1
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Okujima Y, Watanabe T, Ito T, Inoue Y, Kasai Y, Imai Y, Nakamura Y, Koizumi M, Yoshida O, Tokumoto Y, Hirooka M, Abe M, Kawakami R, Saitou T, Imamura T, Murakami Y, Hiasa Y. PKR associates with 4.1R to promote anchorage-independent growth of hepatocellular carcinoma and lead to poor prognosis. Sci Rep 2024; 14:27768. [PMID: 39532917 PMCID: PMC11557841 DOI: 10.1038/s41598-024-75142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
RNA-dependent protein kinase (PKR) may have a positive regulatory role in controlling tumor growth and progression in hepatocellular carcinoma (HCC). However, the downstream substrates and the molecular mechanism of PKR in the growth and progression of HCC have not been clarified. In this study, mass spectrometry analysis was performed with immunoprecipitated samples, and 4.1R was identified as a protein that binds to PKR. In transfected COS7 cells, an immunoprecipitation experiment showed that 4.1R binds to wild-type PKR, but not to a kinase-deficient mutant PKR, suggesting that PKR binds to 4.1R in a kinase activity-dependent manner. In HCC cell lines, HuH7 and HepG2, the expression level of 4.1R protein was shown to be regulated by protein expression and activation of PKR. Interestingly, high expression of 4.1R, as well as PKR, is associated with a worse prognosis in HCC. PKR increased HCC cell growth in both anchorage-dependent and anchorage-independent manners, whereas 4.1R was involved in HCC cell growth only in an anchorage-independent manner, not in an anchorage-dependent manner. The rescue experiment indicated that increased anchorage-independent growth of HCC cells by PKR might be caused by 4.1R. In conclusion, PKR associates with 4.1R and promotes anchorage-independent growth of HCC. The PKR-4.1R axis might be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Yusuke Okujima
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yutaka Kasai
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Saitou
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- Translational Research Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
3
|
Liu J, Ding C, Liu X, Kang Q. Cytoskeletal Protein 4.1R in Health and Diseases. Biomolecules 2024; 14:214. [PMID: 38397451 PMCID: PMC10887211 DOI: 10.3390/biom14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The protein 4.1R is an essential component of the erythrocyte membrane skeleton, serving as a key structural element and contributing to the regulation of the membrane's physical properties, including mechanical stability and deformability, through its interaction with spectrin-actin. Recent research has uncovered additional roles of 4.1R beyond its function as a linker between the plasma membrane and the membrane skeleton. It has been found to play a crucial role in various biological processes, such as cell fate determination, cell cycle regulation, cell proliferation, and cell motility. Additionally, 4.1R has been implicated in cancer, with numerous studies demonstrating its potential as a diagnostic and prognostic biomarker for tumors. In this review, we provide an updated overview of the gene and protein structure of 4.1R, as well as its cellular functions in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Jiaojiao Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Cong Ding
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Xin Liu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Ma Y, Potenza DM, Ajalbert G, Brenna A, Zhu C, Ming XF, Yang Z. Paracrine Effects of Renal Proximal Tubular Epithelial Cells on Podocyte Injury under Hypoxic Conditions Are Mediated by Arginase-II and TGF-β1. Int J Mol Sci 2023; 24:ijms24043587. [PMID: 36835007 PMCID: PMC9966309 DOI: 10.3390/ijms24043587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-β1 type-I receptor blocker SB431542. Indeed, TGF-β1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-β1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-β1 cascade, which may contribute to hypoxia-induced podocyte damage.
Collapse
|
5
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
6
|
Salomón R, Reyes-López FE, Tort L, Firmino JP, Sarasquete C, Ortiz-Delgado JB, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. Medicinal Plant Leaf Extract From Sage and Lemon Verbena Promotes Intestinal Immunity and Barrier Function in Gilthead Seabream ( Sparus aurata). Front Immunol 2021; 12:670279. [PMID: 34054843 PMCID: PMC8160519 DOI: 10.3389/fimmu.2021.670279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | | | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
7
|
Ding C, Guo Y, Liang T, Liu J, Yang L, Wang T, Liu X, Kang Q. Protein 4.1R negatively regulates P815 cells proliferation by inhibiting C-Kit-mediated signal transduction. Exp Cell Res 2021; 398:112403. [PMID: 33271128 DOI: 10.1016/j.yexcr.2020.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
The proliferation of mast cells (MCs) plays a crucial role in either physiological or pathological progression of human physical. C-Kit-mediated signaling pathway has been confirmed to play a key role in MCs proliferation, and the regulatory mechanisms of C-Kit-mediated MCs proliferation need to be further explored. Our previous study found that protein 4.1R could negatively regulate T cell receptor (TCR) mediated signal pathways in CD4+ T cells. Little is known about the function of 4.1R in C-Kit-mediated proliferation of MCs. In this study, P815-4.1R-/- cells were constructed by using CRISPR/Cas9 technique. Lack of 4.1R significantly enhanced P815 cells proliferation by accelerating the progression of cell cycle. 4.1R could also significantly alleviate the clinical symptoms of systemic mastocytosis (SM) and improve the overall survival of SM mice. Further study showed that 4.1R could interact directly with C-Kit to inhibit the activation of C-Kit-mediated Ras-Raf-MAPKs and PI3K-AKT signal pathways. Taken together, our findings demonstrate that protein 4.1R, a novel negative regulator, negatively regulates MCs proliferation by inhibiting C-Kit-mediated signal transduction, which maybe provide a potential target to the prevention and treatment of abnormal MCs proliferation-related diseases.
