of Central Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu 224000, P.R. China
| | - Yubao Cui
- Department of Central Laboratory, The Third People's Hospital of Yancheng, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
25
|
Sogame Y, Kikawada T. Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki. CURRENT OPINION IN INSECT SCIENCE 2017; 19:16-21. [PMID: 28521938 DOI: 10.1016/j.cois.2016.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Water is an essential molecule for living organisms. However, some organisms can survive in environments which receive no rainfall for months and in which ordinary life cannot survive. How do they endure the extended dry season? The sleeping chironomid Polypedilum vanderplanki, which inhabits sub-Saharan Africa, exhibits extreme tolerance to complete desiccation, a process termed anhydrobiosis. During anhydrobiosis these organisms dry up and entirely shut down their metabolism. However, when the dried larvae are immersed in water, their metabolism is resumed. Interestingly, anhydrobiosis allows these organisms to tolerate not only desiccation but also high and low temperatures, the absence of oxygen, radiation, and chemical stresses. Here, we describe the mechanisms by which P. vanderplanki achieves anhydrobiosis revealed in our recent research.
Collapse
Affiliation(s)
- Yoichiro Sogame
- Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Japan; Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia; Graduate School of Frontier Sciences, University of Tokyo, Japan.
| |
Collapse
|
26
|
Endo H, Azuma M, Adegawa S, Kikuta S, Sato R. Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett 2016; 591:56-64. [PMID: 27914170 DOI: 10.1002/1873-3468.12506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
The Bacillus thuringiensis Cry toxin causes swelling and necrosis in insect cells, but the route(s) and significance of the water influx involved in its cytotoxicity are unclear. Here, we assessed the role of aquaporins (AQPs), known as water channels, in Cry toxin intoxication. An AQP inhibitor did not interfere with any known process to form the toxin pore, but it diminished the cell swelling and loss of membrane integrity induced by the Cry toxin. Overexpression of AQPs facilitated water influx and cytotoxicity. Our results demonstrate that water influx via aquaporin directly determines necrotic cell death induced by the Cry toxin.
Collapse
Affiliation(s)
- Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
27
|
Van Ekert E, Chauvigné F, Finn RN, Mathew LG, Hull JJ, Cerdà J, Fabrick JA. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:39-51. [PMID: 27491441 DOI: 10.1016/j.ibmb.2016.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen and hemolymph after imbibing large quantities of a low nitrogen, sugar-rich liquid diet; 2) the ability to avoid or prevent dehydration and desiccation, particularly during egg hatching and molting; and 3) to be adapted for survival at elevated temperatures. One superfamily of proteins involved in the maintenance of fluid homeostasis in many organisms includes the aquaporins, which are integral membrane channel proteins that aid in the rapid flux of water and other small solutes across biological membranes. Here, we show that B. tabaci has eight aquaporins (BtAqps), of which seven belong to the classical aquaporin 4-related grade of channels, including Bib, Drip, Prip, and Eglps and one that belongs to the unorthodox grade of aquaporin 12-like channels. B. tabaci has further expanded its repertoire of water channels through the expression of three BtDrip2 amino-terminal splice variants, while other hemipteran species express amino- or carboxyl-terminal isoforms of Drip, Prip, and Eglps. Each BtAqp has unique transcript expression profiles, cellular localization, and/or substrate preference. Our phylogenetic and functional data reveal that hemipteran insects lost the classical glp genes, but have compensated for this by duplicating the eglp genes early in their evolution to comprise at least three separate clades of glycerol transporters.
Collapse
Affiliation(s)
- Evelien Van Ekert
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - François Chauvigné
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway; Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar, Consejo Superior de Investigaciones Cientificas (CSIC), 08003 Barcelona, Spain
| | - Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, 5020 Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway
| | - Lolita G Mathew
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - J Joe Hull
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentaries (IRTA)-Institut de Ciencies del Mar, Consejo Superior de Investigaciones Cientificas (CSIC), 08003 Barcelona, Spain
| | - Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA.
