1
|
Korn T, Hansen UP, Gabriel TS, Rauh O, Drexler N, Schroeder I. Binding kinetics of quaternary ammonium ions in Kcv potassium channels. Channels (Austin) 2024; 18:2402749. [PMID: 39383513 DOI: 10.1080/19336950.2024.2402749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
Kcv channels from plant viruses represent the autonomous pore module of potassium channels, devoid of any regulatory domains. These small proteins show very reproducible single-channel behavior in planar lipid bilayers. Thus, they are an optimum system for the study of the biophysics of ion transport and gating. Structural models based on homology modeling have been used successfully, but experimental structural data are currently not available. Here we determine the size of the cytosolic pore entrance by studying the blocker kinetics. Blocker binding and dissociation rate constants ranging from 0.01 to 1000 ms-1 were determined for different quaternary ammonium ions. We found that the cytosolic pore entrance of KcvNTS must be at least 11 Å wide. The results further indicate that the residues controlling a cytosolic gate in one of the Kcv isoforms influence blocker binding/dissociation as well as a second gate even when the cytosolic gate is in the open state. The voltage dependence of the rate constant of blocker release is used to test, which blockers bind to the same binding site.
Collapse
Affiliation(s)
- Tobias Korn
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nils Drexler
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
- Physiology II, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Kopec W, Thomson AS, de Groot BL, Rothberg BS. Interactions between selectivity filter and pore helix control filter gating in the MthK channel. J Gen Physiol 2023; 155:e202213166. [PMID: 37318452 PMCID: PMC10274084 DOI: 10.1085/jgp.202213166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
K+ channel activity can be limited by C-type inactivation, which is likely initiated in part by dissociation of K+ ions from the selectivity filter and modulated by the side chains that surround it. While crystallographic and computational studies have linked inactivation to a "collapsed" selectivity filter conformation in the KcsA channel, the structural basis for selectivity filter gating in other K+ channels is less clear. Here, we combined electrophysiological recordings with molecular dynamics simulations, to study selectivity filter gating in the model potassium channel MthK and its V55E mutant (analogous to KcsA E71) in the pore-helix. We found that MthK V55E has a lower open probability than the WT channel, due to decreased stability of the open state, as well as a lower unitary conductance. Simulations account for both of these variables on the atomistic scale, showing that ion permeation in V55E is altered by two distinct orientations of the E55 side chain. In the "vertical" orientation, in which E55 forms a hydrogen bond with D64 (as in KcsA WT channels), the filter displays reduced conductance compared to MthK WT. In contrast, in the "horizontal" orientation, K+ conductance is closer to that of MthK WT; although selectivity filter stability is lowered, resulting in more frequent inactivation. Surprisingly, inactivation in MthK WT and V55E is associated with a widening of the selectivity filter, unlike what is observed for KcsA and reminisces recent structures of inactivated channels, suggesting a conserved inactivation pathway across the potassium channel family.
Collapse
Affiliation(s)
- Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew S. Thomson
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Bert L. de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Brad S. Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Asrani P, Seebohm G, Stoll R. Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Res 2022; 320:198903. [PMID: 36037849 DOI: 10.1016/j.virusres.2022.198903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.
Collapse
Affiliation(s)
- Purva Asrani
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster D-48149, Germany
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospec|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum D-44780, Germany.
| |
Collapse
|
4
|
Rauh O, Opper J, Sturm M, Drexler N, Scheub DD, Hansen UP, Thiel G, Schroeder I. Role of ion distribution and energy barriers for concerted motion of subunits in selectivity filter gating of a K+ channel. J Mol Biol 2022; 434:167522. [DOI: 10.1016/j.jmb.2022.167522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
|
5
|
Gabriel TS, Hansen UP, Urban M, Drexler N, Winterstein T, Rauh O, Thiel G, Kast SM, Schroeder I. Asymmetric Interplay Between K + and Blocker and Atomistic Parameters From Physiological Experiments Quantify K + Channel Blocker Release. Front Physiol 2021; 12:737834. [PMID: 34777005 PMCID: PMC8586521 DOI: 10.3389/fphys.2021.737834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.
