1
|
Cordero Gil TDLÁ, Moleón MS, Marelli BE, Siroski PA. Host defense peptides in crocodilians - A comprehensive review. Peptides 2024; 182:171312. [PMID: 39471969 DOI: 10.1016/j.peptides.2024.171312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Amphibians and reptiles, like all animals, are prone to periodic infections. However, crocodilians stand out for their remarkable ability to remain generally healthy and infection-free despite frequent exposure to a wide variety of microorganisms in their habitats and often sustaining significant injuries. These animals have evolved highly active immune mechanisms that provide rapid and effective defense. This is evidenced by the superior hemolytic capacity of their plasma compared to that of other organisms. To date, several host defense peptides (HDPs) have been identified in crocodilians, including cathelicidins, beta-defensins, hepcidins, leucrocins, hemocidins, and omwaprins. These peptides exhibit potent and broad-spectrum antimicrobial, antibiofilm, antifungal, and anticancer activities. Due to the relatively low but diverse evolutionary rate of crocodilians, the HDPs found in this species offer valuable insights into proteins and mechanisms of action that are highly conserved across many animals related to immune defense. The potential applications of HDPs in modern medicine represent a promising strategy for developing new therapeutic agents. Their novelty and the vast variability with which peptide sequences can be designed and modified expand the field of application for HDPs almost infinitely. This review addresses the urgent need for innovative and more effective drugs to combat the rise of antimicrobialresistant infections and evaluates the potential of crocodilian HDPs. It presents recent advances in the identification of crocodilian HDPs, particularly antimicrobial peptides (AMPs), including previously underexplored topics such as the sequential and structural conformation of different peptide types in crocodilians and the use of bioinformatics tools to enhance native peptides.
Collapse
Affiliation(s)
- Trinidad de Los Ángeles Cordero Gil
- Laboratorio de Ecología Molecular Aplicada (ICiVET-UNL), CONICET, Esperanza, Santa Fe S3080, Argentina; Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Santa Fe 3000, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), UNL, CONICET, Esperanza, Santa Fe S3080, Argentina.
| | - María Soledad Moleón
- Laboratorio de Ecología Molecular Aplicada (ICiVET-UNL), CONICET, Esperanza, Santa Fe S3080, Argentina; Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Santa Fe 3000, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), UNL, CONICET, Esperanza, Santa Fe S3080, Argentina
| | - Belkis Ester Marelli
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), UNL, CONICET, Esperanza, Santa Fe S3080, Argentina
| | - Pablo Ariel Siroski
- Laboratorio de Ecología Molecular Aplicada (ICiVET-UNL), CONICET, Esperanza, Santa Fe S3080, Argentina; Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MMA), Santa Fe 3000, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), UNL, CONICET, Esperanza, Santa Fe S3080, Argentina; Ministerio de Medio Ambiente y Cambio Climático, Santa Fe 3000, Argentina
| |
Collapse
|
2
|
Chen C, Gu Q, Ge Y, Tian J, Zhang Y, Wang T, Wang C, Zhao Y, Xu H, Fan X. Antibiofilm Mechanisms of the Helical G3 Peptide against Staphylococcus epidermidis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11806-11816. [PMID: 38770910 DOI: 10.1021/acs.langmuir.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antibacterial peptides (ABPs) have been recognized as promising alternatives to conventional antibiotics due to their broad antibacterial spectrum, high antibacterial activity, and low possibility of inducing bacterial resistance. However, their antibiofilm mechanisms have not yet reached a consensus. In this study, we investigated the antibiofilm activity of a short helical peptide G3 against Staphylococcus epidermidis, one of the most important strains of medical device contamination. Studies show that G3 inhibits S. epidermidis biofilm formation in a variety of ways. In the initial adhesion stage, G3 changes the properties of bacterial surfaces, such as charges, hydrophobicity, and permeability, by rapidly binding to them, thus interfering with their initial adhesion. In the mature stage, G3 prefers to target extracellular polysaccharides, leading to the death of outside bacteria and the disruption of the three-dimensional (3D) architecture of the bacterial biofilm. Such efficient antibiofilm activity of G3 endows it with great potential in the treatment of infections induced by the S. epidermidis biofilm.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Qilong Gu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yangyang Ge
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jingyun Tian
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), 7 Youyun Road, Laoshan District, Qingdao 266104, China
| | - Yusen Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Tianling Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Chen Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
3
|
Zhang C, Wang C, Dai J, Xiu Z. The inhibition mechanism of co-cultured probiotics on biofilm formation of Klebsiella pneumoniae. J Appl Microbiol 2024; 135:lxae138. [PMID: 38857885 DOI: 10.1093/jambio/lxae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/12/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
AIMS Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.
Collapse
Affiliation(s)
- Chaolei Zhang
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian 116036, China
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianying Dai
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
4
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
6
|
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2023-2035. [PMID: 38533844 DOI: 10.1021/acsabm.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The rising prevalence of multiple-drug-resistant pathogens poses a formidable challenge to conventional antimicrobial treatments. The inability of potent antibiotics to combat these "superbugs" underscores the pressing need for alternative therapeutic agents. Antimicrobial peptides (AMPs) represent an alternative class of antibiotics. AMPs are essential immunomodulatory molecules that are found in various organisms. They play a pivotal role in managing microbial ecosystems and bolstering innate immunity by targeting and eliminating invading microorganisms. AMPs also have applications in the agriculture sector by combating animal as well as plant pathogens. AMPs can be exploited for the targeted therapy of various diseases and can also be used in drug-delivery systems. They can be used in synergy with current treatments like antibiotics and can potentially lead to a lower required dosage. AMPs also have huge potential in wound healing and regenerative medicine. Developing AMP-based strategies with improved safety, specificity, and efficacy is crucial in the battle against alarming global microbial resistance. This review will explore AMPs' increasing applicability, their mode of antimicrobial activity, and various delivery systems enhancing their stability and efficacy.