Collapse
Affiliation(s)
- Cong Ding
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yuying Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Taotao Liang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaojiao Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|
8
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
9
|
Maurizi E, Schiroli D, Zini R, Limongelli A, Mistò R, Macaluso C, Pellegrini G. A fine-tuned β-catenin regulation during proliferation of corneal endothelial cells revealed using proteomics analysis. Sci Rep 2020; 10:13841. [PMID: 32796906 PMCID: PMC7427785 DOI: 10.1038/s41598-020-70800-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal endothelial (CE) dysfunction is the main indication for corneal transplantation, an invasive procedure with several limitations. Developing novel strategies to re-activate CE regenerative capacity is, therefore, of fundamental importance. This goal has proved to be challenging as corneal endothelial cells (CEnC) are blocked in the G0/G1 phase of the cell cycle in vivo and, albeit retaining proliferative capacity in vitro, this is further hindered by endothelial-to-mesenchymal transition. Herein we investigated the mechanisms regulating CEnC proliferation in vitro. Comparing the proteome of non-proliferating (in vivo-G0/G1) and proliferating (in vitro-G2/M) rabbit CEnC (rCEnC), 77 proteins, out of 3,328 identified, were differentially expressed in the two groups (p < 0.005). Literature and Gene Ontology analysis revealed β-catenin and transforming growth factor (TGF-β) pathways to be correlated with the identified proteins. Treatment of rCEnC with a β-catenin activator and inhibitor showed that β-catenin activation was necessary during rCEnC proliferation, but not sufficient for its induction. Furthermore, both pro-proliferative activity of basic fibroblast growth factor and anti-proliferative effects of TGF-β were regulated through β-catenin. Overall, these results provide novel insights into the molecular basis underlying the proliferation process that CEnC re-activate in vitro, consolidating the role of β-catenin and TGF-β.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy.
| | - Davide Schiroli
- Transfusion Medicine Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Claudio Macaluso
- Department of Medicine and Surgery, Dentistry Center, University of Parma, Parma, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
10
|
Draberova L, Draberova H, Potuckova L, Halova I, Bambouskova M, Mohandas N, Draber P. Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells. Front Immunol 2020; 10:3068. [PMID: 31993060 PMCID: PMC6970983 DOI: 10.3389/fimmu.2019.03068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Potuckova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Monika Bambouskova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, United States
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
11
|
Huang SC, Liang JY, Vu LV, Yu FH, Ou AC, Ou JP, Zhang HS, Burnett KM, Benz EJ. Epithelial-specific isoforms of protein 4.1R promote adherens junction assembly in maturing epithelia. J Biol Chem 2020; 295:191-211. [PMID: 31776189 PMCID: PMC6952607 DOI: 10.1074/jbc.ra119.009650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of β-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| | - Jia Y Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alexander C Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Jennie Park Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Kimberly M Burnett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
12
|
Feng G, Guo K, Yan Q, Ye Y, Shen M, Ruan S, Qiu S. Expression of Protein 4.1 Family in Breast Cancer: Database Mining for 4.1 Family Members in Malignancies. Med Sci Monit 2019; 25:3374-3389. [PMID: 31063460 PMCID: PMC6524556 DOI: 10.12659/msm.914085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The protein 4.1 family is a family of cytoskeletal proteins that play an important role in maintaining normal cell morphology and cell adhesion, migration, division, and intercellular signaling. The main aim of this study was to explore the prognostic significance of the protein 4.1 family in breast cancer (BC) patients and to provide new biomarkers and therapeutic targets for the diagnosis and treatment of BC. MATERIAL AND METHODS The expression of 4.1 family members in various tumor types was compared to normal controls using the ONCOMINE and GOBO databases. The prognostic significance of the 4.1 family in BC patients was determined by Kaplan-Meier Plotter. RESULTS EPB41L2 (4.1G) was expressed at higher levels in normal tissues compared with BC patients for all 4.1 family members. In survival analysis, 4.1G and EPB41 (4.1R) mRNA high expressions were associated with better survival in BC patients. Moreover, 4.1G high expression was significantly associated with longer overall survival (OS) in luminal A and protracted relapse-free survival (RFS) in luminal B subtype BC patients who received Tamoxifen treatment. In addition, high expression of each 4.1 family member also showed better prognostic value in different molecular subtypes of BC. CONCLUSIONS These results indicate that the protein 4.1 family can be regarded as novel biomarkers and potential therapeutic targets for BC. Further research is needed to explore the detailed biological functions.
Collapse
Affiliation(s)
- Guan Feng
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Kaibo Guo
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Qingying Yan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Ye Ye
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shengliang Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
13
|
Protein 4.1N is required for the formation of the lateral membrane domain in human bronchial epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1143-1151. [PMID: 29428502 DOI: 10.1016/j.bbamem.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
The membrane skeleton forms a scaffold on the cytoplasmic side of the plasma membrane. The erythrocyte membrane represents an archetype of such structural organization. It has been documented that a similar membrane skeleton also exits in the Golgi complex. It has been previously shown that βII spectrin and ankyrin G are localized at the lateral membrane of human bronchial epithelial cells. Here we show that protein 4.1N is also located at the lateral membrane where it associates E-cadherin, β-catenin and βII spectrin. Importantly, depletion of 4.1N by RNAi in human bronchial epithelial cells resulted in decreased height of lateral membrane, which was reversed following re-expression of mouse 4.1N. Furthermore, although the initial phase of lateral membrane biogenesis proceeded normally in 4.1N-depleted cells, the final height of the lateral membrane of 4.1N-depleted cells was shorter compared to that of control cells. Our findings together with previous findings imply that 4.1N, βII spectrin and ankyrin G are structural components of the lateral membrane skeleton and that this skeleton plays an essential role in the assembly of a fully functional lateral membrane.
Collapse
|
14
|
王 成, 康 巧, 丁 聪, 李 雅, 梁 桃, 张 成, 王 文, 王 婷. [Construction of a stable 4.1R gene knockout cell model in RAW264.7 cells using CRISPR/Cas9 technique]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1609-1614. [PMID: 29292253 PMCID: PMC6744011 DOI: 10.3969/j.issn.1673-4254.2017.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To construct a cell model of 4.1R gene knockout in murine macrophage cell line RAW264.7 using CRISPR/Cas9 technique. METHODS Three high?grade small?guide RNAs (sgRNAs) that could specifically identify 4.1R gene were synthesized and inserted into lentiCRISPRv2 plasmid. RAW264.7 cells were infected with sgRNA?Cas9 lentivirus from 293T cells transfected with the recombinant sgRNA?lentiCRISPRv2 plasmid, and the positive cells were screened using puromycin and the monoclonal cells were obtained. The expression of 4.1R protein in the monoclonal cells was measured by Western blotting, and the mutation site was confirmed by sequence analysis. Result A 4.1R gene knockout RAW264.7 cell line was obtained, which showed a 19?bp deletion mutation in the 4.1R gene sequence and obviously enhanced proliferation. CONCLUSION We successfully constructed a 4.1R gene knockout macrophage cell line using CRISPR/Cas9 technique, which may facilitate further investigation of the function of 4.1R in macrophages.