Collapse
Affiliation(s)
- Tobias S Gabriel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Nils Drexler
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universita̋t Dortmund, Dortmund, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
6
|
Rauh O, Kukovetz K, Winterstein L, Introini B, Thiel G. Combining in vitro translation with nanodisc technology and functional reconstitution of channels in planar lipid bilayers. Methods Enzymol 2021; 652:293-318. [PMID: 34059286 DOI: 10.1016/bs.mie.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental studies on membrane proteins have been recently enriched by two promising method developments: protocols for cell-free protein synthesis and the use of soluble nanoscale lipid bilayers, so called nanodiscs, as membrane mimics for keeping these proteins in a soluble form. Here, we show how the advantages of these techniques can be combined with the classical planar lipid bilayer method for a functional reconstitution of channel activity. The present data demonstrate that the combination of these methods offers a very rapid and reliable way of recording channel activity in different bilayer systems. This approach has additional advantages in that it strongly lowers the propensity of contamination from the expression system and allows the simultaneous reconstitution of thousands of channel proteins for macroscopic current measurements without compromising bilayer stability.
Collapse
Affiliation(s)
- Oliver Rauh
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kerri Kukovetz
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Laura Winterstein
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bianca Introini
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
7
|
Winterstein LM, Kukovetz K, Hansen UP, Schroeder I, Van Etten JL, Moroni A, Thiel G, Rauh O. Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function. J Gen Physiol 2021; 153:211677. [PMID: 33439243 PMCID: PMC7809880 DOI: 10.1085/jgp.202012731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro–synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität, Kiel, Germany
| | - Indra Schroeder
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska Lincoln, Lincoln, NE
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche, Istituto di Biofisica Milano, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
8
|
Light-Regulated Transcription of a Mitochondrial-Targeted K + Channel. Cells 2020; 9:cells9112507. [PMID: 33228123 PMCID: PMC7699372 DOI: 10.3390/cells9112507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The inner membranes of mitochondria contain several types of K+ channels, which modulate the membrane potential of the organelle and contribute in this way to cytoprotection and the regulation of cell death. To better study the causal relationship between K+ channel activity and physiological changes, we developed an optogenetic platform for a light-triggered modulation of K+ conductance in mitochondria. By using the light-sensitive interaction between cryptochrome 2 and the regulatory protein CIB1, we can trigger the transcription of a small and highly selective K+ channel, which is in mammalian cells targeted into the inner membrane of mitochondria. After exposing cells to very low intensities (≤0.16 mW/mm2) of blue light, the channel protein is detectable as an accumulation of its green fluorescent protein (GFP) tag in the mitochondria less than 1 h after stimulation. This system allows for an in vivo monitoring of crucial physiological parameters of mitochondria, showing that the presence of an active K+ channel causes a substantial depolarization compatible with the effect of an uncoupler. Elevated K+ conductance also results in a decrease in the Ca2+ concentration in the mitochondria but has no impact on apoptosis.
Collapse
|
9
|
A Functional K + Channel from Tetraselmis Virus 1, a Member of the Mimiviridae. Viruses 2020; 12:v12101107. [PMID: 33003637 PMCID: PMC7650704 DOI: 10.3390/v12101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/05/2022] Open
Abstract
Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.
Collapse
|
10
|
Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect Chlorella heliozoae. Viruses 2020; 12:v12060678. [PMID: 32585987 PMCID: PMC7354518 DOI: 10.3390/v12060678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.
Collapse
|
11
|
Hartel AJW, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal Chim Acta 2019; 1061:13-27. [PMID: 30926031 PMCID: PMC6860018 DOI: 10.1016/j.aca.2019.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.
Collapse
Affiliation(s)
- Andreas J W Hartel
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| | - Siddharth Shekar
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Peijie Ong
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kenneth L Shepard
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| |
Collapse
|
12
|
Khoury ME, Winterstein T, Weber W, Stein V, Schlaak HF, Thiel G. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. J Membr Biol 2019; 252:173-182. [PMID: 30863900 PMCID: PMC6556160 DOI: 10.1007/s00232-019-00062-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022]
Abstract
Planar lipid bilayers constitute a versatile method for measuring the activity of protein channels and pores on a single molecule level. Ongoing efforts attempt to tailor this method for detecting biomedically relevant target analytes or for high-throughput screening of drugs. To improve the mechanical stability of bilayer recordings, we use a thin-film epoxy resist ADEX as septum in free-standing vertical bilayers. Defined apertures with diameters between 30 µm and 100 µm were micro-fabricated by photolithography. The performance of these septa was tested by functional reconstitution of the K+ channel KcvNTS in lipid bilayers spanned over apertures in ADEX or Teflon films; the latter is conventionally used in bilayer recordings and serves as reference. We observe that the functional properties of the K+ channel are identical in both materials while ADEX provides no advantage in terms of capacitance and signal-to-noise ratio. In contrast to Teflon, however, ADEX enables long-term experimental recordings while the stability of the lipid bilayer is not compromised by pipetting solutions in and out of the recording chamber. Combined with the fact that the ADEX films can be cleaned with acetone, our results suggest that ADEX carries great potential for multiplexing bilayer chambers in robust and reusable sensing devices.