| |
Collapse
|
28
|
Stavang JA, Chauvigné F, Kongshaug H, Cerdà J, Nilsen F, Finn RN. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics 2015; 16:618. [PMID: 26282991 PMCID: PMC4539701 DOI: 10.1186/s12864-015-1814-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND An emerging field in biomedical research is focusing on the roles of aquaporin water channels in parasites that cause debilitating or lethal diseases to their vertebrate hosts. The primary vectorial agents are hematophagous arthropods, including mosquitoes, flies, ticks and lice, however very little is known concerning the functional diversity of aquaporins in non-insect members of the Arthropoda. Here we conducted phylogenomic and functional analyses of aquaporins in the salmon louse, a marine ectoparasitic copepod that feeds on the skin and body fluids of salmonids, and used the primary structures of the isolated channels to uncover the genomic repertoires in Arthropoda. RESULTS Genomic screening identified 7 aquaporin paralogs in the louse in contrast to 42 in its host the Atlantic salmon. Phylogenetic inference of the louse nucleotides and proteins in relation to orthologs identified in Chelicerata, Myriapoda, Crustacea and Hexapoda revealed that the arthropod aquaporin superfamily can be classified into three major grades (1) classical aquaporins including Big brain (Bib) and Prip-like (PripL) channels (2) aquaglyceroporins (Glp) and (3) unorthodox aquaporins (Aqp12-like). In Hexapoda, two additional subfamilies exist as Drip and a recently classified entomoglyceroporin (Eglp) group. Cloning and remapping the louse cDNAs to the genomic DNA revealed that they are encoded by 1-7 exons, with two of the Glps being expressed as N-terminal splice variants (Glp1_v1, -1_v2, -3_v1, -3_v2). Heterologous expression of the cRNAs in amphibian oocytes demonstrated that PripL transports water and urea, while Bib does not. Glp1_v1, -2, -3_v1 and -3_v2 each transport water, glycerol and urea, while Glp1_v2 and the Aqp12-like channels were retained intracellularly. Transcript abundance analyses revealed expression of each louse paralog at all developmental stages, except for glp1_v1, which is specific to preadult and adult males. CONCLUSIONS Our data suggest that the aquaporin repertoires of extant arthropods have expanded independently in the different lineages, but can be phylogenetically classified into three major grades as opposed to four present in deuterostome animals. While the aquaporin repertoire of Atlantic salmon represents a 6-fold redundancy compared to the louse, the functional assays reveal that the permeation properties of the different crustacean grades of aquaporin are largely conserved to the vertebrate counterparts.
Collapse
Affiliation(s)
- Jon Anders Stavang
- Sea Lice Research Centre, Department of Biology, Bergen High Technology Centre, University of Bergen, 5020, Bergen, Norway.
| | - Francois Chauvigné
- Sea Lice Research Centre, Department of Biology, Bergen High Technology Centre, University of Bergen, 5020, Bergen, Norway.
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biology, Bergen High Technology Centre, University of Bergen, 5020, Bergen, Norway.
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003, Barcelona, Spain.
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biology, Bergen High Technology Centre, University of Bergen, 5020, Bergen, Norway.
| | - Roderick Nigel Finn
- Sea Lice Research Centre, Department of Biology, Bergen High Technology Centre, University of Bergen, 5020, Bergen, Norway.
- Institute of Marine Research, Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
29
|
Goto SG, Lee RE, Denlinger DL. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival. THE BIOLOGICAL BULLETIN 2015; 229:47-57. [PMID: 26338869 DOI: 10.1086/bblv229n1p47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The terrestrial midge Belgica antarctica relies extensively on dehydration to survive the low temperatures and desiccation stress that prevail in its Antarctic habitat. The loss of body water is thus a critical adaptive mechanism employed at the onset of winter to prevent injury from internal ice formation; a rapid mechanism for rehydration is equally essential when summer returns and the larva resumes the brief active phase of its life. This important role for water movement suggests a critical role for aquaporins (AQPs). Recent completion of the genome project on this species revealed the presence of AQPs in B. antarctica representing the DRIP, PRIP, BIB, RPIP, and LHIP families. Treatment with mercuric chloride to block AQPs also blocks water loss, thereby decreasing cell survival at low temperatures. Antibodies directed against mammalian or Drosophila AQPs suggest a wide tissue distribution of AQPs in the midge and changes in protein abundance in response to dehydration, rehydration, and freezing. Thus far, functional studies have been completed only for PRIP1. It appears to be a water-specific AQP, but expression levels are not altered by dehydration or rehydration. Functional assays remain to be completed for the additional AQPs.