Collapse
Affiliation(s)
- 成博 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 巧珍 康
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 聪 丁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 雅雯 李
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 桃桃 梁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 成龙 张
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 文 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 婷 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| |
Collapse
|
15
|
王 成, 康 巧, 丁 聪, 李 雅, 梁 桃, 张 成, 王 文, 王 婷. [Construction of a stable 4.1R gene knockout cell model in RAW264.7 cells using CRISPR/Cas9 technique]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1609-1614. [PMID: 29292253 PMCID: PMC6744011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Indexed: 01/05/2024]
Abstract
OBJECTIVE To construct a cell model of 4.1R gene knockout in murine macrophage cell line RAW264.7 using CRISPR/Cas9 technique. METHODS Three high?grade small?guide RNAs (sgRNAs) that could specifically identify 4.1R gene were synthesized and inserted into lentiCRISPRv2 plasmid. RAW264.7 cells were infected with sgRNA?Cas9 lentivirus from 293T cells transfected with the recombinant sgRNA?lentiCRISPRv2 plasmid, and the positive cells were screened using puromycin and the monoclonal cells were obtained. The expression of 4.1R protein in the monoclonal cells was measured by Western blotting, and the mutation site was confirmed by sequence analysis. Result A 4.1R gene knockout RAW264.7 cell line was obtained, which showed a 19?bp deletion mutation in the 4.1R gene sequence and obviously enhanced proliferation. CONCLUSION We successfully constructed a 4.1R gene knockout macrophage cell line using CRISPR/Cas9 technique, which may facilitate further investigation of the function of 4.1R in macrophages.
Collapse
Affiliation(s)
- 成博 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 巧珍 康
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 聪 丁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 雅雯 李
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 桃桃 梁
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 成龙 张
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 文 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| | - 婷 王
- />郑州大学生命科学学院,河南 郑州 450000School of Life Sciences, Zhengzhou University, Zhengzhou 45000, China
| |
Collapse
|
16
|
Rangel L, Lospitao E, Ruiz-Sáenz A, Alonso MA, Correas I. Alternative polyadenylation in a family of paralogous EPB41 genes generates protein 4.1 diversity. RNA Biol 2016; 14:236-244. [PMID: 27981895 DOI: 10.1080/15476286.2016.1270003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative polyadenylation (APA) is a step in mRNA 3'-end processing that contributes to the complexity of the transcriptome by generating isoforms that differ in either their coding sequence or their 3'-untranslated regions (UTRs). The EPB41 genes, EPB41, EPB41L2, EPB41L3 and EPB41L1, encode an impressively complex array of structural adaptor proteins (designated 4.1R, 4.1G, 4.1B and 4.1N, respectively) by using alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing. The great variety of 4.1 proteins mainly results from 5'-end and internal processing of the EPB41 pre-mRNAs. Thus, 4.1 proteins can vary in their N-terminal extensions but all contain a highly homologous C-terminal domain (CTD). Here we study a new group of EPB41-related mRNAs that originate by APA and lack the exons encoding the CTD characteristic of prototypical 4.1 proteins, thereby encoding a new type of 4.1 protein. For the EPB41 gene, this type of processing was observed in all 11 human tissues analyzed. Comparative genomic analysis of EPB41 indicates that APA is conserved in various mammals. In addition, we show that APA also functions for the EPB41L2, EPB41L3 and EPB41L1 genes, but in a more restricted manner in the case of the latter 2 than it does for the EPB41 and EPB41L2 genes. Our study shows alternative polyadenylation to be an additional mechanism for the generation of 4.1 protein diversity in the already complex EPB41-related genes. Understanding the diversity of EPB41 RNA processing is essential for a full appreciation of the many 4.1 proteins expressed in normal and pathological tissues.
Collapse
Affiliation(s)
- Laura Rangel
- a Departamento de Biología Molecular , Universidad Autónoma de Madrid (UAM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera , Cantoblanco, Madrid , Spain
| | - Eva Lospitao
- a Departamento de Biología Molecular , Universidad Autónoma de Madrid (UAM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera , Cantoblanco, Madrid , Spain
| | - Ana Ruiz-Sáenz
- a Departamento de Biología Molecular , Universidad Autónoma de Madrid (UAM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera , Cantoblanco, Madrid , Spain
| | - Miguel A Alonso
- a Departamento de Biología Molecular , Universidad Autónoma de Madrid (UAM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera , Cantoblanco, Madrid , Spain
| | - Isabel Correas
- a Departamento de Biología Molecular , Universidad Autónoma de Madrid (UAM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Nicolás Cabrera , Cantoblanco, Madrid , Spain
| |
Collapse
|
17
|
Huang SC, Zhou A, Nguyen DT, Zhang HS, Benz EJ. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem 2016; 291:25591-25607. [PMID: 27780863 DOI: 10.1074/jbc.m116.761296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/28/2023] Open
Abstract
Protein 4.1R (4.1R) isoforms are expressed in both cardiac and skeletal muscle. 4.1R is a component of the contractile apparatus. It is also associated with dystrophin at the sarcolemma in skeletal myofibers. However, the expression and function of 4.1R during myogenesis have not been characterized. We now report that 4.1R expression increases during C2C12 myoblast differentiation into myotubes. Depletion of 4.1R impairs skeletal muscle differentiation and is accompanied by a decrease in the levels of myosin heavy and light chains and caveolin-3. Furthermore, the expression of myogenin at the protein, but not mRNA, level is drastically decreased in 4.1R knockdown myocytes. Similar results were obtained using MyoD-induced differentiation of 4.1R-/- mouse embryonic fibroblast cells. von Hippel-Lindau (VHL) protein is known to destabilize myogenin via the ubiquitin-proteasome pathway. We show that 4.1R associates with VHL and, when overexpressed, reverses myogenin ubiquitination and stability. This suggests that 4.1R may influence myogenesis by preventing VHL-mediated myogenin degradation. Together, our results define a novel biological function for 4.1R in muscle differentiation and provide a molecular mechanism by which 4.1R promotes myogenic differentiation.
Collapse
Affiliation(s)
- Shu-Ching Huang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, .,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Anyu Zhou
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Dan T Nguyen
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Payan-Carreira R, Pires M, Santos C, Holst BS, Colaço J, Rodriguez-Martinez H. Immunolocalization of E-cadherin and β-catenin in the cyclic and early pregnant canine endometrium. Theriogenology 2016; 86:1092-1101. [DOI: 10.1016/j.theriogenology.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
|
19
|
Yu H, Ge Z, Si Y, Chen G, Zhang Y, Jiang WG. The splice variant Ehm2/1 in breast cancer MCF-7 cells interacted with β-catenin and increased its localization to plasma membrane. RSC Adv 2016. [DOI: 10.1039/c6ra07975j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ehm2, which belongs to the FERM superfamily, is a metastasis-associated protein.