Collapse
Affiliation(s)
- Mario El Khoury
- Department of Electrical Engineering and Information Technology, Institute of Electromechanical Design, Microtechnology and Electromechanical Systems, TU Darmstadt, Darmstadt, Germany
| | - Tobias Winterstein
- Membranbiophysik, Department of Biology, TU Darmstadt, Schnitspahnstrasse 3, 64287, Darmstadt, Germany
| | - Wadim Weber
- Protein Engineering, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Viktor Stein
- Protein Engineering, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Helmut F Schlaak
- Department of Electrical Engineering and Information Technology, Institute of Electromechanical Design, Microtechnology and Electromechanical Systems, TU Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Membranbiophysik, Department of Biology, TU Darmstadt, Schnitspahnstrasse 3, 64287, Darmstadt, Germany.
| |
Collapse
|
13
|
Rondelli V, Del Favero E, Brocca P, Fragneto G, Trapp M, Mauri L, Ciampa M, Romani G, Braun C, Winterstein L, Schroeder I, Thiel G, Moroni A, Cantu' L. Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochim Biophys Acta Gen Subj 2018; 1862:1742-1750. [DOI: 10.1016/j.bbagen.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
|
14
|
Rauh O, Hansen UP, Scheub DD, Thiel G, Schroeder I. Site-specific ion occupation in the selectivity filter causes voltage-dependent gating in a viral K + channel. Sci Rep 2018; 8:10406. [PMID: 29991721 PMCID: PMC6039446 DOI: 10.1038/s41598-018-28751-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
Many potassium channels show voltage-dependent gating without a dedicated voltage sensor domain. This is not fully understood yet, but often explained by voltage-induced changes of ion occupation in the five distinct K+ binding sites in the selectivity filter. To better understand this mechanism of filter gating we measured the single-channel current and the rate constant of sub-millisecond channel closure of the viral K+ channel KcvNTS for a wide range of voltages and symmetric and asymmetric K+ concentrations in planar lipid membranes. A model-based analysis employed a global fit of all experimental data, i.e., using a common set of parameters for current and channel closure under all conditions. Three different established models of ion permeation and various relationships between ion occupation and gating were tested. Only one of the models described the data adequately. It revealed that the most extracellular binding site (S0) in the selectivity filter functions as the voltage sensor for the rate constant of channel closure. The ion occupation outside of S0 modulates its dependence on K+ concentration. The analysis uncovers an important role of changes in protein flexibility in mediating the effect from the sensor to the gate.
Collapse
Affiliation(s)
- O Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - U P Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - D D Scheub
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - G Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - I Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
15
|
Checchetto V, Szabo I. Novel Channels of the Outer Membrane of Mitochondria: Recent Discoveries Change Our View. Bioessays 2018; 40:e1700232. [PMID: 29682771 DOI: 10.1002/bies.201700232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Indexed: 01/12/2023]
Abstract
Ion channels mediate ion flux across biological membranes and regulate important organellar and cellular tasks. A recent study revealed the presence of four new proteins, the MIM complex (composed by Mim1 and Mim2), Ayr1, OMC7, and OMC8, that are able to form ion-conducting channels in the outer mitochondria membrane (OMM). These findings strongly indicate that the OMM is endowed with many solute-specific channels, in addition to porins and known channels mediating protein import into mitochondria. These solute-specific channels provide essential pathways for the controlled transport of ions and metabolites and may thus add a further layer of specificity to the regulation of mitochondrial function at the organelle-cytosol and/or inter-organellar interface. Future studies will be required to fully understand the way(s) of regulation of these new channels and to integrate them into signaling pathways within the cells.