Collapse
Affiliation(s)
- Insha Mehraj
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Nulevino Iralu
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 05466, India
| |
Collapse
|
7
|
Scotti R, Casciaro B, Stringaro A, Maggi F, Colone M, Gabbianelli R. Fighting Microbial Infections from Escherichia coli O157:H7: The Combined Use of Three Essential Oils of the Cymbopogon Genus and a Derivative of Esculentin-1a Peptide. Antibiotics (Basel) 2024; 13:86. [PMID: 38247645 PMCID: PMC10812396 DOI: 10.3390/antibiotics13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The absence of effective therapy against Escherichia coli O157:H7 infections has led to the need to develop new antimicrobial agents. As the use of synergistic combinations of natural antimicrobial compounds is growing as a new weapon in the fight against multidrug-resistant bacteria, here, we have tested new synergistic combinations of natural agents. Notably, we investigated a possible synergistic effect of combinations of essential oils and natural peptides to counteract the formation of biofilm. We chose three essential oils (i.e., Cymbopogon citratus, C. flexuosus and C. martinii) and one peptide already studied in our previous works. We determined the fractional inhibitory concentration (FIC) by analyzing the combination of the peptide derived from esculentin-1a, Esc(1-21), with the three essential oils. We also studied the effects of combinations by time-kill curves, scanning electron microscopy on biofilm and Sytox Green on cell membrane permeability. Finally, we analyzed the expression of different genes implicated in motility, biofilm formation and stress responses. The results showed a different pattern of gene expression in bacteria treated with the mixtures compared to those treated with the peptide or the single C. citratus essential oil. In conclusion, we demonstrated that the three essential oils used in combination with the peptide showed synergy against the E. coli O157:H7, proving attractive as an alternative strategy against E. coli pathogen infections.
Collapse
Affiliation(s)
- Raffaella Scotti
- Biological Service, Italian National Institute of Health, 00161 Rome, Italy;
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (A.S.); (M.C.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (A.S.); (M.C.)
| | - Roberta Gabbianelli
- Biological Service, Italian National Institute of Health, 00161 Rome, Italy;
| |
Collapse
|
8
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
9
|
Wang Y, Song Y, Yan S, Hiramine R, Ohnishi Y, Yokoi Y, Nakamura K, Kikukawa T, Ayabe T, Aizawa T. Antimicrobial Properties and Mode of Action of Cryptdin-4, a Mouse α-Defensin Regulated by Peptide Redox Structures and Bacterial Cultivation Conditions. Antibiotics (Basel) 2023; 12:1047. [PMID: 37370366 DOI: 10.3390/antibiotics12061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Cryptdin-4 (crp4) is an enteric α-defensin derived from mice, and is a main mediator of immunity to oral infections and a determinant of the composition of the intestinal microbiota. Structurally, crp4 exists in two states: the oxidized form (crp4oxi), constrained by three invariant disulfide bonds, and the reduced form (crp4red) with six free thiol groups, both of which exist in the intestinal tract. In this study, the antibacterial mechanisms of crp4 in both forms under aerobic and anaerobic conditions were investigated using Escherichia coli (E. coli), an anaerobic facultative bacterium, as a model. Fluorescent dye studies revealed that both crp4oxi and crp4red exhibited antimicrobial activity against cells cultured under aerobic conditions via rapid membrane depolarization. Furthermore, the antioxidant treatment experiments suggested that only crp4oxi exhibited antimicrobial activity by the induction and accumulation of reactive oxygen species (ROS). However, under anaerobic culture conditions, the ability of both forms to disrupt the function of bacterial membranes decreased and activity was greatly reduced, but crp4red maintained some antimicrobial activity. This activity may be due to the inhibition of intracellular functions by DNA binding. Altogether, these data indicate that, according to its redox structure and the environmental redox conditions, crp4 could perform different antimicrobial activities via different mechanisms.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuchi Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shaonan Yan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Rina Hiramine
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
11
|
Nicoleti JL, Braga ES, Stanisic D, Jadranin M, Façanha DAE, Barral TD, Hanna SA, Azevedo V, Meyer R, Tasic L, Portela RW. A serum NMR metabolomic analysis of the Corynebacterium pseudotuberculosis infection in goats. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12595-0. [PMID: 37219572 DOI: 10.1007/s00253-023-12595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Caseous lymphadenitis (CLA), an infectious disease caused by Corynebacterium pseudotuberculosis in small ruminants, is highly prevalent worldwide. Economic losses have already been associated with the disease, and little is known about the host-pathogen relationship associated with the disease. The present study aimed to perform a metabolomic study of the C. pseudotuberculosis infection in goats. Serum samples were collected from a herd of 173 goats. The animals were classified as controls (not infected), asymptomatic (seropositives but without detectable CLA clinical signs), and symptomatic (seropositive animals presenting CLA lesions), according to microbiological isolation and immunodiagnosis. The serum samples were analyzed using nuclear magnetic resonance (1H-NMR), nuclear Overhauser effect spectroscopy (NOESY), and Carr-Purcell-Meiboom-Gill (CPMG) sequences. The NMR data were analyzed using chemometrics, and principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were performed to discover specific biomarkers responsible for discrimination between the groups. A high dissemination of the infection by C. pseudotuberculosis was observed, being 74.57% asymptomatic and 11.56% symptomatic. In the evaluation of 62 serum samples by NMR, the techniques were satisfactory in the discrimination of the groups, being also complementary and mutually confirming, demonstrating possible biomarkers for the infection by the bacterium. Twenty metabolites of interest were identified by NOESY and 29 by CPMG, such as tryptophan, polyunsaturated fatty acids, formic acid, NAD+, and 3-hydroxybutyrate, opening promising possibilities for the use of these results in new therapeutic, immunodiagnosis, and immunoprophylactic tools, as well as for studies of the immune response against C. pseudotuberculosis. KEY POINTS: • Sixty-two samples from healthy, CLA asymptomatic, and symptomatic goats were screened • Twenty metabolites of interest were identified by NOESY and 29 by CPMG • 1H-NMR NOESY and CPMG were complementary and mutually confirming.