Collapse
Affiliation(s)
- Shin G Goto
- Graduate School of Science, Osaka City University, Osaka, Japan;
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, Ohio; and
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio
| |
Collapse
|
30
|
Abstract
In this review, we provide a brief synopsis of the evolution and functional diversity of the aquaporin gene superfamily in prokaryotic and eukaryotic organisms. Based upon the latest data, we discuss the expanding list of molecules shown to permeate the central pore of aquaporins, and the unexpected diversity of water channel genes in Archaea and Bacteria. We further provide new insight into the origin by horizontal gene transfer of plant glycerol-transporting aquaporins (NIPs), and the functional co-option and gene replacement of insect glycerol transporters. Finally, we discuss the origins of four major grades of aquaporins in Eukaryota, together with the increasing repertoires of aquaporins in vertebrates.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Centre, University of Bergen, Norway; Institute of Marine Research, Nordnes, 5817 Bergen, Norway; and
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| |
Collapse
|
31
|
Hatanaka R, Gusev O, Cornette R, Shimura S, Kikuta S, Okada J, Okuda T, Kikawada T. Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki. PLANTA 2015; 242:451-9. [PMID: 25822798 DOI: 10.1007/s00425-015-2284-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/18/2015] [Indexed: 05/13/2023]
Abstract
In the anhydrobiotic midge Polypedilum vanderplanki , LEA family proteins are likely to play distinct temporal and spatial roles in the larvae throughout the process of desiccation and rehydration. The larvae of the anhydrobiotic midge, P. vanderplanki, which can tolerate almost complete desiccation, accumulate late embryogenesis abundant (LEA) proteins in response to drying. Using complete genome data of the midge, we have identified 27 PvLea1-like genes based on the similarity to previously characterized PvLea1 gene belonging to group 3 LEA proteins. Generally, group 3 LEA proteins are characterized by several repetitions of an 11-mer motif. However, some PvLea genes lack the canonical motif in their sequences. We performed the detailed characterization of all 27 PvLea genes in terms of biochemical and biophysical properties and conserved motifs. The motif analysis among their amino acid sequences revealed that all 27 PvLEA proteins have at least one of two types of motifs (motif 1: G AKDTTKEKLGE AKDATAEKLG or motif 2: KD ILExAKDKLxD AKDAVKEKL), indicating the presence of at least two repeated 11-mer LEA motifs. Most of PvLEA proteins were localized to the cytosol. We also performed quantitative real-time PCR of all 27 PvLea genes in detail during the process of desiccation and rehydration. The expression of these genes was upregulated at the beginning of dehydration, the latter phase of the desiccation process and on rehydration process. These data suggested that each LEA protein is likely to play distinct temporal and spatial roles in the larvae throughout the process of desiccation and rehydration.
Collapse
Affiliation(s)
- Rie Hatanaka
- National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Finn RN, Chauvigné F, Stavang JA, Belles X, Cerdà J. Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 2015; 6:7814. [PMID: 26183829 PMCID: PMC4518291 DOI: 10.1038/ncomms8814] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/12/2015] [Indexed: 01/30/2023] Open
Abstract
Transmembrane glycerol transport is typically facilitated by aquaglyceroporins in Prokaryota and Eukaryota. In holometabolan insects however, aquaglyceroporins are absent, yet several species possess polyol permeable aquaporins. It thus remains unknown how glycerol transport evolved in the Holometabola. By combining phylogenetic and functional studies, here we show that a more efficient form of glycerol transporter related to the water-selective channel AQP4 specifically evolved and multiplied in the insect lineage, resulting in the replacement of the ancestral branch of aquaglyceroporins in holometabolan insects. To recapitulate this evolutionary process, we generate specific mutants in distantly related insect aquaporins and human AQP4 and show that a single mutation in the selectivity filter converted a water-selective channel into a glycerol transporter at the root of the crown clade of hexapod insects. Integration of phanerozoic climate models suggests that these events were associated with the emergence of complete metamorphosis and the unparalleled radiation of insects.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, Bergen High Technology Center, University of Bergen, PO Box 7803, N-5020 Bergen, Norway
- Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway
| | - François Chauvigné
- Department of Biology, Bergen High Technology Center, University of Bergen, PO Box 7803, N-5020 Bergen, Norway
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim 37-49, 08003 Barcelona, Spain
| | - Jon Anders Stavang
- Department of Biology, Bergen High Technology Center, University of Bergen, PO Box 7803, N-5020 Bergen, Norway
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37-49, 08003 Barcelona, Spain
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim 37-49, 08003 Barcelona, Spain
| |
Collapse
|
33
|
Yoder JA, Benoit JB, Nelson BW, Main LR, Bossley JP. Behavioral correction to prevent overhydration and increase survival by larvae of the net-spinning caddisflies in relation to water flow. J Exp Biol 2015; 218:363-9. [PMID: 25524982 DOI: 10.1242/jeb.110684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report behavioral regulation of body water content in caddisfly larvae, Hydropsyche morosa and Cheumatopsyche pettiti, by selecting microhabitats with different water flow rates. The purpose of our study was to examine features necessary for survival in the same apparent habitat, because the two species co-exist in riffle areas of freshwater streams. Both species are highly sensitive to water loss as a result of high water loss rates and depend on immersion in fresh water (hypo-osmotic) to maintain water stores. In contrast to C. pettiti, H. morosa is larger, retains water more effectively, and features reduced water loss rates with suppressed activation energies. When H. morosa was confined to areas of low or no water flow, overhydration led to rapid mortality, whereas the same conditions favored water balance maintenance and survival in C. pettiti. In attraction bioassays, H. morosa moved and remained within areas of high water flow and C. pettiti preferred areas with low water flow. Because water flow rates are unlikely to directly impact water gain, the mechanism responsible for increased survival and water balance maintenance is likely related to the impact of water flow on oxygen availability, differences in feeding ecology, or other underlying factors.