Collapse
Affiliation(s)
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua 35121, Italy
| |
Collapse
|
16
|
Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder I, Thiel G. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 2018; 150:637-646. [PMID: 29487088 PMCID: PMC5881443 DOI: 10.1085/jgp.201711904] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that membrane proteins can be efficiently synthesized in vitro before spontaneously inserting into soluble nanoscale lipid bilayers called nanodiscs (NDs). In this paper, we present experimental details that allow a combination of in vitro translation of ion channels into commercially available NDs followed by their direct reconstitution from these nanobilayers into standard bilayer setups for electrophysiological characterization. We present data showing that two model K+ channels, Kcv and KcsA, as well as a recently discovered dual-topology F- channel, Fluc, can be reliably reconstituted from different types of NDs into bilayers without contamination from the in vitro translation cocktail. The functional properties of Kcv and KcsA were characterized electrophysiologically and exhibited sensitivity to the lipid composition of the target DPhPC bilayer, suggesting that the channel proteins were fully exposed to the target membrane and were no longer surrounded by the lipid/protein scaffold. The single-channel properties of the three tested channels are compatible with studies from recordings of the same proteins in other expression systems. Altogether, the data show that synthesis of ion channels into NDs and their subsequent reconstitution into conventional bilayers provide a fast and reliable method for functional analysis of ion channels.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel L Turman
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA
| | - Christian Braun
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Rauh O, Hansen U, Mach S, Hartel AJ, Shepard KL, Thiel G, Schroeder I. Extended beta distributions open the access to fast gating in bilayer experiments-assigning the voltage-dependent gating to the selectivity filter. FEBS Lett 2017; 591:3850-3860. [PMID: 29106736 PMCID: PMC5747313 DOI: 10.1002/1873-3468.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023]
Abstract
Lipid bilayers provide many benefits for ion channel recordings, such as control of membrane composition and transport molecules. However, they suffer from high membrane capacitance limiting the bandwidth and impeding analysis of fast gating. This can be overcome by fitting the deviations of the open-channel noise from the baseline noise by extended beta distributions. We demonstrate this analysis step-by-step by applying it to the example of viral K+ channels (Kcv), from the choice of the gating model through the fitting process, validation of the results, and what kinds of results can be obtained. These voltage sensor-less channels show profoundly voltage-dependent gating with dwell times in the closed state of about 50 μs. Mutations assign it to the selectivity filter.
Collapse
Affiliation(s)
- Oliver Rauh
- Plant Membrane BiophysicsTechnische Universität DarmstadtGermany
| | - Ulf‐Peter Hansen
- Department of Structural BiologyChristian‐Albrechts‐University of KielGermany
| | - Sebastian Mach
- Plant Membrane BiophysicsTechnische Universität DarmstadtGermany
| | | | | | - Gerhard Thiel
- Plant Membrane BiophysicsTechnische Universität DarmstadtGermany
| | - Indra Schroeder
- Plant Membrane BiophysicsTechnische Universität DarmstadtGermany
| |
Collapse
|
18
|
Schlesinger R. Do It Fast: Immediate Functional Testing of Membrane Pumps Expressed into Nanodiscs. Biophys J 2017; 113:1177-1178. [PMID: 28867509 DOI: 10.1016/j.bpj.2017.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Rauh O, Urban M, Henkes LM, Winterstein T, Greiner T, Van Etten JL, Moroni A, Kast SM, Thiel G, Schroeder I. Identification of Intrahelical Bifurcated H-Bonds as a New Type of Gate in K + Channels. J Am Chem Soc 2017; 139:7494-7503. [PMID: 28499087 PMCID: PMC6638992 DOI: 10.1021/jacs.7b01158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Gating
of ion channels is based on structural transitions between
open and closed states. To uncover the chemical basis of individual
gates, we performed a comparative experimental and computational analysis
between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with
a monomer size of only 82 amino acids, resemble the pore module of
all complex K+ channels in terms of structure and function.
Even though both proteins share about 90% amino acid sequence identity,
they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational
studies and molecular dynamics simulations show that the difference
in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel
by a transient, Ser mediated, intrahelical hydrogen bond. The resulting
kink in the inner transmembrane domain swings the aromatic rings from
downstream Phes in the cavity of the channel, which blocks ion flux.