Collapse
Affiliation(s)
- Jorge Luis Nicoleti
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Erik Sobrinho Braga
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Milka Jadranin
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000, Belgrade, Serbia
| | - Débora Andréa Evangelista Façanha
- Institute of Rural Development, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, Ceará State, 62790-000, Brazil
| | - Thiago Doria Barral
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Samira Abdallah Hanna
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo State, 13083-970, Brazil
| | - Ricardo Wagner Portela
- Laboratório de Imunologia E Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia State, 40231-300, Brazil.
| |
Collapse
|
12
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
13
|
Sharma L, Bisht GS. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements. Curr Pharm Des 2023; 29:3005-3017. [PMID: 38018196 DOI: 10.2174/0113816128248959231102114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
14
|
Akbarian M, Chen SH, Kianpour M, Farjadian F, Tayebi L, Uversky VN. A review on biofilms and the currently available antibiofilm approaches: Matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol 2022; 219:1163-1179. [PMID: 36058386 DOI: 10.1016/j.ijbiomac.2022.08.192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Biofilms are communities of microorganisms that can be harmful and/or beneficial, depending on location and cell content. Since in most cases (such as the formation of biofilms in laboratory/medicinal equipment, water pipes, high humidity-placed structures, and the food packaging machinery) these bacterial and fungal communities are troublesome, researchers in various fields are trying to find a promising strategy to destroy or slow down their formation. In general, anti-biofilm strategies are divided into the plant-based and non-plant categories, with the latter including nanoparticles, bacteriophages, enzymes, surfactants, active peptides and free fatty acids. In most cases, using a single strategy will not be sufficient to eliminate biofilm, and consequently, two or more strategies will inevitably be used to deal with this unwanted phenomenon. According to the analysis of potential biofilm inhibition strategies, the best option for the food industry would be the use of hydrolase enzymes and peptides extracted from natural sources. This article represents a systematic review of the previous efforts made in these directions.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia.
| |
Collapse
|
15
|
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment. Pharmaceutics 2022; 14:pharmaceutics14091956. [PMID: 36145704 PMCID: PMC9502522 DOI: 10.3390/pharmaceutics14091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
Collapse
|
16
|
Bhat RAH, Thakuria D, Tandel RS, Khangembam VC, Dash P, Tripathi G, Sarma D. Tools and techniques for rational designing of antimicrobial peptides for aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1033-1050. [PMID: 35872334 DOI: 10.1016/j.fsi.2022.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Fisheries and aquaculture industries remain essential sources of food and nutrition for millions of people worldwide. Indiscriminate use of antibiotics has led to the emergence of antimicrobial-resistant bacteria and posed a severe threat to public health. Researchers have opined that antimicrobial peptides (AMPs) can be the best possible alternative to curb the rising tide of antimicrobial resistance in aquaculture. AMPs may also help to achieve the objectives of one health approach. The natural AMPs are associated with several shortcomings, like less in vivo stability, toxicity to host cell, high cost of production and low potency in a biological system. In this review, we have provided a comprehensive outline about the strategies for designing synthetic mimics of natural AMPs with high potency. Moreover, the freely available AMP databases and the information about the molecular docking tools are enlisted. We also provided in silico template for rationally designing the AMPs from fish piscidins or other peptides. The rationally designed piscidin (rP1 and rp2) may be used to tackle microbial infections in aquaculture. Further, the protocol can be used to develop the truncated mimics of natural AMPs having more potency and protease stability.
Collapse
Affiliation(s)
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | | | - Victoria C Khangembam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pragyan Dash
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| |
Collapse
|
17
|
Antibacterial Peptide NP-6 Affects Staphylococcus aureus by Multiple Modes of Action. Int J Mol Sci 2022; 23:ijms23147812. [PMID: 35887160 PMCID: PMC9319634 DOI: 10.3390/ijms23147812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Our previous study extracted and identified an antibacterial peptide that was named NP-6. Herein, we investigated the physicochemical properties of NP-6, and elucidated the mechanisms underlying its antimicrobial activity against Staphylococcus aureus. The results showed that the hemolysis activity of NP-6 was 2.39 ± 0.13%, lower than Nisin A (3.91 ± 0.43%) at the same concentration (512 µg/mL). Negligible cytotoxicity towards RAW264.7 cells was found when the concentration of NP-6 was lower than 512 µg/mL. In addition, it could keep most of its activity in fetal bovine serum. Moreover, transmission electron microscopy, confocal laser scanning microscopy, and flow cytometry results showed that NP-6 can destroy the integrity of the bacterial cell membrane and increase the membrane permeability. Meanwhile, NP-6 had binding activity with bacterial DNA and RNA in vitro and strongly inhibited the intracellular β-galactosidase activity of S. aureus. Our findings suggest that NP-6 could be a promising candidate against S. aureus.
Collapse
|
18
|
Oyama LB, Olleik H, Teixeira ACN, Guidini MM, Pickup JA, Hui BYP, Vidal N, Cookson AR, Vallin H, Wilkinson T, Bazzolli DMS, Richards J, Wootton M, Mikut R, Hilpert K, Maresca M, Perrier J, Hess M, Mantovani HC, Fernandez-Fuentes N, Creevey CJ, Huws SA. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. NPJ Biofilms Microbiomes 2022; 8:58. [PMID: 35835775 PMCID: PMC9283466 DOI: 10.1038/s41522-022-00320-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections.
Collapse
Affiliation(s)
- Linda B. Oyama
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Hamza Olleik
- grid.6227.10000000121892165CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Sorbonne Universités, Rue du Docteur Schweitzer, CS 60319, CEDEX, 60203 Compiègne, France
| | - Ana Carolina Nery Teixeira
- grid.12799.340000 0000 8338 6359Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900 Brasil
| | - Matheus M. Guidini
- grid.12799.340000 0000 8338 6359Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900 Brasil
| | - James A. Pickup
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Brandon Yeo Pei Hui
- University College Fairview (UCF), 4178, Jalan 1/27D, Section 6, Wangsa Maju, 53300 Kuala Lumpur, Malaysia
| | - Nicolas Vidal
- grid.5399.60000 0001 2176 4817Yelen Analytics, Aix-Marseille University ICR, 13013 Marseille, France
| | - Alan R. Cookson
- grid.8186.70000 0001 2168 2483Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA UK
| | - Hannah Vallin
- grid.8186.70000 0001 2168 2483Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA UK
| | - Toby Wilkinson
- grid.4305.20000 0004 1936 7988The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Denise M. S. Bazzolli
- grid.12799.340000 0000 8338 6359Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900 Brasil
| | - Jennifer Richards
- grid.241103.50000 0001 0169 7725Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW UK
| | - Mandy Wootton
- grid.241103.50000 0001 0169 7725Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW UK
| | - Ralf Mikut
- grid.7892.40000 0001 0075 5874Karlsruhe Institute of Technology, Institute for Automation and Applied Informatics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein, Leopoldshafen Germany
| | - Kai Hilpert
- grid.4464.20000 0001 2161 2573Institute of Infection and Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Marc Maresca
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Josette Perrier
- grid.5399.60000 0001 2176 4817Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Matthias Hess
- grid.27860.3b0000 0004 1936 9684UC Davis, College of Agricultural and Environmental Sciences, California, 95616 CA USA
| | - Hilario C. Mantovani
- grid.12799.340000 0000 8338 6359Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900 Brasil
| | - Narcis Fernandez-Fuentes
- grid.8186.70000 0001 2168 2483Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA UK
| | - Christopher J. Creevey
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| | - Sharon A. Huws
- grid.4777.30000 0004 0374 7521Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL UK
| |
Collapse
|
19
|
Lopes BS, Hanafiah A, Nachimuthu R, Muthupandian S, Md Nesran ZN, Patil S. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance. Molecules 2022; 27:molecules27092995. [PMID: 35566343 PMCID: PMC9105241 DOI: 10.3390/molecules27092995] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Just over a million people died globally in 2019 due to antibiotic resistance caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The World Health Organization (WHO) also lists antibiotic-resistant Campylobacter and Helicobacter as bacteria that pose the greatest threat to human health. As it is becoming increasingly difficult to discover new antibiotics, new alternatives are needed to solve the crisis of antimicrobial resistance (AMR). Bacteria commonly found in complex communities enclosed within self-produced matrices called biofilms are difficult to eradicate and develop increased stress and antimicrobial tolerance. This review summarises the role of antimicrobial peptides (AMPs) in combating the silent pandemic of AMR and their application in clinical medicine, focusing on both the advantages and disadvantages of AMPs as antibiofilm agents. It is known that many AMPs display broad-spectrum antimicrobial activities, but in a variety of organisms AMPs are not stable (short half-life) or have some toxic side effects. Hence, it is also important to develop new AMP analogues for their potential use as drug candidates. The use of one health approach along with developing novel therapies using phages and breakthroughs in novel antimicrobial peptide synthesis can help us in tackling the problem of AMR.