Collapse
Affiliation(s)
- Hefen Yu
- Department of Biochemistry and Molecular Biology
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Zhicheng Ge
- Cancer Institute of Capital Medical University
- Beijing 100069
- P. R. China
- Beijing Key Laboratory for Cancer Invasion and Metastasis Research
- Beijing 100069
| | - Yang Si
- Department of Biochemistry and Molecular Biology
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Gang Chen
- Department of Biochemistry and Molecular Biology
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Wen G. Jiang
- Department of Biochemistry and Molecular Biology
- School of Basic Medicine
- Capital Medical University
- Beijing 100069
- P. R. China
| |
Collapse
|
20
|
Chen L, Wang T, Wang Y, Zhang J, Qi Y, Weng H, Kang Q, Guo X, Baines AJ, Mohandas N, An X. Protein 4.1G Regulates Cell Adhesion, Spreading, and Migration of Mouse Embryonic Fibroblasts through the β1 Integrin Pathway. J Biol Chem 2015; 291:2170-80. [PMID: 26644476 DOI: 10.1074/jbc.m115.658591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
Protein 4.1G is a membrane skeletal protein that can serve as an adapter between transmembrane proteins and the underlying membrane skeleton. The function of 4.1G remains largely unexplored. Here, using 4.1G knockout mouse embryonic fibroblasts (MEFs) as a model system, we explored the function of 4.1G in motile cells. We show that the adhesion, spreading, and migration of 4.1G(-/-) MEF cells are impaired significantly. We further show that, although the total cellular expression of β1 integrin is unchanged, the surface expression of β1 integrin and its active form are decreased significantly in 4.1G(-/-) MEF cells. Moreover, the phosphorylation of focal adhesion kinase, a downstream component of the integrin-mediated signal transduction pathway, is suppressed in 4.1G(-/-) MEF cells. Co-immunoprecipitation experiments and in vitro binding assays showed that 4.1G binds directly to β1 integrin via its membrane-binding domain. These findings identified a novel role of 4.1G in cell adhesion, spreading, and migration in MEF cells by modulating the surface expression of β1 integrin and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- Lixiang Chen
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, the Red Cell Physiology Laboratory and
| | - Ting Wang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Yaomei Wang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Jingxin Zhang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Yuanming Qi
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | - Haibo Weng
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, Membrane Biology Laboratory, New York Blood Center, New York, New York 10065, and
| | - Qiaozhen Kang
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | | | - Anthony J Baines
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | - Xiuli An
- From the College of Life Science, Zhengzhou University, Science Road 100, Zhengzhou 450001, China, Membrane Biology Laboratory, New York Blood Center, New York, New York 10065, and
| |
Collapse
|
21
|
Richter E, Harms M, Ventz K, Gierok P, Chilukoti RK, Hildebrandt JP, Mostertz J, Hochgräfe F. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS One 2015; 10:e0122089. [PMID: 25816343 PMCID: PMC4376684 DOI: 10.1371/journal.pone.0122089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Responsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Katharina Ventz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Philipp Gierok
- Department of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute, University of Greifswald, 17487, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
- * E-mail:
| |
Collapse
|
22
|
Liu X, Zhou Q, Ji Z, Fu G, Li Y, Zhang X, Shi X, Wang T, Kang Q. Protein 4.1R attenuates autoreactivity in experimental autoimmune encephalomyelitis by suppressing CD4(+) T cell activation. Cell Immunol 2014; 292:19-24. [PMID: 25243644 DOI: 10.1016/j.cellimm.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
Immune synapse components contribute to multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) pathogenesis as they play important role in autoreactive T cell activation. Protein 4.1R, a red cell membrane cytoskeletal protein, recently was identified as an important component of immunological synapse (IS) and acted as the negative regulator of CD4(+) T cell activation. However, the pathological role of 4.1R in the MS/EAE pathogenesis is still not elucidated. In this study, we investigated the potential role of protein 4.1R in pathologic processes of EAE by using 4.1R knockout mouse model. Our results suggest that 4.1R can prevent pathogenic autoimmunity in MS/EAE progression by suppressing the CD4(+) T cell activation.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qingqing Zhou
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 University Road, Zhengzhou 450052, PR China.
| | - Guo Fu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Yi Li
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Xiaobei Zhang
- Nanyang Pukang Pharmaceutical Corporation, Ltd., 143 Industrial Road, Nanyang 473053, PR China.
| | - Xiaofang Shi
- Nanyang Pukang Pharmaceutical Corporation, Ltd., 143 Industrial Road, Nanyang 473053, PR China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
23
|
Zhang J, Yang S, An C, Wang J, Yan H, Huang Y, Song J, Yin C, Baines AJ, Mohandas N, An X. Comprehensive characterization of protein 4.1 expression in epithelium of large intestine. Histochem Cell Biol 2014; 142:529-39. [PMID: 24912669 DOI: 10.1007/s00418-014-1224-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 11/24/2022]
Abstract
The protein 4.1 family consists of four members, 4.1R, 4.1N, 4.1B and 4.1G, each encoded by a distinct gene. All 4.1 mRNAs undergo extensive alternative splicing. Functionally, they usually serve as adapters that link actin-based cytoskeleton to plasma membrane proteins. It has been reported that 4.1 proteins are expressed in most animal cell types and tissues including epithelial cells and epithelial tissues. However, the expression of 4.1 proteins in large intestine has not been well characterized. In the present study, we performed RT-PCR, western blot and immunohistochemistry analysis to characterize the transcripts, the protein expression and cellular localization of 4.1 proteins in the epithelia of mouse large intestine. We show that multiple transcripts derive from each gene, including eight 4.1R isoforms, four 4.1N isoforms, four 4.1B isoforms and six 4.1G isoforms. However, at the protein level, only one or two major bands were detected, implying that not all transcripts are translated and/or the proteins do not accumulate at detectable levels. Immunohistochemistry revealed that 4.1R, 4.1N and 4.1B are all expressed at the lateral membrane as well as cytoplasm of epithelial cells, suggesting a potentially redundant role of these proteins. Our findings not only provide new insights into the structure of protein 4.1 genes but also lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bosanquet DC, Ye L, Harding KG, Jiang WG. FERM family proteins and their importance in cellular movements and wound healing (review). Int J Mol Med 2014; 34:3-12. [PMID: 24820650 DOI: 10.3892/ijmm.2014.1775] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.