Collapse
Affiliation(s)
- Jay A Yoder
- Department of Biology, Wittenberg University, Springfield, OH 45501, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Blake W Nelson
- Department of Biology, Wittenberg University, Springfield, OH 45501, USA
| | - Leighanne R Main
- Department of Biology, Wittenberg University, Springfield, OH 45501, USA
| | - Jon P Bossley
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Serrão JE, do Carmo Queiroz Fialho M, Azevedo DO, Zanuncio JC. Aquaporins in the honeybee crop--a new function for an old organ. PROTOPLASMA 2014; 251:1441-1447. [PMID: 24756368 DOI: 10.1007/s00709-014-0645-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Nectar used by bees as a food source is collected and stored in the crop, where it is transported and converted into honey. The production of honey involves water uptake from nectar. However, the crop is a portion of the insect foregut that has been characterized solely as a food storage organ. Aquaporins are integral membrane proteins that function as specific canal for water transport and are abundant in tissues with high water permeability. In this study, we detected five predicted genes for aquaporins in the gut of the honeybee Apis mellifera. We evaluated the aquaporins' localization in the crop by using an anti-aquaporin antibody produced against the peptide sequence from one of the expressed genes, which was detected in the crop epithelium, particularly in the apical portions of the cells. Furthermore, we also showed an increase in sugar concentration in a sucrose solution collected from the crop lumen a few minutes after feeding, indicating that water uptake occurs during storage of nectar in the crop, suggesting a previously unidentified function for the honeybee crop.
Collapse
Affiliation(s)
- José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, 36570-000, Viçosa, Minas Gerais, Brazil,
| | | | | | | |
Collapse
|
35
|
Identification and expression analysis of aquaporins in the potato psyllid, Bactericera cockerelli. PLoS One 2014; 9:e111745. [PMID: 25354208 PMCID: PMC4213062 DOI: 10.1371/journal.pone.0111745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022] Open
Abstract
Aquaporin (AQPs) proteins transport water and uncharged low molecular-weight solutes across biological membranes. Six to 8 AQP genes have been identified in many insect species, but presently only three aquaporins have been characterized in phloem feeding insects. The objective of this study was to identify candidate AQPs in the potato psyllid, Bactericera cockerelli. Herein, we identified four candidate aquaporin cDNAs in B. cockerelli transcriptome. Phylogenetic analysis showed that candidate BcAQP2-like had high similarity to PRIP aquaporins; while candidates BcAQP4-like, BcAQP5-like and BcAQP9-like clustered within clade B. In particular, candidates BcAQP4-like and BcAQP5-like clustered with functionally validated insect aquaglyceroporin proteins. Expression analyses using RT-qPCR showed that all candidates were expressed in all life stages and tissues. Candidates BcAQP4-like and BcAQP5-like were highly expressed in bacteriocytes, while BcAQP9-like appeared to be expressed at high levels in whole body but not in the assayed tissues. This study is the first global attempt to identify putative aquaporins in a phloem feeding insect.
Collapse
|
36
|
Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun 2014; 5:4784. [PMID: 25216354 PMCID: PMC4175575 DOI: 10.1038/ncomms5784] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022] Open
Abstract
Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. The African chironomid midge, Polypedilum vanderplanki, is able to withstand extreme desiccation. Here the authors sequence the genomes of a desiccation-tolerant and desiccation-sensitive species of chironomid midge and pinpoint genes that may have a role in conferring resistance to desiccation.