Collapse
Affiliation(s)
- Bruno S. Lopes
- Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence: (B.S.L.); (A.H.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
- Correspondence: (B.S.L.); (A.H.)
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, Department of Biomedical Sciences, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, India;
| | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India;
| | - Zarith Nameyrra Md Nesran
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, China;
| |
Collapse
|
20
|
Gu D, Nan Q, Miao Y, Yang H, Li M, Ye Y, Miao J. KT2 alleviates ulcerative colitis by reducing Th17 cell differentiation through the miR-302c-5p/STAT3 axis. Eur J Cell Biol 2022; 101:151223. [PMID: 35405463 DOI: 10.1016/j.ejcb.2022.151223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The abnormal differentiation of Th17 cells aggravates ulcerative colitis (UC). Antimicrobial peptides (AMPs) exert pivotal protection functions against UC. KT2 is a cationic AMP that mediates colon cancer development. However, KT2's function in UC remains unclear. METHODS The UC mouse model was induced by administering 2.5% dextran sulfate sodium, and the mice were given an enema of KT2. KT2's function in UC and Th17 cell differentiation in vivo was evaluated through various molecular experiments. The KT2's function in Th17 cell differentiation in vitro was evaluated by the proportion of CD4+ IL-17+ T cells, IL-17 levels, and RORγt expression levels. Meanwhile, the mechanism was assessed through quantitative real-time PCR, various loss-of-function assays, and dual-luciferase reporter gene assay. RESULTS KT2 restrained Th17 cell differentiation in both in vivo and in vitro UC models and slowed the UC process. KT2 elevated miR-302c-5p expression, as well as restrained Th17 cell differentiation by increasing miR-302c-5p. Meanwhile, miR-302c-5p interacted with the signal transducer and activator of transcription 3 (STAT3) and negatively regulated its expression. Furthermore, our data revealed that KT2 restrained the activation of STAT3 by elevating miR-302c-5p, thereby inhibiting Th17 cell differentiation. CONCLUSION KT2 alleviates UC by repressing Th17 cell differentiation through the miR-302c-5p/STAT3 axis.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Qiong Nan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China.
| |
Collapse
|
21
|
Bhat RAH, Khangembam VC, Thakuria D, Pant V, Tandel RS, Tripathi G, Sarma D. Antimicrobial Activity of an Artificially Designed Peptide Against Fish Pathogens. Microbiol Res 2022; 260:127039. [DOI: 10.1016/j.micres.2022.127039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022]
|
22
|
Zhang J, Gu S, Zhang T, Wu Y, Ma J, Zhao L, Li X, Zhang J. Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022; 27:molecules27041426. [PMID: 35209215 PMCID: PMC8880037 DOI: 10.3390/molecules27041426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Monruedee Konkchaiyaphum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
24
|
López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022; 27:1343. [PMID: 35209132 PMCID: PMC8878547 DOI: 10.3390/molecules27041343] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life-bacteria, fungi, plants, amphibians, insects, birds and mammals-and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.
Collapse
Affiliation(s)
- Guadalupe López-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Octavio Dublan-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Daniel Arizmendi-Cotero
- Department of Industrial Engineering, Engineering Faculty, Campus Toluca, Universidad Tecnológica de México (UNITEC), Estado de México, Toluca 50160, Mexico;
| | - Leobardo Manuel Gómez Oliván
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| |
Collapse
|
25
|
Maijaroen S, Klaynongsruang S, Reabroi S, Chairoungdua A, Roytrakul S, Daduang J, Taemaitree L, Jangpromma N. Proteomic profiling reveals antitumor effects of RT2 peptide on a human colon carcinoma xenograft mouse model. Eur J Pharmacol 2022; 917:174753. [PMID: 35032485 DOI: 10.1016/j.ejphar.2022.174753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
A comparative study of human colon HCT-116 xenograft in nude mice treated with and without peptide RT2 at high doses is performed along with a label-free proteomic analysis of the tissue in order to understand the potential mechanisms by which RT2 acts in vivo against colorectal tumors. RT2 displays no significant systematic toxicity, but reduces tumor growth after either intraperitoneal or intratumoral injection demonstrating it is a safe and efficacious antitumor agent in vivo. Of the 3196 proteins identified by label-free proteomics, 61 proteins appear only in response to RT2 and are involved in cellular processes largely localized in the cells and cell parts. Some of the proteins identified, including CFTR, Wnt7a, TIA1, PADI2, NRBP2, GADL1, LZIC, TLR6, and GPR37, have been reported to suppress tumor growth and are associated with cell proliferation, invasion, metastasis, angiogenesis, apoptosis, and immune evasion. Our work supports their role as tumor biomarkers and reveals RT2 has a complex mechanism of action in vivo.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somrudee Reabroi
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
26
|
Rungsa P, Peigneur S, Jangpromma N, Klaynongsruang S, Tytgat J, Daduang S. In Silico and In Vitro Structure-Activity Relationship of Mastoparan and Its Analogs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020561. [PMID: 35056876 PMCID: PMC8779355 DOI: 10.3390/molecules27020561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
- Correspondence: (J.T.); (S.D.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (J.T.); (S.D.)