Collapse
Affiliation(s)
- David C Bosanquet
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Lin Ye
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Keith G Harding
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| | - Wen G Jiang
- Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK
| |
Collapse
|
25
|
Bañón-Rodríguez I, Gálvez-Santisteban M, Vergarajauregui S, Bosch M, Borreguero-Pascual A, Martín-Belmonte F. EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis. EMBO J 2014; 33:129-45. [PMID: 24421325 DOI: 10.1002/embj.201385946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Establishing the correct orientation of the mitotic spindle is an essential step in epithelial cell division in order to ensure that epithelial tubules form correctly during organ development and regeneration. While recent findings have identified some of the molecular mechanisms that underlie spindle orientation, many aspects of this process remain poorly understood. Here, we have used the 3D-MDCK model system to demonstrate a key role for a newly identified protein complex formed by IQGAP1 and the epithelial growth factor receptor (EGFR) in controlling the orientation of the mitotic spindle. IQGAP1 is a scaffolding protein that regulates many cellular pathways, from cell-cell adhesion to microtubule organization, and its localization in the basolateral membrane ensures correct spindle orientation. Through its IQ motifs, IQGAP1 binds to EGFR, which is responsible for maintaining IQGAP1 in the basolateral membrane domain. Silencing IQGAP1, or disrupting the basolateral localization of either IQGAP1 or EGFR, results in a non-polarized distribution of NuMA, mitotic spindle misorientation and defects in single lumen formation.
Collapse
Affiliation(s)
- Inmaculada Bañón-Rodríguez
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:605-19. [PMID: 23747363 DOI: 10.1016/j.bbamem.2013.05.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023]
Abstract
Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
| | - Hui-Chun Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Pauline M Bennett
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| |
Collapse
|
27
|
Wang J, Song J, An C, Dong W, Zhang J, Yin C, Hale J, Baines AJ, Mohandas N, An X. A 130-kDa protein 4.1B regulates cell adhesion, spreading, and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. J Biol Chem 2013; 289:5925-37. [PMID: 24381168 DOI: 10.1074/jbc.m113.516617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Biophysics, Peking University Health Science Center, Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xi C, Ren C, Hu A, Lin J, Yao Q, Wang Y, Gao Z, An X, Liu C. Defective expression of Protein 4.1N is correlated to tumor progression, aggressive behaviors and chemotherapy resistance in epithelial ovarian cancer. Gynecol Oncol 2013; 131:764-71. [PMID: 23994105 DOI: 10.1016/j.ygyno.2013.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/16/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Protein 4.1N (4.1N) is a member of the Protein 4.1 family that is involved in cellular processes such as cell adhesion, migration and signaling. In this study, we evaluated the expression of 4.1N protein and its potential roles in epithelial ovarian cancer (EOC) tumorigenesis and progression. METHODS 4.1N protein expression was investigated in a total of 280 samples including 74 normal tissues, 35 benign, 30 borderline and 141 malignant epithelial ovarian tumors by immunohistochemistry. Correlation between 4.1N expression levels and clinicopathologic features was statistically analyzed. The expression of 4.1N in EOC cell lines was examined by western blotting. RESULTS Immunohistochemistry analysis revealed that, although there was no loss of 4.1N expression in normal tissues and benign tumors, absence of Protein 4.1N was significantly more common in EOCs (44.0%) than in borderline tumors (3.3%) (p<0.001). Furthermore, loss or decreased expression of 4.1N protein expression was correlated with malignant potential of the tumors (14.3% in benign tumors, 56.7% in borderline tumors and 92.9% in malignancy) (p<0.001). In EOC samples, loss of 4.1N protein was significantly associated with advanced-stage (p=0.004), ascites (p=0.009), omental metastasis (p=0.018), suboptimal debulking (p=0.024), poorly histological differentiation (p=0.009), high-grade serous carcinoma (p=0.001), short progression-free-survival (p=0.018) and poor chemosensitivity to first-line chemotherapy (p=0.029). Moreover, western blotting analysis revealed that expression of 4.1N protein was lost in 4/8 (50%) EOC cell lines. CONCLUSIONS 4.1N protein expression level was significantly decreased during malignant transformation of epithelial ovarian tumors and that loss of 4.1N expression was closely correlated to poorly differentiated and biologically aggressive EOCs.
Collapse
Affiliation(s)
- Chenguang Xi
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ruiz-Saenz A, van Haren J, Sayas CL, Rangel L, Demmers J, Millán J, Alonso MA, Galjart N, Correas I. Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex. J Cell Sci 2013; 126:4589-601. [PMID: 23943871 DOI: 10.1242/jcs.120840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule (MT) cytoskeleton is essential for many cellular processes, including cell polarity and migration. Cortical platforms, formed by a subset of MT plus-end-tracking proteins, such as CLASP2, and non-MT binding proteins such as LL5β, attach distal ends of MTs to the cell cortex. However, the mechanisms involved in organizing these platforms have not yet been described in detail. Here we show that 4.1R, a FERM-domain-containing protein, interacts and colocalizes with cortical CLASP2 and is required for the correct number and dynamics of CLASP2 cortical platforms. Protein 4.1R also controls binding of CLASP2 to MTs at the cell edge by locally altering GSK3 activity. Furthermore, in 4.1R-knockdown cells MT plus-ends were maintained for longer in the vicinity of cell edges, but instead of being tethered to the cell cortex, MTs continued to grow, bending at cell margins and losing their radial distribution. Our results suggest a previously unidentified role for the scaffolding protein 4.1R in locally controlling CLASP2 behavior, CLASP2 cortical platform turnover and GSK3 activity, enabling correct MT organization and dynamics essential for cell polarity.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC and UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 2013; 15:1042-57. [PMID: 23279089 PMCID: PMC5584544 DOI: 10.1111/cmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.