Collapse
|
37
|
Benoit JB, Hansen IA, Szuter EM, Drake LL, Burnett DL, Attardo GM. Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. J Comp Physiol B 2014; 184:811-25. [DOI: 10.1007/s00360-014-0836-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 01/18/2023]
|
38
|
Benoit JB, Hansen IA, Attardo GM, Michalková V, Mireji PO, Bargul JL, Drake LL, Masiga DK, Aksoy S. Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Negl Trop Dis 2014; 8:e2517. [PMID: 24762803 PMCID: PMC3998938 DOI: 10.1371/journal.pntd.0002517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/20/2013] [Indexed: 12/26/2022] Open
Abstract
Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes. Glossina sp. are responsible for transmission of African trypanosomes, the causative agents of sleeping sickness in humans and Nagana in cattle. Blood feeding and nutrient provisioning through lactation during intrauterine progeny development are periods when considerable water movement occurs within tsetse flies. With the completion of the tsetse fly genome, we sought to characterize the role of aquaporins in relation water homeostasis during blood feeding, stress tolerance and the lactation cycle. We provide evidence that specific AQPs are 1. critical during diuresis following a bloodmeal, 2. important in the regulation of dehydration resistance and heat tolerance and 3. crucial in the allocation of water within tsetse milk that is necessary for progeny hydration. Specifically, we discovered a novel tsetse AQP that is imperative to lactation and may represent a potential target for population control of this disease vector.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Immo A. Hansen
- Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Geoffrey M. Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Veronika Michalková
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Paul O. Mireji
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joel L. Bargul
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Lisa L. Drake
- Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Daniel K. Masiga
- Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
39
|
Fabrick JA, Pei J, Hull JJ, Yool AJ. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:125-140. [PMID: 24333473 DOI: 10.1016/j.ibmb.2013.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulation, respiration, cryoprotection, anhydrobiosis, and excretion. We cloned and characterized five novel AQPs from the western tarnished plant bug, Lygus hesperus, a polyphagous insect pest of food and fiber crops throughout western North America. The L. hesperus AQPs (LhAQP1-5) belong to different phylogenetic subfamilies, have unique transcription profiles and cellular localizations, and all transport water (but not glycerol) when heterologously expressed in Xenopus laevis oocytes. Our results demonstrate that multiple AQPs with possible compensatory functions are produced in L. hesperus that likely play important roles in maintaining water homeostasis in this important insect pest.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA.
| | - Jinxin Pei
- University of Adelaide, School of Medical Sciences, Frome Rd., Medical School South, Adelaide, SA 5005, Australia
| | - J Joe Hull
- USDA-ARS, U.S. Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| | - Andrea J Yool
- University of Adelaide, School of Medical Sciences, Frome Rd., Medical School South, Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Molecular identification of first putative aquaporins in snails. J Membr Biol 2014; 247:239-52. [PMID: 24445747 PMCID: PMC3930841 DOI: 10.1007/s00232-014-9629-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Aquaporins (AQPs), also known as water channel proteins, are members of a large protein family termed Major Intrinsic Proteins (MIP). The mammalian AQPs have been most comprehensively described, while knowledge about AQPs in invertebrates is limited mainly to insects. Not a single AQP protein has been described in snails to date. Consequently, we decided to search for the proteins in gastropod representatives, namely Lymnaea stagnalis, Catascopia occulta, and Stagnicola palustris (Mollusca; Gastropoda; Pulmonata; Lymnaeidae). Using the molecular approach, we identified L. stagnalis, C. occulta, and S. palustris open reading frames (ORFs) showing homology to AQP genes available in GenBank database, and characterized the encoded proteins, referred to as LsAQP1, CoAQP1, and SpAQP1, respectively. The putative snail aquaporins contain 299 amino acids, have a molecular mass of about 32 kDa, display the general AQP topology and three-dimensional structure congruent with orthodox AQPs, i.e., water-specific ones. Due to high levels of similarity in their characteristics, LsAQP1 was chosen for further studies, as the obtained results were supposed to be applicable for CoAQP1 and SpAQP1. Expression analysis revealed the presence of LsAQP1 transcript in the digestive tract, the cerebral ganglia, the kidney, the reproductive system, and the foot, suggesting that LsAQP1 as well as CoAQP1 and SpAQP1 are ubiquitous proteins and may play important roles in many essential water transport processes. The role appears to be confirmed by results of the yeast growth complementation assay pointing at functionality of LsAQP1. Thus, the obtained results support the AQP expression in gastropod tissues for the first time.
