1
|
Steinbach S, Molina M, Grinberg LT, Aring L, Guntermann A, Marcus K, Heinsen H, Paraizo Leite RE, May C. Don't die like me: Which proteins are responsible for the selective neuronal vulnerability within the substantia nigra? PLoS One 2024; 19:e0296730. [PMID: 39089320 PMCID: PMC11290673 DOI: 10.1371/journal.pone.0296730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 12/18/2023] [Indexed: 08/03/2024] Open
Abstract
A hallmark of Parkinson's disease is the specific degeneration of dopaminergic neurons in the substantia nigra pars compacta. Interestingly, not all of these neurons are affected to the same extent. Studies revealed that neurons located more ventrally within the substantia nigra pars compacta have a higher prevalence to degenerate than those located in the dorsal tier. The underlying reasons for this selective neuronal vulnerability are still unknown. The aim of the present study was to gain a better understanding of molecular differences between these two neuronal subpopulations that may explain the selective neuronal vulnerability within the human substantia nigra. For this purpose, the neurons from the ventral as well as dorsal tier of the substantia nigra were specifically isolated out of neuropathologically unremarkable human substantia nigra sections with laser microdissection. Following, their proteome was analyzed by data independent acquisition mass spectrometry. The samples were analysed donor-specifically and not pooled for this purpose. A total of 5,391 proteins were identified in the substantia nigra. Of these, 2,453 proteins could be quantified in 100% of the dorsal tier samples. 1,629 could be quantified in 100% of the ventral tier samples. Nine proteins were differentially regulated with a log2 value ≥0.5 and a Qvalue ≤0.05. Of these 7 were higher abundant in the dorsal tier and 2 higher in the ventral tier. These proteins are associated with the cytoskeleton, neuronal plasticity, or calcium homeostasis. With these findings a deeper understanding can be gained of the selective neuronal vulnerability within the substantia nigra and of protective mechanisms against neurodegeneration in specific neuronal subpopulations.
Collapse
Affiliation(s)
- Simone Steinbach
- Medizinisches Proteom-Center, Center of Protein Diagnostics (ProDi), Ruhr-Universität Bochum, Bochum, Germany
| | - Mariana Molina
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group-LIM22, University of São Paulo Medical School, São Paulo, Brazil
- Discipline of Pathophysiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Lea T. Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group-LIM22, University of São Paulo Medical School, São Paulo, Brazil
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Luisa Aring
- Medizinisches Proteom-Center, Center of Protein Diagnostics (ProDi), Ruhr-Universität Bochum, Bochum, Germany
| | - Annika Guntermann
- Medizinisches Proteom-Center, Center of Protein Diagnostics (ProDi), Ruhr-Universität Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Center of Protein Diagnostics (ProDi), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Renata E. Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group-LIM22, University of São Paulo Medical School, São Paulo, Brazil
- Discipline of Geriatrics, University of São Paulo Medical School, São Paulo, Brazil
| | - Caroline May
- Medizinisches Proteom-Center, Center of Protein Diagnostics (ProDi), Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
2
|
Zemniaçak ÂB, Ribeiro RT, Pinheiro CV, de Azevedo Cunha S, Tavares TQ, Castro ET, Leipnitz G, Wajner M, Amaral AU. In Vivo Intracerebral Administration of α-Ketoisocaproic Acid to Neonate Rats Disrupts Brain Redox Homeostasis and Promotes Neuronal Death, Glial Reactivity, and Myelination Injury. Mol Neurobiol 2024; 61:2496-2513. [PMID: 37910283 DOI: 10.1007/s12035-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.