Collapse
Affiliation(s)
- Vonetta L. Edwards
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Valerie Dawson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, Guo X, Wu L, Mohandas N, An X. Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem 2013; 288:11407-15. [PMID: 23460639 DOI: 10.1074/jbc.m112.436659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein 4.1R was first identified in the erythrocyte membrane skeleton. It is now known that the protein is expressed in a variety of epithelial cell lines and in the epithelia of many tissues, including the small intestine. However, the physiological function of 4.1R in the epithelial cells of the small intestine has not so far been explored. Here, we show that 4.1R knock-out mice exhibited a significantly impaired small intestinal calcium absorption that resulted in secondary hyperparathyroidism as evidenced by increased serum 1,25-(OH)2-vitamin D3 and parathyroid hormone levels, decreased serum calcium levels, hyperplasia of the parathyroid, and demineralization of the bones. 4.1R is located on the basolateral membrane of enterocytes, where it co-localizes with PMCA1b (plasma membrane calcium ATPase 1b). Expression of PMCA1b in enterocytes was decreased in 4.1(-/-) mice. 4.1R directly associated with PMCA1b, and the association involved the membrane-binding domain of 4.1R and the second intracellular loop and C terminus of PMCA1b. Our findings have enabled us to define a functional role for 4.1R in small intestinal calcium absorption through regulation of membrane expression of PMCA1b.
Collapse
Affiliation(s)
- Congrong Liu
- Red Cell Physiology Laboratory, New York Blood Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mechanisms underlying cancer progression caused by ezrin overexpression in tongue squamous cell carcinoma. PLoS One 2013; 8:e54881. [PMID: 23357878 PMCID: PMC3554659 DOI: 10.1371/journal.pone.0054881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ezrin is a member of the ezrin, radixin, and moesin family that provides a functional link between the plasma membrane and the cortical actin cytoskeleton. A correlation between ezrin overexpression and aggressive cancer behavior has been recently reported in various tumor types. However, its roles in the mechanisms underlying progression of tongue squamous cell carcinoma (SCC) are unclear. METHOD We used human tongue SCC and noncancerous tissue microarrays to immunohistochemically analyze the ezrin expression level and its relationship with proliferative activity. The human tongue SCC cell line HSC-3 was used to determine the effects of ezrin RNA interference (RNAi) on cancer cells during MTT; wound healing and invasion assays; immunofluorescence of the actin cytoskeleton; and western blotting of E-cadherin, N-cadherin, β-catenin, and the active and total RhoA/Rac1/cdc42. RESULTS Ezrin was overexpressed in 46.4% of the tumors examined in human tongue SCC tissue microarrays. Ezrin expression was correlated with the Ki-67 index. Ezrin depletion by RNAi in the HSC-3 cells significantly reduced cell proliferation, migration, and invasiveness and disturbed actin reorganization during podia formation. Its effects on RhoA/Rac1/cdc42 expression were not significant, whereas it enhanced E-cadherin and β-catenin expression and decreased N-cadherin expression. CONCLUSIONS Ezrin is often overexpressed in primary tongue SCCs and may have an important role in their growth, migration, and invasiveness possibly via its relationship with the E-cadherin/β-catenin complex and the cadherin switch. Thus, ezrin could be a therapeutic target in tongue SCC.
Collapse
|
33
|
Jung Y, McCarty JH. Band 4.1 proteins regulate integrin-dependent cell spreading. Biochem Biophys Res Commun 2012; 426:578-84. [PMID: 22982319 DOI: 10.1016/j.bbrc.2012.08.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022]
Abstract
Integrins link the extracellular matrix (ECM) to the cytoskeleton to control cell behaviors including adhesion, spreading and migration. Band 4.1 proteins contain 4.1, ezrin, radixin, moesin (FERM) domains that likely mediate signaling events and cytoskeletal reorganization via integrins. However, the mechanisms by which Band 4.1 proteins and integrins are functionally interconnected remain enigmatic. Here we have investigated roles for Band 4.1 proteins in integrin-mediated cell spreading using primary astrocytes as a model system. We demonstrate that Proteins 4.1B and 4.1G show dynamic patterns of sub-cellular localization in astrocytes spreading on fibronectin. During early stages of cell spreading Proteins 4.1B and 4.1G are enriched in ECM adhesion sites but become more diffusely localized at later stages of spreading. Combinatorial inactivation of Protein 4.1B and 4.1G expression leads to impaired astrocyte spreading. Furthermore, in exogenous expression systems we show that the isolated Protein 4.1 FERM domain significantly enhances integrin-mediated cell spreading. Protein 4.1B is dispensable for reactive astrogliosis in experimental models of cortical injury, likely due to functional compensation by related Protein 4.1 family members. Collectively, these findings reveal that Band 4.1 proteins are important intracellular components for integrin-mediated cell spreading.
Collapse
Affiliation(s)
- Youngsin Jung
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston TX 77030, United States
| | | |
Collapse
|
34
|
Jiang QY, Xia JM, Ding HG, Fei XW, Lin J, Wu RJ. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod 2012; 18:435-41. [PMID: 22544491 DOI: 10.1093/molehr/gas019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ezrin is a member of the ezrin-radixin-moesin (ERM) family of membrane-cytoskeletal linkage proteins. It is important for maintenance of cell shape, adhesion, migration and division. The overexpression of ezrin in some tumours is associated with increased cell migration that is mediated by the Rho/ROCK family of small GTPases. To investigate the role of ezrin in the migration of ectopic endometrial cells in endometriosis, we conducted real-time quantitative RT-PCR analysis of the eutopic and ectopic endometrium from women with endometriosis compared with those without the disease. RNAi, wound healing assays and western blot analysis of endometriotic cells were also included in this research. We found significantly higher levels of mRNA expression of ezrin (0.42 versus 0.27, P < 0.05), RhoA (0.99 versus 0.74, P < 0.05), RhoC (0.79 versus 0.43, P < 0.005) and ROCK1 (0.68 versus 0.38, P < 0.005) in the ectopic endometrial cells compared with the eutopic endometrial cells in endometriosis. Blocking ezrin with small-interfering RNA reduced the migration of ectopic endometrial cells with decreased expression of RhoA (42.68%), RhoC (58.42%) and ROCK1 (59.88%). Our results indicate that the over-expression of ezrin in endometriosis may play a significant role in the migration of endometrial cells of endometriosis, and the RhoC/Rock pathway may provide a promising treatment target.