Collapse
|
41
|
Staniscuaski F, Paluzzi JP, Real-Guerra R, Carlini CR, Orchard I. Expression analysis and molecular characterization of aquaporins in Rhodnius prolixus. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1140-1150. [PMID: 24035749 DOI: 10.1016/j.jinsphys.2013.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Aquaporins (AQPs) are water channels responsible for transport of water and, in some cases, transport of small solutes such as urea and glycerol across lipid bilayer membranes. Hematophagous insects, such as Rhodnius prolixus, ingest large volumes of fluid and must rapidly eliminate the excess of water and salts from the blood meal within the gut. In order to deal with this increase in body fluid volume, a hormone-controlled diuresis is activated, during which a high rate of water and salt absorption occurs across the anterior midgut, followed by secretion of water and salts by the Malpighian tubules (MTs). Previously, one member of the MIP family (major intrinsic protein that includes the AQP family) was identified in the MTs of R. prolixus, and named RpMIP. We have described here that the RpMIP gene has different variants, and is present in tissues other than MTs. In addition, we have characterized a new AQP (RhoprAQP1) found in different tissues of R. prolixus. The expression of these transcripts in unfed insects as well as blood fed insects was evaluated using real-time quantitative PCR. Molecular models of the predicted proteins were constructed and the characteristics of their pores evaluated. A yeast complementation assay was used to validate that the products of these transcripts were bona fide AQPs. Both RhoprAQP1 and RhoprMIP-A were capable of transporting water whereas RhoprMIP-A was also capable of transporting H2O2. Taken together, these analyses suggest that RhoprMIP is probably an aquaglyceroporin, while RhoprAQP1 appears to be a strict aquaporin that transports only water.
Collapse
Affiliation(s)
- Fernanda Staniscuaski
- Department of Molecular Biology and Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Grohme MA, Mali B, Wełnicz W, Michel S, Schill RO, Frohme M. The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum. Bioinform Biol Insights 2013; 7:153-65. [PMID: 23761966 PMCID: PMC3666991 DOI: 10.4137/bbi.s11497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters.
Collapse
Affiliation(s)
- Markus A Grohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Nagae T, Miyake S, Kosaki S, Azuma M. Identification and characterisation of functional aquaporin water channel (Anomala cuprea DRIP) in a coleopteran insect. J Exp Biol 2013; 216:2564-72. [DOI: 10.1242/jeb.083386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Summary
Water transport across the plasma membrane depends on the presence of the water channel aquaporin (AQP), which mediates the bulk movement of water through osmotic and pressure gradients. In terrestrial insects, which are solid/plant feeders, the entrance and exit of water is primarily executed along the alimentary tract, where the hindgut, particularly the rectum, is the major site of water conservation. A cDNA encoding the homologue of the water-specific Drosophila AQP (Drosophila integral protein: DRIP) was identified through the RT-PCR of RNA isolated from the rectum of the cupreous chafer larvae, Anomala cuprea, a humus and plant root feeder. This gene (Anocu AQP1) has a predicted molecular mass of 26.471 kDa similar to the DRIP clade of insect AQPs characterised from caterpillars, flies and several liquid-feeding insects. When expressed in Xenopus laevis oocytes, Anocu AQP1 showed the hallmarks of aquaporin-mediated water transport but no glycerol nor urea permeability, and the reversible inhibition of elevated water transport through 1 mM HgCl2. This is the first experimental demonstration of the presence of a water-specific AQP, namely DRIP, in the Coleoptera. The genome of the model beetle, Tribolium castaneum, contains six putative AQP sequences, one of which (Trica-1a, XP_972862) showed the highest similarity to Anocu AQP1 (~60% amino acid identity). Anocu AQP1 is predominantly expressed in the rectum. Using a specific antibody raised against DRIP in the silkworm, Bombyx mori (AQP-Bom1), Anocu AQP1 was localised to the apical plasma membrane of rectal epithelial cells, and lacking in the midgut and gastric caecal epithelia. Based on the BeetleBase prediction, there are three putative AQPs (Trica-3a, 3b, 3c: XP_970728, 970912, 970791) that are homologous to B. mori aquaglyceroporin (AQP-Bom2 [GLP]). The immunocytochemical studies using the specific anti-peptide antibody against AQP-Bom2 revealed the presence of the GLP homologue at the apical plasma membrane of enterocytes in the midgut and gastric caeca. Thus, DRIP (Anocu AQP1) and the putative GLP share epithelial fluid-transporting roles along the alimentary tract in cupreous chafer larvae.
Collapse
Affiliation(s)
- Tomone Nagae
- The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Seiji Miyake
- The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Shiho Kosaki
- The United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Masaaki Azuma
- The United Graduate School of Agricultural Sciences, Tottori University, Japan
| |
Collapse
|
44
|
Schokraie E, Warnken U, Hotz-Wagenblatt A, Grohme MA, Hengherr S, Förster F, Schill RO, Frohme M, Dandekar T, Schnölzer M. Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state. PLoS One 2012; 7:e45682. [PMID: 23029181 PMCID: PMC3459984 DOI: 10.1371/journal.pone.0045682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/24/2012] [Indexed: 12/02/2022] Open
Abstract
Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.