Collapse
Affiliation(s)
- Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sâmela de Azevedo Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailine Quevedo Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
3
|
Tiane A, Schepers M, Reijnders RA, van Veggel L, Chenine S, Rombaut B, Dempster E, Verfaillie C, Wasner K, Grünewald A, Prickaerts J, Pishva E, Hellings N, van den Hove D, Vanmierlo T. From methylation to myelination: epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions. Acta Neuropathol 2023; 146:283-299. [PMID: 37286732 PMCID: PMC10328906 DOI: 10.1007/s00401-023-02596-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
In the progressive phase of multiple sclerosis (MS), the hampered differentiation capacity of oligodendrocyte precursor cells (OPCs) eventually results in remyelination failure. We have previously shown that DNA methylation of Id2/Id4 is highly involved in OPC differentiation and remyelination. In this study, we took an unbiased approach by determining genome-wide DNA methylation patterns within chronically demyelinated MS lesions and investigated how certain epigenetic signatures relate to OPC differentiation capacity. We compared genome-wide DNA methylation and transcriptional profiles between chronically demyelinated MS lesions and matched normal-appearing white matter (NAWM), making use of post-mortem brain tissue (n = 9/group). DNA methylation differences that inversely correlated with mRNA expression of their corresponding genes were validated for their cell-type specificity in laser-captured OPCs using pyrosequencing. The CRISPR-dCas9-DNMT3a/TET1 system was used to epigenetically edit human-iPSC-derived oligodendrocytes to assess the effect on cellular differentiation. Our data show hypermethylation of CpGs within genes that cluster in gene ontologies related to myelination and axon ensheathment. Cell type-specific validation indicates a region-dependent hypermethylation of MBP, encoding for myelin basic protein, in OPCs obtained from white matter lesions compared to NAWM-derived OPCs. By altering the DNA methylation state of specific CpGs within the promotor region of MBP, using epigenetic editing, we show that cellular differentiation and myelination can be bidirectionally manipulated using the CRISPR-dCas9-DNMT3a/TET1 system in vitro. Our data indicate that OPCs within chronically demyelinated MS lesions acquire an inhibitory phenotype, which translates into hypermethylation of crucial myelination-related genes. Altering the epigenetic status of MBP can restore the differentiation capacity of OPCs and possibly boost (re)myelination.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| | - Rick A. Reijnders
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| | - Sarah Chenine
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| | - Emma Dempster
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Niels Hellings
- University MS Center (UMSC) Hasselt, Pelt, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Würzburg, Germany
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- University MS Center (UMSC) Hasselt, Pelt, Belgium
| |
Collapse
|
4
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
5
|
Smirnova EV, Rakitina TV, Ziganshin RH, Saratov GA, Arapidi GP, Belogurov AA, Kudriaeva AA. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics. Cells 2023; 12:cells12060944. [PMID: 36980286 PMCID: PMC10047773 DOI: 10.3390/cells12060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Martinsen V, Kursula P. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 2021; 54:99-109. [PMID: 34889995 PMCID: PMC8810476 DOI: 10.1007/s00726-021-03111-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.
Collapse
Affiliation(s)
- Vebjørn Martinsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway. .,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| |
Collapse
|
7
|
Wang P, Ma K, Yang L, Zhang G, Ye M, Wang S, Wei S, Chen Z, Gu J, Zhang L, Niu J, Tao S. Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study. Int J Biol Macromol 2021; 193:1457-1470. [PMID: 34742844 DOI: 10.1016/j.ijbiomac.2021.10.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy are unclear. Here, we predicted the molecular mechanisms regulating demyelination in a rat model of lithium-pilocarpine hydrochloride-induced epilepsy. We identified DGKA/Mboat2/Inpp5j and NOS/Keratin 28 as the main target molecules that regulate demyelination via glycerolipid and glycerophospholipid metabolism, phosphatidylinositol signaling, and estrogen signaling in demyelinated forebrain slice cultures (FSCs). In seizure-like FCSs, the actin cytoskeleton was regulated by Cnp and MBP via Pak4/Tmsb4x (also known as Tβ4) and Kif5c/Kntc1. Tβ4 possibly prevented OPC differentiation and maturation and inhibited MBP phosphorylation via the p38MAPK/ERK1/JNK1 pathway. The MAPK signaling pathway was more likely activated in seizure-like FCSs than in demyelinated FCSs. pMBP expression was decreased in the hippocampus of lithium-pilocarpine hydrochloride-induced acute epilepsy rats. The expression of remyelination-related factors was suppressed in the hippocampus and corpus callosum in lithium-pilocarpine hydrochloride-induced epilepsy rats. These findings suggest that the actin cytoskeleton, Tβ4, and MAPK signaling pathways regulate the decrease in pMBP in the hippocampus in a rat model of epilepsy. Our results indicate that regulating the actin cytoskeleton, Tβ4, and MAPK signaling pathways may facilitate the prevention of demyelination in IE.