Collapse
Affiliation(s)
- Qiao-Ying Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, No. 1 Xueshi Road, Hangzhou, Zhejiang Province 310006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Pinder JC, Taylor-Harris PM, Bennett PM, Carter E, Hayes NVL, King MDA, Holt MR, Maggs AM, Gascard P, Baines AJ. Isoforms of protein 4.1 are differentially distributed in heart muscle cells: relation of 4.1R and 4.1G to components of the Ca2+ homeostasis system. Exp Cell Res 2012; 318:1467-79. [PMID: 22429617 DOI: 10.1016/j.yexcr.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
The 4.1 proteins are cytoskeletal adaptor proteins that are linked to the control of mechanical stability of certain membranes and to the cellular accumulation and cell surface display of diverse transmembrane proteins. One of the four mammalian 4.1 proteins, 4.1R (80 kDa/120 kDa isoforms), has recently been shown to be required for the normal operation of several ion transporters in the heart (Stagg MA et al. Circ Res, 2008; 103: 855-863). The other three (4.1G, 4.1N and 4.1B) are largely uncharacterised in the heart. Here, we use specific antibodies to characterise their expression, distribution and novel activities in the left ventricle. We detected 4.1R, 4.1G and 4.1N by immunofluorescence and immunoblotting, but not 4.1B. Only one splice variant of 4.1N and 4.1G was seen whereas there are several forms of 4.1R. 4.1N, like 4.1R, was present in intercalated discs, but unlike 4.1R, it was not localised at the lateral plasma membrane. Both 4.1R and 4.1N were in internal structures that, at the level of resolution of the light microscope, were close to the Z-disc (possibly T-tubules). 4.1G was also in intracellular structures, some of which were coincident with sarcoplasmic reticulum. 4.1G existed in an immunoprecipitable complex with spectrin and SERCA2. 80 kDa 4.1R was present in subcellular fractions enriched in intercalated discs, in a complex resistant to solubilization under non-denaturing conditions. At the intercalated disc 4.1R does not colocalise with the adherens junction protein, β-catenin, but does overlap with the other plasma membrane signalling proteins, the Na/K-ATPase and the Na/Ca exchanger NCX1. We conclude that isoforms of 4.1 proteins are differentially compartmentalised in the heart, and that they form specific complexes with proteins central to cardiomyocyte Ca(2+) metabolism.
Collapse
Affiliation(s)
- Jennifer C Pinder
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xia W, Liang F. 4.1G promotes arborization and tight junction formation of oligodendrocyte cell line OLN-93. J Cell Physiol 2012; 227:2730-9. [DOI: 10.1002/jcp.23017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt-Lanterman incisures in myelinated nerves. Mol Cell Biol 2011; 32:199-205. [PMID: 22025680 DOI: 10.1128/mcb.05945-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein 4.1G is a membrane skeletal protein found in specific subcellular structures in myelinated Schwann cells and seminiferous tubules. Here, we show that in the mouse sciatic nerve, protein 4.1G colocalized at Schmidt-Lanterman incisures (SLI) and the paranodes with a member of the membrane-associated guanylate kinase (MAGUK) family, membrane protein palmitoylated 6 (MPP6). Coimmunoprecipitation experiments revealed that MPP6 was interacting with protein 4.1G. In contrast to wild-type nerves, in 4.1G knockout mice, MPP6 was found largely in the cytoplasm near Schwann cell nuclei, indicating an abnormal protein transport. Although the SLI remained in the 4.1G knockout sciatic nerves, as confirmed by E-cadherin immunostaining, their shape was altered in aged 4.1G knockout nerves compared to their shape in wild-type nerves. In the seminiferous tubules, MPP6 was localized similarly to protein 4.1G along cell membranes of the spermatogonium and early spermatocytes. However, in contrast to myelinated peripheral nerves, the specific localization of MPP6 in the seminiferous tubules was unaltered in the absence of protein 4.1G. These results indicate that 4.1G has a specific role in the targeting of MPP6 to the SLI and the assembly of these subcellular structures.
Collapse
|
38
|
Ruiz-Sáenz A, Kremer L, Alonso MA, Millán J, Correas I. Protein 4.1R regulates cell migration and IQGAP1 recruitment to the leading edge. J Cell Sci 2011; 124:2529-38. [PMID: 21750196 DOI: 10.1242/jcs.083634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In red blood cells, multifunctional protein 4.1R stabilizes the spectrin-actin network and anchors it to the plasma membrane. To contribute to the characterization of functional roles of 4.1R in nonerythroid cells, we have analyzed the participation of protein 4.1R in cell migration. The distribution of endogenous 4.1R is polarized towards the leading edge of migrating cells. Exogenous 4.1R isoforms containing a complete membrane-binding domain consistently localized to plasma membrane extensions enriched in F-actin. Silencing of 4.1R caused the loss of persistence of migration in subconfluent cells and of directional migration in cells moving into a wound. Coimmunoprecipitation and pull-down assays identified the scaffold protein IQGAP1 as a partner for protein 4.1R and showed that the 4.1R membrane-binding domain is involved in binding IQGAP1. Importantly, we show that protein 4.1R is necessary for the localization of IQGAP1 to the leading edge of cells migrating into a wound, whereas IQGAP1 is not required for protein 4.1R localization. Collectively, our results indicate a crucial role for protein 4.1R in cell migration and in the recruitment of the scaffold protein IQGAP1 to the cell front.
Collapse
Affiliation(s)
- Ana Ruiz-Sáenz
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049-Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Naydenov NG, Ivanov AI. Spectrin-adducin membrane skeleton: A missing link between epithelial junctions and the actin cytoskeletion? BIOARCHITECTURE 2011; 1:186-191. [PMID: 22069512 DOI: 10.4161/bioa.1.4.17642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) represent key adhesive structures that regulate the apico-basal polarity and barrier properties of epithelial layers. AJs and TJs readily undergo disassembly and reassembly during normal tissue remodeling and disruption of epithelial barriers in diseases. Such junctional plasticity depends on the orchestrated dynamics of the plasma membrane with its underlying F-actin cytoskeleton, however the interplay between these cellular structures remains poorly understood. Recent studies highlighted the spectrin-adducin-based membrane skeleton as an emerging regulator of AJ and TJ integrity and remodeling. Here we discuss new evidences implicating adducin, spectrin and other membrane skeleton proteins in stabilization of epithelial junctions and regulation of junctional dynamics. Based on the known ability of the membrane skeleton to link cortical actin filaments to the plasma membrane, we hypothesize that the spectrin-adducin network serves as a critical signal and force transducer from the actomyosin cytoskeleton to junctions during remodeling of AJs and TJs.