The frequent occurrence of Ser or Thr based helical kinks in membrane
proteins suggests that a similar mechanism could also occur in the
gating of other ion channels.
Collapse
Affiliation(s)
- Oliver Rauh
- Plant Membrane Biophysics, Technical University Darmstadt , 64289 Darmstadt, Germany
| | - Martin Urban
- Physikalische Chemie III, Technische Universität Dortmund , 44227 Dortmund, Germany
| | - Leonhard M Henkes
- Physikalische Chemie III, Technische Universität Dortmund , 44227 Dortmund, Germany
| | - Tobias Winterstein
- Plant Membrane Biophysics, Technical University Darmstadt , 64289 Darmstadt, Germany
| | - Timo Greiner
- Plant Membrane Biophysics, Technical University Darmstadt , 64289 Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska Lincoln , Lincoln, Nebraska 68583-0900, United States
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano , 20122 Milano, Italy
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund , 44227 Dortmund, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technical University Darmstadt , 64289 Darmstadt, Germany
| | - Indra Schroeder
- Plant Membrane Biophysics, Technical University Darmstadt , 64289 Darmstadt, Germany
| |
Collapse
|
20
|
From Gene to Function: Cell-Free Electrophysiological and Optical Analysis of Ion Pumps in Nanodiscs. Biophys J 2017; 113:1331-1341. [PMID: 28450130 DOI: 10.1016/j.bpj.2017.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.
Collapse
|
21
|
Schroeder I. How to resolve microsecond current fluctuations in single ion channels: the power of beta distributions. Channels (Austin) 2016; 9:262-80. [PMID: 26368656 DOI: 10.1080/19336950.2015.1083660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called "beta distributions." This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions.
Collapse
Affiliation(s)
- Indra Schroeder
- a Plant Membrane Biophysics, Technical University of Darmstadt ; Darmstadt , Germany
| |
Collapse
|
22
|
Carraretto L, Teardo E, Checchetto V, Finazzi G, Uozumi N, Szabo I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. MOLECULAR PLANT 2016; 9:371-395. [PMID: 26751960 DOI: 10.1016/j.molp.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.
Collapse
Affiliation(s)
- Luca Carraretto
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy
| | | | - Giovanni Finazzi
- UMR 5168 Laboratoire de Physiologie Cellulaire Végétale (LPCV) CNRS/ UJF / INRA / CEA, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), CEA Grenoble, 38054 Grenoble, France.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy.
| |
Collapse
|
23
|
Large dsDNA chloroviruses encode diverse membrane transport proteins. Virology 2015; 479-480:38-45. [PMID: 25766639 DOI: 10.1016/j.virol.2015.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
Abstract
Many large DNA viruses that infect certain isolates of chlorella-like green algae (chloroviruses) are unusual because they often encode a diverse set of membrane transport proteins, including functional K(+) channels and aquaglyceroporins as well as K(+) transporters and calcium transporting ATPases. Some chloroviruses also encode putative ligand-gated-like channel proteins. No one protein is present in all of the chloroviruses that have been sequenced, but the K(+) channel is the most common as only two chloroviruses have been isolated that lack this complete protein. This review describes the properties of these membrane-transporting proteins and suggests possible physiological functions and evolutionary histories for some of them.
Collapse
|
24
|
Siotto F, Martin C, Rauh O, Van Etten JL, Schroeder I, Moroni A, Thiel G. Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 2014; 466-467:103-11. [PMID: 25441713 DOI: 10.1016/j.virol.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 05/03/2014] [Indexed: 01/19/2023]
Abstract
Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.
Collapse
Affiliation(s)
- Fenja Siotto
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Corinna Martin
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - Indra Schroeder
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany
| | - Anna Moroni
- Dipartimento di Biologia Università degli Studi di Milano e Istituto di Biofisica, CNR, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics Group, Dept. of Biology, Technical University Darmstadt, Germany.
| |
Collapse
|
25
|
Braun CJ, Baer T, Moroni A, Thiel G. Pseudo painting/air bubble technique for planar lipid bilayers. J Neurosci Methods 2014; 233:13-7. [DOI: 10.1016/j.jneumeth.2014.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/21/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
|