Collapse
Affiliation(s)
- Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China.
| | - Kang Ma
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Guodong Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Mengyi Ye
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan 750004, Ningxia, China
| | - Siqi Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuangshuang Wei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zhangping Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Jinghai Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Lianxiang Zhang
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China.
| | - Sun Tao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
8
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
9
|
Do TD, Ellis JF, Neumann EK, Comi TJ, Tillmaand EG, Lenhart AE, Rubakhin SS, Sweedler JV. Optically Guided Single Cell Mass Spectrometry of Rat Dorsal Root Ganglia to Profile Lipids, Peptides and Proteins. Chemphyschem 2018; 19:1180-1191. [PMID: 29544029 PMCID: PMC5980748 DOI: 10.1002/cphc.201701364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 12/16/2022]
Abstract
The mammalian dorsal root ganglia (DRG) are located on the dorsal roots of the spinal nerves and contain cell bodies of primary sensory neurons. DRG cells have been classified into subpopulations based on their size, morphology, intracellular markers, response to stimuli, and neuropeptides. To understand the connections between DRG chemical heterogeneity and cellular function, we performed optically guided, high-throughput single cell profiling using sequential matrix-assisted laser desorption/ionization mass spectrometry (MS) to detect lipids, peptides, and several proteins in individual DRG cells. Statistical analysis of the resulting mass spectra allows stratification of the DRG population according to cellular morphology and, presumably, major cell types. A subpopulation of small cells contained myelin proteins, which are abundant in Schwann cells, and mass spectra of several larger cells contained peaks matching neurofilament, vimentin, myelin basic protein S, and thymosin beta proteins. Of the over 1000 cells analyzed, approximately 78 % produced putative peptide-rich spectra, allowing the population to be classified into three distinct cell types. Two signals with m/z 4404 and 5487 were exclusively observed in a cell type, but could not be matched to results of our previous liquid chromatography-MS analyses.
Collapse
Affiliation(s)
- Thanh D. Do
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Joseph F. Ellis
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth K. Neumann
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Troy J. Comi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Emily G. Tillmaand
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Ashley E. Lenhart
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Olivera-Bravo S, Seminotti B, Isasi E, Ribeiro CA, Leipnitz G, Woontner M, Goodman SI, Souza D, Barbeito L, Wajner M. Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdh−/−) Mice. Mol Neurobiol 2018; 56:648-657. [DOI: 10.1007/s12035-018-1077-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023]
|
11
|
Chen Q, Yin D, Jia Y, Schiwy S, Legradi J, Yang S, Hollert H. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1312-1321. [PMID: 28793400 DOI: 10.1016/j.scitotenv.2017.07.144] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 04/14/2023]
Abstract
Plastic particles have been proven to be abundant in the aquatic environment, raising concerns about their potential toxic effects. In the present study, we determined the bioaccumulation potential of bisphenol A (BPA) in adult zebrafish (Danio rerio) in the absence and presence of nano-sized plastic particles (nanoplastics, NPPs). Results show that BPA can accumulate in the viscera, gill, head and muscle of zebrafish with 85, 43, 20, and 3μg/g ww after 1d exposure. NPPs were also found to accumulate in different tissues of the fish. Relative equilibrium was reached after 1d exposure in different tissues with 39 to 636mg/kg ww. Co-exposure of NPPs and BPA led to a 2.2 and 2.6-fold significant increment of BPA uptake in the head and viscera, if compared with BPA alone treatment after 3d exposure. As such, we further investigated several neurotoxic biomarker alterations in the fish head. It was found that either BPA or NPPs can cause myelin basic protein (MBP)/gene up-regulation in the central nervous system (CNS); meanwhile, both contaminants exhibited significant inhibition of acetylcholinesterase (AChE) activity, which is a well-known representative biomarker for neurotoxicity. Moreover, for the co-exposure treatment, biomarkers of myeline and tubulin protein/gene expressions, dopamine content, and the mRNA expression of mesencephalic astrocyte derived neurotrophic factor (MANF) were all significantly up-regulated, suggesting that an enhanced neurotoxic effects in both CNS and dopaminergic system occurred. However, AChE activity was no more inhibited in the co-exposure treatment, which implies that solely AChE measurement may not be sufficient to identify neurotoxic effects in the cholinergic system. Overall, the present study demonstrates that the presence of NPPs can increase BPA bioavailability and cause neurotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| | - Daqiang Yin
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China.