| |
Collapse
|
27
|
Maraming P, Daduang J, Kah JCY. Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Adv 2021; 12:319-325. [PMID: 35424498 PMCID: PMC8978663 DOI: 10.1039/d1ra05980g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
One of the major weaknesses of therapeutic peptides is their sensitivity to degradation by proteolytic enzymes in vivo. Gold nanoparticles (GNPs) are a good carrier for therapeutic peptides to improve their stability and cellular uptake in vitro and in vivo. We conjugated the anticancer KT2 peptide as an anticancer peptide model to PEGylated GNPs (GNPs-PEG) and investigated the peptide stability, cellular uptake and ability of the GNPs-KT2-PEG conjugates to induce MDA-MB-231 human breast cancer cell death. We found that 11 nm GNPs protected the conjugated KT2 peptide from trypsin proteolysis, keeping it stable up to 0.128% trypsin, which is higher than the serum trypsin concentration (range 0.0000285 ± 0.0000125%) reported by Lake-Bakaar, G. et al., 1979. GNPs significantly enhanced the cellular uptake of KT2 peptides after conjugation. Free KT2 peptides pretreated with trypsin were not able to kill MDA-MB-231 cells due to proteolysis, while GNPs-KT2-PEG was still able to exert effective cancer cell killing after trypsin treatment at levels comparable to GNPs-KT2-PEG without enzyme pretreatment. The outcome of this study highlights the utility of conjugated anticancer peptides on nanoparticles to improve peptide stability and retain anticancer ability. One of the major weaknesses of therapeutic peptides is their sensitivity to degradation by proteolytic enzymes in vivo.![]()
Collapse
Affiliation(s)
- Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002 Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University Khon Kaen 40002 Thailand
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore 4 Engineering Drive 3, Blk E4, #04-08 Singapore 117583
| |
Collapse
|
28
|
Vergis J, Malik SVS, Pathak R, Kumar M, Sunitha R, Barbuddhe SB, Rawool DB. Efficacy of Indolicidin, Cecropin A (1-7)-Melittin (CAMA) and Their Combination Against Biofilm-Forming Multidrug-Resistant Enteroaggregative Escherichia coli. Probiotics Antimicrob Proteins 2021; 12:705-715. [PMID: 31485973 DOI: 10.1007/s12602-019-09589-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study examined the anti-biofilm efficacy of two short-chain antimicrobial peptides (AMPs), namely, indolicidin and cecropin A (1-7)-melittin (CAMA) against biofilm-forming multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC) isolates. The typical EAEC isolates re-validated by PCR and confirmed using HEp-2 cell adherence assay was subjected to antibiotic susceptibility testing to confirm its MDR status. The biofilm-forming ability of MDR-EAEC isolates was assessed by Congo red binding, microtitre plate assays and hydrophobicity index; broth microdilution technique was employed to determine minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs). The obtained MIC and MBEC values for both AMPs were evaluated alone and in combination against MDR-EAEC biofilms using crystal violet (CV) staining and confocal microscopy-based live/dead cell quantification methods. All the three MDR-EAEC strains revealed weak to strong biofilm-forming ability and were found to be electron-donating and weakly electron-accepting (hydrophobicity index). Also, highly significant (P < 0.001) time-dependent hydrodynamic growth of the three MDR-EAEC strains was observed at 48 h of incubation in Dulbecco's modified Eagle's medium (DMEM) containing 0.45% D-glucose. AMPs and their combination were able to inhibit the initial biofilm formation at 24 h and 48 h as evidenced by CV staining and confocal quantification. Further, the application of AMPs (individually and combination) against the preformed MDR-EAEC biofilms resulted in highly significant eradication (P < 0.001) at 24 h post treatment. However, significant differences were not observed between AMP treatments (individually or in combination). The AMPs seem to be an effective candidates for further investigations such as safety, stability and appropriate biofilm-forming MDR-EAEC animal models.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S V S Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - R Sunitha
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S B Barbuddhe
- ICAR-National Research Centre on Meat, Chengicherla, Telangana, 500092, India
| | - Deepak B Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
29
|
Maraming P, Klaynongsruang S, Boonsiri P, Peng SF, Daduang S, Rungsa P, Tavichakorntrakool R, Chung JG, Daduang J. Anti-metastatic Effects of Cationic KT2 Peptide (a Lysine/Tryptophan-rich Peptide) on Human Melanoma A375.S2 Cells. In Vivo 2021; 35:215-227. [PMID: 33402468 DOI: 10.21873/invivo.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM KT2 is a lysine/tryptophan-rich peptide modified from Crocodylus siamensis Leucrocin I. In this study, we examined the cell toxicity, cellular uptake, anti-migration and anti-invasion activities of KT2 in A375.S2 human melanoma cells. MATERIALS AND METHODS A375.S2 cells were treated with KT2 peptide and then we performed MTT assay, study of cellular uptake by a confocal microscope, wound healing assay, transwell migration/invasion assay, and evaluation of the expression of metastasis-associated proteins. RESULTS KT2 can be internalized through the plasma membrane and can slightly alter cell morphology, decrease the percentage of viable cells and inhibit cell migration and invasion of A375.S2 cells in a dose-dependent manner. This peptide suppressed MMP-2 activity, as measured by gelatine zymography assay. The protein level of MMP-2 was decreased by KT2. KT2 also down-regulated metastasis pathway-related molecules, including FAK, RhoA, ROCK1, GRB2, SOS-1, p-JNK, p-c-Jun, PI3K, p-AKT (Thr308), p-AKT (Ser473), p-p38, MMP-9, NF-kB, and uPA. CONCLUSION These results indicate that KT2 inhibits the migration and invasion of human melanoma cells by decreasing MMP-2 and MMP-9 expression through inhibition of FAK, uPA, MAPK, PI3K/AKT NF-kB, and RhoA-ROCK signalling pathways. These findings suggest that KT2 deserves further investigation as an anti-metastatic agent for human melanoma.