Collapse
Affiliation(s)
- Elham Schokraie
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus A. Grohme
- Department of Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Wildau, Germany
| | - Steffen Hengherr
- Department of Zoology, University of Stuttgart, Stuttgart, Germany
| | - Frank Förster
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Ralph O. Schill
- Department of Zoology, University of Stuttgart, Stuttgart, Germany
| | - Marcus Frohme
- Department of Molecular Biology and Functional Genomics, University of Applied Sciences Wildau, Wildau, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
45
|
Marusalin J, Matier BJ, Rheault MR, Donini A. Aquaporin homologs and water transport in the anal papillae of the larval mosquito, Aedes aegypti. J Comp Physiol B 2012; 182:1047-56. [DOI: 10.1007/s00360-012-0679-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 05/17/2012] [Accepted: 05/24/2012] [Indexed: 10/27/2022]
|
46
|
Azuma M, Nagae T, Maruyama M, Kataoka N, Miyake S. Two water-specific aquaporins at the apical and basal plasma membranes of insect epithelia: molecular basis for water recycling through the cryptonephric rectal complex of lepidopteran larvae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:523-533. [PMID: 22285686 DOI: 10.1016/j.jinsphys.2012.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 05/31/2023]
Abstract
Larval lepidopteran and coleopteran insects have evolved a specialised cryptonephric system in the hindgut in which water is constantly and rapidly taken up before defecation. In the silkworm, Bombyx mori, the movement of water through the epithelia within the cryptonephric rectal complex is likely facilitated by the two aquaporins, AQP-Bom1 and AQP-Bom3. Both are functionally water-specific and are predominantly expressed in the hindgut (colon and rectum). Phylogenetically, AQP-Bom1 and AQP-Bom3 belong to the DRIP (Drosophila integral protein) and PRIP (Pyrocoelia rufa integral protein) subfamilies, respectively, of the insect AQP clade. In immunoblot analyses using antipeptide antibodies for each Bombyx AQP, the predicted molecular mass for the respective AQPs were around 25 kDa, and further indicated that both tended to be oligomerised as a homotetramer (∼110 kDa). AQP-Bom1 [DRIP] was exclusively expressed at the apical plasma membrane of colonic and rectal epithelial cells, whereas AQP-Bom3 [PRIP] was expressed at the basal plasma membrane of these cells. This polarised localisation of DRIP/PRIP was also observed in the outer cryptonephric Malpighian tubules (outer cMT) and in the six tubules just outside the cryptonephric rectal complex (rectal lead MT). In the rectal epithelia, water is transported from the rectal lumen to the perinephric space and then deposited into the lumen of the outer cMT; the water then goes through the tubular lumen to exit the complex and is finally transported across the rectal lead MT. We conclude that rectal water retrieval into the haemocoele occurs at the very limited region of the water-permeable sites in MT epithelia after passing the rectal and cMT epithelia and that the high osmotic permeability is due to the presence of two distinct water-specific AQPs (DRIP and PRIP) in the epithelial cells of lepidopteran hindgut.
Collapse
|
47
|
Herraiz A, Chauvigné F, Cerdà J, Bellés X, Piulachs MD. Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). ACTA ACUST UNITED AC 2012; 214:3630-8. [PMID: 21993792 DOI: 10.1242/jeb.057406] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aquaporins (AQPs) are membrane proteins that form water channels, allowing rapid movement of water across cell membranes. AQPs have been reported in species of all life kingdoms and in almost all tissues, but little is known about them in insects. Our purpose was to explore the occurrence of AQPs in the ovary of the phylogenetically basal insect Blattella germanica (L.) and to study their possible role in fluid homeostasis during oogenesis. We isolated an ovarian AQP from B. germanica (BgAQP) that has a deduced amino acid sequence showing six potential transmembrane domains, two NPA motifs and an ar/R constriction region, which are typical features of the AQP family. Phylogenetic analyses indicated that BgAQP belongs to the PRIP group of insect AQPs, previously suggested to be water specific. However, ectopic expression of BgAQP in Xenopus laevis oocytes demonstrated that this AQP transports water and modest amounts of urea, but not glycerol, which suggests that the PRIP group of insect AQPs may have heterogeneous solute preferences. BgAQP was shown to be highly expressed in the ovary, followed by the fat body and muscle tissues, but water stress did not significantly modify the ovarian expression levels. RNA interference (RNAi) reduced BgAQP mRNA levels in the ovary but the oocytes developed normally. The absence of an apparent ovarian phenotype after BgAQP RNAi suggests that other functionally redundant AQPs that were not silenced in our experiments might exist in the ovary of B. germanica.