| | - Yunlu Jia
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sabrina Schiwy
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jessica Legradi
- Institute for Environmental Studies, Vrije University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| | - Henner Hollert
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73:3291-310. [PMID: 27141942 PMCID: PMC4967101 DOI: 10.1007/s00018-016-2228-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
13
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
14
|
Zhuo F, Qiu G, Xu J, Yang M, Wang K, Liu H, Huang J, Lu W, Liu Q, Xu S, Huang S, Sun S. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage. Mol Cell Neurosci 2016; 72:64-71. [PMID: 26808219 DOI: 10.1016/j.mcn.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The white matter injury caused by intracerebral hemorrhage (ICH) includes demyelination and axonal injury. Oligodendrocyte apoptosis is reported to be involved in triggering demyelination. Experimental observations indicate that both endoplasmic reticulum and mitochondrial pathways could mediate cell apoptosis. The purpose of this study was to investigate the demyelination and the possible mechanisms in an autologous blood-injected rat model of internal capsule hemorrhage. METHODS Transmission electron microscope was applied to examine the pathological changes of myelinated nerve fibers in internal capsule. Western blotting was used to detect the myelin basic protein (MBP) which was an important component of myelin sheath. Double immunofluorescence and Western blotting were used to determine the apoptosis and apoptotic pathways. The levels of caspase-12 (a representative protein of endoplasmic reticulum stress) and cytochrome c (an apoptosis factor released from mitochondria) were assessed in this study. RESULTS Demyelination occurred on day 1, 3, and 7 after ICH onset. Myelin sheaths of internal capsule nerve fibers were swollen and broken down in ICH groups. MBP expression showed a downregulation after ICH with its minimum value occurred on day 7 post-ICH. Besides, neuron and oligodendrocyte apoptosis were observed at different time intervals post-ICH accompanied with an upregulated caspase-12 expression and enhanced cytochrome c release. CONCLUSIONS These results suggested that oligodendrocyte and neuron apoptosis may contribute to the demyelination induced by internal capsule hemorrhage and oligodendrocyte apoptosis is positively mediated through both endoplasmic reticulum and mitochondrial pathways.