Collapse
Affiliation(s)
- Pornsuda Maraming
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Prapenpuksiri Rungsa
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ratree Tavichakorntrakool
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
30
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
31
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
32
|
Hemmati F, Rezaee MA, Ebrahimzadeh S, Yousefi L, Nouri R, Kafil HS, Gholizadeh P. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 2021; 63:569-586. [PMID: 33914260 DOI: 10.1007/s12033-021-00325-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Ebrahimzadeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Leila Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Ning HQ, Li YQ, Lin H, Wang JX. Apoptosis-induction effect of ε-poly-lysine against Staphylococcus aureus and its application on pasteurized milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Khan AA, Manzoor KN, Sultan A, Saeed M, Rafique M, Noushad S, Talib A, Rentschler S, Deigner HP. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. Int J Mol Sci 2021; 22:E859. [PMID: 33467089 PMCID: PMC7830236 DOI: 10.3390/ijms22020859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Life-threatening bacterial infections have been managed by antibiotics for years and have significantly improved the wellbeing and lifetime of humans. However, bacteria have always been one step ahead by inactivating the antimicrobial agent chemically or by producing certain enzymes. The alarming universal occurrence of multidrug-resistant (MDR) bacteria has compelled researchers to find alternative treatments for MDR infections. This is a menace where conventional chemotherapies are no longer promising, but several novel approaches could help. Our current review article discusses the novel approaches that can combat MDR bacteria: starting off with potential nanoparticles (NPs) that efficiently interact with microorganisms causing fatal changes in the morphology and structure of these cells; nanophotothermal therapy using inorganic NPs like AuNPs to destroy pathogenic bacterial cells; bacteriophage therapy against which bacteria develop less resistance; combination drugs that act on dissimilar targets in distinctive pathways; probiotics therapy by the secretion of antibacterial chemicals; blockage of quorum sensing signals stopping bacterial colonization, and vaccination against resistant bacterial strains along with virulence factors. All these techniques show us a promising future in the fight against MDR bacteria, which remains the greatest challenge in public health care.
Collapse
Affiliation(s)
- Abid Ali Khan
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Khanzadi Nazneen Manzoor
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Aamir Sultan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Maria Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Mahrukh Rafique
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Sameen Noushad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; (K.N.M.); (A.S.); (M.S.); (M.R.); (S.N.)
| | - Ayesha Talib
- Mechano(bio)chem Department, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, Golm, 14476 Potsdam, Germany;
| | - Simone Rentschler
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
| | - Hans-Peter Deigner
- Center for Precision Medicine, Hochschule Furtwangen University, Jakob-Kienzle-Str. 17, 78054 Villingen-Schwenningen, Germany;
- Max Planck Institute of Colloids and Interfaces, Leipzig, Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
35
|
Zhang R, Fan X, Jiang X, Zou M, Xiao H, Wu G. Multiple Mechanisms of the Synthesized Antimicrobial Peptide TS against Gram-Negative Bacteria for High Efficacy Antibacterial Action In Vivo. Molecules 2020; 26:molecules26010060. [PMID: 33374458 PMCID: PMC7795306 DOI: 10.3390/molecules26010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
The emergence of drug-resistant bacteria emphasizes the urgent need for novel antibiotics. The antimicrobial peptide TS shows extensive antibacterial activity in vitro and in vivo, especially in gram-negative bacteria; however, its antibacterial mechanism is unclear. Here, we find that TS without hemolytic activity disrupts the integrity of the outer bacterial cell membrane by displacing divalent cations and competitively binding lipopolysaccharides. In addition, the antimicrobial peptide TS can inhibit and kill E. coli by disintegrating the bacteria from within by interacting with bacterial DNA. Thus, antimicrobial peptide TS’s multiple antibacterial mechanisms may not easily induce bacterial resistance, suggesting use as an antibacterial drug to be for combating bacterial infections in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
| | - Xiaobo Fan
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
| | - Xinglu Jiang
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
| | - Mingyuan Zou
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
| | - Han Xiao
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
| | - Guoqiu Wu
- Medical School, Southeast University, Nanjing 210009, China; (R.Z.); (X.F.); (X.J.); (M.Z.); (H.X.)
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
- Department of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-83272503
| |
Collapse
|
36
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
37
|
The introduction of L-phenylalanine into antimicrobial peptide protonectin enhances the selective antibacterial activity of its derivative phe-Prt against Gram-positive bacteria. Amino Acids 2020; 53:23-32. [PMID: 33236256 DOI: 10.1007/s00726-020-02919-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023]
Abstract
Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of L-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.
Collapse
|
38
|
Kong X, Song W, Hua Y, Li X, Chen Y, Zhang C, Chen Y. Insights into the antibacterial activity of cottonseed protein-derived peptide against Escherichia coli. Food Funct 2020; 11:10047-10057. [PMID: 33135695 DOI: 10.1039/d0fo01279c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the study, antibacterial peptides were separated and identified from cottonseed protein hydrolysates and the interactions between antibacterial peptides and Escherichia coli were further investigated. Firstly, by using a combined strategy of Amberlite CG-50 ion exchange chromatography and reversed-phase high-performance liquid chromatography, three peptides with antibacterial activity were purified and identified, including HHRRFSLY, KFMPT, and RRLFSDY. Interestingly, HHRRFSLY and RRLFSDY exhibited higher inhibition activity with the IC50 value of 0.26 mg mL-1 and 0.58 mg mL-1 (p < 0.05), respectively. Flow cytometry results showed that the incubation of antibacterial peptides with E. coli could cause damage to the integrity of the E. coli cell membrane. Transmission electron microscopy and scanning electron microscopy results revealed the damage caused to the bacterial cell surface and the leakage of cytoplasmic content by the antibacterial peptides. Molecular docking studies indicated that HHRRFSLY, KFMPT, and RRLFSDY have a good binding affinity to the active sites of the surface protein (OmpF) mainly through a hydrogen bond and salt bridge. The results here showed that the antibacterial peptides derived from cottonseed protein could be used as a good choice for functional foods or related drugs, and also shed light on further studies of antibacterial mechanism.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shagaghi N, Clayton AHA, Aguilar MI, Lee TH, Palombo EA, Bhave M. Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. Int J Mol Sci 2020; 21:ijms21228624. [PMID: 33207639 PMCID: PMC7696940 DOI: 10.3390/ijms21228624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia;
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
- Correspondence: ; Tel.: +61-3-9214-5759
| |
Collapse
|
40
|