Collapse
|
40
|
Chen L, Hughes RA, Baines AJ, Conboy J, Mohandas N, An X. Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of beta1 integrin. J Cell Sci 2011; 124:2478-87. [PMID: 21693581 DOI: 10.1242/jcs.078170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein 4.1R is a membrane-cytoskeleton adaptor protein that has diverse roles in controlling the cell surface expression and/or function of transmembrane proteins, and in organizing F-actin. 4.1R is expressed in keratinocytes, but its role in these cells has not been explored. Here, we have investigated the role of 4.1R in skin using 4.1R(-/-) mice. Cell adhesion, spreading, migration and motility were significantly impaired in 4.1R(-/-) keratinocytes, and 4.1R(-/-) mice exhibited defective epidermal wound healing. Cultured 4.1R(-/-) keratinocytes on fibronectin failed to form actin stress fibres and focal adhesions. Furthermore, in the absence of 4.1R, the surface expression, and consequently the activity of β1 integrin were reduced. These data enabled the identification of a functional role for protein 4.1R in keratinocytes by modulating the surface expression of β1 integrin, possibly through a direct association between 4.1R and β1 integrin.
Collapse
Affiliation(s)
- Lixiang Chen
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lack of protein 4.1G causes altered expression and localization of the cell adhesion molecule nectin-like 4 in testis and can cause male infertility. Mol Cell Biol 2011; 31:2276-86. [PMID: 21482674 DOI: 10.1128/mcb.01105-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein 4.1G is a member of the protein 4.1 family, which in general serves as adaptors linking transmembrane proteins to the cytoskeleton. 4.1G is thought to be widely expressed in many cells and tissues, but its function remains largely unknown. To explore the function of 4.1G in vivo, we generated 4.1G(-/-) mice and bred the mice in two backgrounds: C57BL/6 (B6) and 129/Sv (129) hybrids (B6-129) and inbred B6. Although the B6 4.1G(-/-) mice showed no obvious abnormalities, deficiency of 4.1G in B6-129 hybrids was associated with male infertility. Histological examinations of these 4.1G(-/-) mice revealed atrophy, impaired cell-cell contact and sloughing off of spermatogenic cells in seminiferous epithelium, and lack of mature spermatids in the epididymis. Ultrastructural examination revealed enlarged intercellular spaces between spermatogenic and Sertoli cells as well as the spermatid deformities. At the molecular level, 4.1G is associated with the nectin-like 4 (NECL4) adhesion molecule. Importantly, the expression of NECL4 was decreased, and the localization of NECL4 was altered in 4.1G(-/-) testis. Thus, our findings imply that 4.1G plays a role in spermatogenesis by mediating cell-cell adhesion between spermatogenic and Sertoli cells through its interaction with NECL4 on Sertoli cells. Additionally, the finding that infertility is present in B6-129 but not on the B6 background suggests the presence of a major modifier gene(s) that influences 4.1G function and is associated with male infertility.
Collapse
|
42
|
Comprehensive characterization of expression patterns of protein 4.1 family members in mouse adrenal gland: implications for functions. Histochem Cell Biol 2010; 134:411-20. [PMID: 20890708 DOI: 10.1007/s00418-010-0749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 01/22/2023]
Abstract
The members of the protein 4.1 family, 4.1R, 4.1G, 4.1N, and 4.1B, are encoded by four genes, all of which undergo complex alternative splicing. It is well established that 4.1R, the prototypical member of the family, serves as an adapter that links the spectrin-actin based cytoskeleton to the plasma membrane in red cells. It is required for mechanical resilience of the membrane, and it ensures the cell surface accumulation of selected membrane proteins. However, the function of 4.1 proteins outside erythrocytes remains under-explored, especially in endocrine tissues. Transcripts of all 4.1 homologs have previously been documented to be abundantly expressed in adrenal gland. In order to begin to decipher the function of 4.1 proteins in adrenal gland, we performed a detailed characterization of the expression pattern of various 4.1 proteins and their cellular localization. We show that 4.1R (~80 and ~135 kDa) splice forms are expressed on the membrane of all cells, while a ~160 kDa 4.1G splice form is distributed in the cytoplasm and the membrane of zona glomerulosa and of medullary cells. Two 4.1N splice forms, ~135 and ~95 kDa, are present in the peri-nuclear region of both zona glomerulosa and medullary cells, while a single ~130 kDa 4.1B splice form, is detected in all layers of adrenal gland in both the cytoplasm and the membrane. The characterization of distinct splice forms of various 4.1 proteins with diverse cellular and sub-cellular localization indicates multiple functions for this family of proteins in endocrine functions of adrenal gland.
Collapse
|
43
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
44
|
Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 2010; 30:2480-9. [PMID: 20164332 DOI: 10.1523/jneurosci.5225-09.2010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Caspr and Caspr2 regulate the formation of distinct axonal domains around the nodes of Ranvier. Caspr is required for the generation of a membrane barrier at the paranodal junction (PNJ), whereas Caspr2 serves as a membrane scaffold that clusters Kv1 channels at the juxtaparanodal region (JXP). Both Caspr and Caspr2 interact with protein 4.1B, which may link the paranodal and juxtaparanodal adhesion complexes to the axonal cytoskeleton. To determine the role of protein 4.1B in the function of Caspr proteins, we examined the ability of transgenic Caspr and Caspr2 mutants lacking their 4.1-binding sequence (d4.1) to restore Kv1 channel clustering in Caspr- and Caspr2-null mice, respectively. We found that Caspr-d4.1 was localized to the PNJ and is able to recruit the paranodal adhesion complex components contactin and NF155 to this site. Nevertheless, in axons expressing Caspr-d4.1, Kv1 channels were often detected at paranodes, suggesting that the interaction of Caspr with protein 4.1B is necessary for the generation of an efficient membrane barrier at the PNJ. We also found that the Caspr2-d4.1 transgene did not accumulate at the JXP, even though it was targeted to the axon, demonstrating that the interaction with protein 4.1B is required for the accumulation of Caspr2 and Kv1 channels at the juxtaparanodal axonal membrane. In accordance, we show that Caspr2 and Kv1 channels are not clustered at the JXP in 4.1B-null mice. Our results thus underscore the functional importance of protein 4.1B in the organization of peripheral myelinated axons.
Collapse
|