Collapse
Affiliation(s)
- Fei Zhuo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - GuoPing Qiu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - KeJian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - WeiTian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShiYe Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - SiQin Huang
- Traditional Chinese Medical College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShanQuan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
15
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
16
|
Vassall KA, Jenkins AD, Bamm VV, Harauz G. Thermodynamic Analysis of the Disorder-to-α-Helical Transition of 18.5-kDa Myelin Basic Protein Reveals an Equilibrium Intermediate Representing the Most Compact Conformation. J Mol Biol 2015; 427:1977-92. [DOI: 10.1016/j.jmb.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
17
|
Zienowicz A, Bamm VV, Vassall KA, Harauz G. Myelin basic protein is a glial microtubule-associated protein – Characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment. Biochem Biophys Res Commun 2015; 461:136-41. [DOI: 10.1016/j.bbrc.2015.03.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
|
18
|
Locatelli G, Baggiolini A, Schreiner B, Palle P, Waisman A, Becher B, Buch T. Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage. J Neuroinflammation 2015; 12:62. [PMID: 25889302 PMCID: PMC4404661 DOI: 10.1186/s12974-015-0271-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/20/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Oligodendrocytes are myelinating cells of the central nervous system which support functionally, structurally, and metabolically neurons. Mature oligodendrocytes are generally believed to be mere targets of destruction in the context of neuroinflammation and tissue damage, but their real degree of in vivo plasticity has become a matter of debate. We thus investigated the in vivo dynamic, actin-related response of these cells under different kinds of demyelinating stress. METHODS We used a novel mouse model (oLucR) expressing luciferase in myelin oligodendrocyte glycoprotein-positive oligodendrocytes under the control of a β-actin promoter. Activity of this promoter served as surrogate for dynamics of the cytoskeleton gene transcription through recording of in vivo bioluminescence following diphtheria toxin-induced oligodendrocyte death and autoimmune demyelination. Cytoskeletal gene expression was quantified from mature oligodendrocytes directly isolated from transgenic animals through cell sorting. RESULTS Experimental demyelinating setups augmented oligodendrocyte-specific in vivo bioluminescence. These changes in luciferase signal were confirmed by further ex vivo analysis of the central nervous system tissue from oLucR mice. Increase in bioluminescence upon autoimmune inflammation was parallel to an oligodendrocyte-specific increased transcription of β-tubulin. CONCLUSIONS Mature oligodendrocytes acutely increase their cytoskeletal plasticity in vivo during demyelination. They are therefore not passive players under demyelinating conditions but can rather react dynamically to external insults.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. .,Institute of Clinical Neuroimmunology, LMU Universität München, Marchioninistrasse 17, Munich, 81377, Germany.
| | - Arianna Baggiolini
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Pushpalatha Palle
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 80675, Munich, Germany. .,Institute of Laboratory Animal Science, VetSuisse, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Obere Zahlbacher Str. 67, Mainz, 55131, Germany.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. .,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 80675, Munich, Germany. .,Institute of Laboratory Animal Science, VetSuisse, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.
| |
Collapse
|
19
|
Huang S, Tang C, Sun S, Cao W, Qi W, Xu J, Huang J, Lu W, Liu Q, Gong B, Zhang Y, Jiang J. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. Mol Neurobiol 2014; 52:1870-1881. [PMID: 25465241 DOI: 10.1007/s12035-014-9022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
Abstract
Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.
Collapse
Affiliation(s)
- Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| | - Wenfu Cao
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Wei Qi
- Chongqing Three Gorgers Central Hospital, No.165 Xin Cheng Road, Wanzhou District, Chongqing, 400000, China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Biao Gong
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Zhang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Jin Jiang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
20
|
Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 2014; 9:e111059. [PMID: 25357129 PMCID: PMC4214693 DOI: 10.1371/journal.pone.0111059] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.
Collapse
|
21
|