Al-Dhabi NA, Valan Arasu M, Vijayaraghavan P, Esmail GA, Duraipandiyan V, Kim YO, Kim H, Kim HJ. Probiotic and Antioxidant Potential of Lactobacillus reuteriLR12 and Lactobacillus lactisLL10 Isolated from Pineapple Puree and Quality Analysis of Pineapple-Flavored Goat Milk Yoghurt during Storage. Microorganisms 2020; 8:E1461. [PMID: 32977600 PMCID: PMC7598170 DOI: 10.3390/microorganisms8101461] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, studies have focused on the therapeutic properties of probiotics to eliminate pathogenic microorganisms associated with various diseases. Lactobacilli are important probiotics groups that have been found to possess many health-promoting activities. This study was carried out to isolate LactobacillusreuteriLR12 and L. lactisLL10 from pineapple puree. The invitro analysis to evaluate probiotic characteristics of the isolated bacteria included survival in bile and acid tolerance. The cell-free supernatant of L. reuteri LR12 was effective against various pathogenic bacteria and fungi compared with L. lactisLL10. These two bacterial strains have strong anti-biofilm activity (100%) against Enterococcus faecalis, Staphylococcus aureus, and Bacillus cereus. The bacterial strains exhibited adhesion properties to HT-29 cells (human colorectal adenocarcinoma). These bacteria showed DPPH- (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, scavenging of hydroxyl radical activity, superoxide radical scavenging activity, and reducing power activity in the range of 72% ± 3%to 89.3% ± 1.7%, 64% ± 2.7%to 66.8% ± 1.5%, 59.8% ± 4.1% to 63.8% ± 2.1%, and 60.4% ± 1.8%to 66.1% ± 3.3%, respectively. Pineapple puree was used as the starter culture with milk for 2 days for yogurt preparation. Pineapple puree increased flavor and showed the physicochemical properties of yogurt. The finding of the sensory evaluation revealed no significant change compared with the control, except the appearance of yogurt. These findings show that Lactobacilli and pineapple puree have potential use in various probiotic preparations for the fermentation industry.
Collapse
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.); (V.D.)
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.); (V.D.)
| | - Ponnuswamy Vijayaraghavan
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari District, Tamil Nadu 629 001, India;
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.); (V.D.)
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.A.A.-D.); (M.V.A.); (G.A.E.); (V.D.)
| | - Young Ock Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Korea;
| | - Hyungsuk Kim
- Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Korea;
| |
Collapse
|
41
|
Montis C, Joseph P, Magnani C, Marín-Menéndez A, Barbero F, Estrada AR, Nepravishta R, Angulo J, Checcucci A, Mengoni A, Morris CJ, Berti D. Multifunctional nanoassemblies target bacterial lipopolysaccharides for enhanced antimicrobial DNA delivery. Colloids Surf B Biointerfaces 2020; 195:111266. [PMID: 32739771 DOI: 10.1016/j.colsurfb.2020.111266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
The development of new therapeutic strategies against multidrug resistant Gram-negative bacteria is a major challenge for pharmaceutical research. In this respect, it is increasingly recognized that an efficient treatment for resistant bacterial infections should combine antimicrobial and anti-inflammatory effects. Here, we explore the multifunctional therapeutic potential of nanostructured self-assemblies from a cationic bolaamphiphile, which target bacterial lipopolysaccharides (LPSs) and associates with an anti-bacterial nucleic acid to form nanoplexes with therapeutic efficacy against Gram-negative bacteria. To understand the mechanistic details of these multifunctional antimicrobial-anti-inflammatory properties, we performed a fundamental study, comparing the interaction of these nanostructured therapeutics with synthetic biomimetic bacterial membranes and live bacterial cells. Combining a wide range of experimental techniques (Confocal Microscopy, Fluorescence Correlation Spectroscopy, Microfluidics, NMR, LPS binding assays), we demonstrate that the LPS targeting capacity of the bolaamphiphile self-assemblies, comparable to that exerted by Polymixin B, is a key feature of these nanoplexes and one that permits entry of therapeutic nucleic acids in Gram-negative bacteria. These findings enable a new approach to the design of efficient multifunctional therapeutics with combined antimicrobial and anti-inflammatory effects and have therefore the potential to broadly impact fundamental and applied research on self-assembled nano-sized antibacterials for antibiotic resistant infections.
Collapse
Affiliation(s)
- Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Chiara Magnani
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | | | | | | | | | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | | | - Debora Berti
- Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
42
|
Jhong JH, Chi YH, Li WC, Lin TH, Huang KY, Lee TY. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res 2020; 47:D285-D297. [PMID: 30380085 PMCID: PMC6323920 DOI: 10.1093/nar/gky1030] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial peptides (AMPs), naturally encoded from genes and generally contained 10–100 amino acids, are crucial components of the innate immune system and can protect the host from various pathogenic bacteria, as well as viruses. In recent years, the widespread use of antibiotics has inspired the rapid growth of antibiotic-resistant microorganisms that usually induce critical infection and pathogenesis. An increasing interest therefore was motivated to explore natural AMPs that enable the development of new antibiotics. With the potential of AMPs being as new drugs for multidrug-resistant pathogens, we were thus motivated to develop a database (dbAMP, http://csb.cse.yzu.edu.tw/dbAMP/) by accumulating comprehensive AMPs from public domain and manually curating literature. Currently in dbAMP there are 12 389 unique entries, including 4271 experimentally verified AMPs and 8118 putative AMPs along with their functional activities, supported by 1924 research articles. The advent of high-throughput biotechnologies, such as mass spectrometry and next-generation sequencing, has led us to further expand dbAMP as a database-assisted platform for providing comprehensively functional and physicochemical analyses for AMPs based on the large-scale transcriptome and proteome data. Significant improvements available in dbAMP include the information of AMP–protein interactions, antimicrobial potency analysis for ‘cryptic’ region detection, annotations of AMP target species, as well as AMP detection on transcriptome and proteome datasets. Additionally, a Docker container has been developed as a downloadable package for discovering known and novel AMPs on high-throughput omics data. The user-friendly visualization interfaces have been created to facilitate peptide searching, browsing, and sequence alignment against dbAMP entries. All the facilities integrated into dbAMP can promote the functional analyses of AMPs and the discovery of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jhih-Hua Jhong
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Yu-Hsiang Chi
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Wen-Chi Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tsai-Hsuan Lin
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Kai-Yao Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- To whom correspondence should be addressed. Tel: +86 75523519551;
| |
Collapse
|
43
|
Afroz M, Akter S, Ahmed A, Rouf R, Shilpi JA, Tiralongo E, Sarker SD, Göransson U, Uddin SJ. Ethnobotany and Antimicrobial Peptides From Plants of the Solanaceae Family: An Update and Future Prospects. Front Pharmacol 2020; 11:565. [PMID: 32477108 PMCID: PMC7232569 DOI: 10.3389/fphar.2020.00565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/14/2020] [Indexed: 12/03/2022] Open
Abstract
The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%–38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.