Collapse
Affiliation(s)
- Alba Herraiz
- Institut de Biologia Evolutiva (CSIC-UPF) and LINC-Global, Passeig Maryítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1106-1114. [PMID: 21497603 DOI: 10.1016/j.jinsphys.2011.03.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating movement of water across the cell membrane. Recent insect studies clearly demonstrate that AQPs are indispensable for cellular water management under normal conditions as well as under stress conditions including dehydration and cold. In the present study we cloned an AQP cDNA from the Antarctic midge Belgica antarctica (Diptera, Chironomidae) and investigated water transport activity of the AQP protein and transcriptional regulation of the gene in response to dehydration and rehydration. The nucleotide sequence and deduced amino acid sequence of the cDNA showed high similarity to AQPs in other insects and also showed characteristic features of orthodox AQPs. Phylogenetic analysis revealed that Belgica AQP is a homolog of dehydration-inducible AQP of another chironomid, Polypedilum vanderplanki. A swelling assay using a Xenopus oocyte expression system verified that Belgica AQP is capable of transporting water, but not glycerol or urea. The AQP mRNA was detected in various organs under non-stressed conditions, suggesting that this AQP plays a fundamental role in cell physiology. In contrast to our expectation, AQP transcriptional expression was not affected by either dehydration or rehydration.
Collapse
Affiliation(s)
- Shin G Goto
- Graduate School of Science, Osaka City University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Chown SL, Sørensen JG, Terblanche JS. Water loss in insects: an environmental change perspective. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1070-84. [PMID: 21640726 DOI: 10.1016/j.jinsphys.2011.05.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 05/15/2023]
Abstract
In the context of global environmental change much of the focus has been on changing temperatures. However, patterns of rainfall and water availability have also been changing and are expected to continue doing so. In consequence, understanding the responses of insects to water availability is important, especially because it has a pronounced influence on insect activity, distribution patterns, and species richness. Here we therefore provide a critical review of key questions that either are being or need to be addressed in this field. First, an overview of insect behavioural responses to changing humidity conditions and the mechanisms underlying sensing of humidity variation is provided. The primary sensors in insects belong to the temperature receptor protein superfamily of cation channels. Temperature-activated transient receptor potential ion channels, or thermoTRPs, respond to a diverse range of stimuli and may be a primary integrator of sensory information, such as environmental temperature and moisture. Next we touch briefly on the components of water loss, drawing attention to a new, universal model of the water costs of gas exchange and its implications for responses to a warming, and in places drying, world. We also provide an overview of new understanding of the role of the sub-elytral chamber for water conservation, and developments in understanding of the role of cuticular hydrocarbons in preventing water loss. Because of an increasing focus on the molecular basis of responses to dehydration stress we touch briefly on this area, drawing attention to the role of sugars, heat shock proteins, aquaporins, and LEA proteins. Next we consider phenotypic plasticity or acclimation responses in insect water balance after initial exposures to altered humidity, temperature or nutrition. Although beneficial acclimation has been demonstrated in several instances, this is not always the case. Laboratory studies show that responses to selection for enhanced ability to survive water stress do evolve and that genetic variation for traits underlying such responses does exist in many species. However, in others, especially tropical, typically narrowly distributed species, this appears not to be the case. Using the above information we then demonstrate that habitat alteration, climate change, biological invasions, pollution and overexploitation are likely to be having considerable effects on insect populations mediated through physiological responses (or the lack thereof) to water stress, and that these effects may often be non-intuitive.
Collapse
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
50
|
Yi SX, Benoit JB, Elnitsky MA, Kaufmann N, Brodsky JL, Zeidel ML, Denlinger DL, Lee RE. Function and immuno-localization of aquaporins in the Antarctic midge Belgica antarctica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1096-1105. [PMID: 21315725 PMCID: PMC8875278 DOI: 10.1016/j.jinsphys.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.
Collapse
Affiliation(s)
| | - Joshua B. Benoit
- Ohio State University, Columbus, OH 43210, USA
- Yale University, New Haven, CT 06510, USA
| | - Michael A. Elnitsky
- Miami University, Oxford, OH 45056, USA
- Mercyhurst College, Erie, PA 16546, USA
| | | | | | - Mark L. Zeidel
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|