Boggs JM, Homchaudhuri L, Ranagaraj G, Liu Y, Smith GST, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes 2014; 7:387. [PMID: 24956930 PMCID: PMC4078013 DOI: 10.1186/1756-0500-7-387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14–21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. Results To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. Conclusions These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Krestinina OV, Makarov PR, Baburina YL, Gordeeva AE, Azarashvili TS. The identification of phosphorylated forms of myelin basic protein associated with mitochondria. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413040053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Huang SQ, Tang CL, Sun SQ, Yang C, Xu J, Wang KJ, Lu WT, Huang J, Zhuo F, Qiu GP, Wu XY, Qi W. Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 2013; 20:20-31. [PMID: 23937638 DOI: 10.1111/cns.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Demyelination is one of the most important pathological factors of spinal cord injury. Oligodendrocyte apoptosis is involved in triggering demyelination. However, fewer reports on pathological changes and mechanism of demyelination have been presented from compressed spinal cord injury (CSCI). The relative effect of oligodendrocyte apoptosis on CSCI-induced demyelination and the mechanism of apoptosis remain unclear. AIMS In this study, a custom-designed model of CSCI was used to determine whether or not demyelination and oligodendrocyte apoptosis occur after CSCI. The pathological changes in axonal myelinated fibers were investigated by osmic acid staining and transmission electron microscopy. Myelin basic protein (MBP), which is used in myelin formation in the central nervous system, was detected by immunofluorescence and Western blot assays. Oligodendrocyte apoptosis was revealed by in situ terminal-deoxytransferase-mediated dUTP nick-end labeling. To analyze the mechanism of oligodendrocyte apoptosis, we detected caspase-12 [a representative of endoplasmic reticulum (ER) stress], cytochrome c (an apoptotic factor and hallmark of mitochondria), and inhibitor of DNA binding 2 (Id2, an oligodendrocyte lineage gene) by immunofluorescence and Western blot assays. RESULTS The custom-designed model of CSCI was successfully established. The rats were spastic, paralyzed, and incontinent. The Basso, Beattie, and Bresnahan (BBB) locomotor rating scale scores were decreased as time passed. The compressed spinal cord slices were ischemic. Myelin sheaths became swollen and degenerative; these sheaths were broken down as time passed after CSCI. MBP expression was downregulated after CSCI and consistent with the degree of demyelination. Oligodendrocyte apoptosis occurred at 1 day after CSCI and increased as caspase-12 expression was enhanced and cytochrome c was released. Id2 was distributed widely in the white matter. Id2 expression increased with time after CSCI. CONCLUSION Demyelination occurred after CSCI and might be partly caused by oligodendrocyte apoptosis, which was positively correlated with ER-mitochondria interactions and enhanced Id2 expression after CSCI in rats.
Collapse
Affiliation(s)
- Si-Qin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
25
|
Microtubules and Associated Proteins in Oligodendrocytes, the Myelin Forming Cells of the Central Nervous System. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-62703-266-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
26
|
Nagulapalli M, Parigi G, Yuan J, Gsponer J, Deraos G, Bamm VV, Harauz G, Matsoukas J, de Planque MRR, Gerothanassis IP, Babu MM, Luchinat C, Tzakos AG. Recognition pliability is coupled to structural heterogeneity: a calmodulin intrinsically disordered binding region complex. Structure 2012; 20:522-33. [PMID: 22405011 DOI: 10.1016/j.str.2012.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022]
Abstract
Protein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP(145-165)) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes). To characterize this interaction, we implemented an NMR spectroscopic approach that calculates, for each conformation of the complex, the maximum occurrence based on recorded pseudocontact shifts and residual dipolar couplings. We found that the MBP(145-165)-calmodulin interaction is characterized by structural heterogeneity. Quantitative comparative analysis indicated that distinct conformational landscapes of structural heterogeneity are sampled for different calmodulin-target complexes. Such structural heterogeneity in protein complexes could potentially explain the way that transient and promiscuous protein interactions are optimized and tuned in complex regulatory networks.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia. PLoS One 2012; 7:e38211. [PMID: 22675524 PMCID: PMC3365879 DOI: 10.1371/journal.pone.0038211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022] Open
Abstract
Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.
Collapse
|
28
|
Boggs JM, Rangaraj G, Dicko A. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2217-27. [PMID: 22538354 DOI: 10.1016/j.bbamem.2012.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.
Collapse
Affiliation(s)
- Joan M Boggs
- Hospital for Sick Children, Toronto, ON, Canada.
| | | | | |
Collapse
|
29
|
Smith GST, Homchaudhuri L, Boggs JM, Harauz G. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1. Neurochem Res 2012; 37:1277-95. [PMID: 22249765 DOI: 10.1007/s11064-011-0700-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 12/31/2011] [Indexed: 01/10/2023]
Abstract
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
30
|
Smith GS, De Avila M, Paez PM, Spreuer V, Wills MK, Jones N, Boggs JM, Harauz G. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes. J Neurosci Res 2012; 90:28-47. [PMID: 21887699 PMCID: PMC3527418 DOI: 10.1002/jnr.22733] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/28/2022]
Abstract
The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation of Thr92 and Thr95 can regulate this function.
Collapse
Affiliation(s)
- Graham S.T. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pablo M. Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Vilma Spreuer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Melanie K.B. Wills
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Joan M. Boggs
- Molecular Structure and Function, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|