Collapse
Affiliation(s)
- Mohasana Afroz
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Sanzida Akter
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Evelin Tiralongo
- School of Pharmacy and Pharmacology, Griffith University, Southport, QLD, Australia
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ulf Göransson
- Biomedical Center, Division of Pharmacognosy, Uppsala University, Uppsala, Sweden.,Biomedical Center, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
44
|
Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and Antibiofilm Peptides. Biomolecules 2020; 10:E652. [PMID: 32340301 PMCID: PMC7226136 DOI: 10.3390/biom10040652] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.
Collapse
Affiliation(s)
- Angela Di Somma
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
- Istituto Nazionale Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Antonio Moretta
- Dipartimento di Scienze, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | - Carolina Canè
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| | | | - Angela Duilio
- Dipartimento di Scienze Chimiche, Università Federico II, 80126 Naples, Italy; (A.D.S.); (C.C.)
| |
Collapse
|
45
|
Zhou Q, Hu Z, Du L, Liu F, Yuan K. Inhibition of Enterococcus faecalis Growth and Cell Membrane Integrity by Perilla frutescens Essential Oil. Foodborne Pathog Dis 2020; 17:547-554. [PMID: 32186920 DOI: 10.1089/fpd.2019.2771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some plant essential oils were reported to have antimicrobial activity and have the potential to replace chemical preservatives in food industry. In this study, the antibacterial activity and possible mechanism of Perilla frutescens essential oil (PEO) were evaluated using Enterococcus faecalis R612-Z1 as the target strain. The minimum inhibition concentration of PEO against E. faecalis was 0.5 μL/mL. The PEO solutions at the concentrations higher than minimum inhibition concentration had varying degrees of bactericidal effects against E. faecalis. With the addition of PEO, the cell membrane integrity was destroyed, the cell membrane potential was decreased, and the intracellular adenosine triphosphate loss was increased. By testing the bacterial counts and total volatile basic nitrogen contents in chicken breast meat, PEO can significantly inhibit the growth of E. faecalis. The results showed that PEO can be used as an effective natural food preservative during food storage.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhenyang Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| | - Lihui Du
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kang Yuan
- Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
46
|
Al Tall Y, Abualhaijaa A, Qaoud MT, Alsaggar M, Masadeh M, Alzoubi KH. The Ultrashort Peptide OW: A New Antibiotic Adjuvant. Curr Pharm Biotechnol 2020; 20:745-754. [PMID: 31258076 DOI: 10.2174/1389201020666190618111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The over use of current antibiotics and low discovery rate of the new ones are leading to rapid development of multidrug-resistant pathogens worldwide. Antimicrobial peptides have shown promising results against multidrug-resistant bacteria. OBJECTIVE To investigate the antimicrobial activity of a new ultrashort hexapeptide (OW). METHODS The OW hexapeptide was designed and tested against different strains of bacteria with different levels of sensitivity. Bacterial susceptibility assays were performed according to the guidelines of the Clinical and Laboratory Institute (CLSI). The synergistic studies were then conducted using the Checkerboard assay. This was followed by checking the hemolytic effect of the hexapeptide against human blood cells and Human Embryonic Kidney cell line (HEK293). Finally, the antibiofilm activities of the hexapeptide were studied using the Biofilm Calgary method. RESULTS Synergistic assays showed that OW has synergistic effects with antibiotics of different mechanisms of action. It showed an outstanding synergism with Rifampicin against methicillin resistant Staphylococcus aureus; ΣFIC value was 0.37, and the MIC value of Rifampicin was decreased by 85%. OW peptide also displayed an excellent synergism with Ampicillin against multidrug-resistant Pseudomonas aeruginosa, with ΣFIC value of less than 0.38 and a reduction of more than 96% in the MIC value of Ampicillin. CONCLUSION This study introduced a new ultrashort peptide (OW) with promising antimicrobial potential in the management of drug-resistant infectious diseases as a single agent or in combination with commonly used antibiotics. Further studies are needed to investigate the exact mechanism of action of these peptides.
Collapse
Affiliation(s)
- Yara Al Tall
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Abualhaijaa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed T Qaoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
47
|
Cao Y, Yin H, Wang W, Pei P, Wang Y, Wang X, Jiang J, Luo SZ, Chen L. Killing Streptococcus mutans in mature biofilm with a combination of antimicrobial and antibiofilm peptides. Amino Acids 2019; 52:1-14. [PMID: 31797056 DOI: 10.1007/s00726-019-02804-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
Biofilm poses a serious challenge for the treatment of bacterial infections, as it endows bacteria a pronounced resistance to traditional antibiotics. Antimicrobial peptides (AMPs) are considered potential substitutes for antibiotics. Combinational use of AMPs with other compounds to exert antibiofilm effects has been proved to be an effective means to reduce their toxicity and maximize their antimicrobial activity. However, the combination of various AMPs with different action mechanisms is rarely investigated. A newly designed lytic AMP ZXR-2.3 combined with antibiofilm peptide IDR-1018 or KT2 was tested for the antibiofilm effect on mature Streptococcus mutans biofilms. In general, the combination of ZXR-2.3 + IDR-1018 displayed synergistic effect on both biofilm eradication and bacterial killing, while ZXR-2.3 + KT2 showed no obvious synergism. The confocal images of preformed S. mutans biofilms confirmed the effective bactericidal activity of ZXR-2.3 + IDR-1018. A tube system was applied to investigate the biofilm infection under a flow of medium and SEM images indicated the biofilm disruption and bacterial killing effects of ZXR-2.3 + IDR-1018. Quantitative RT-PCR analysis showed that IDR-1018 induced dramatic changes in the mRNA expressions of the quorum sensing (QS) related genes comC, comD, vicR, and vicK of S. mutans in mature biofilms, whereas the other peptides and ciprofloxacin did not cause obvious changes in these genes. This might explain the better synergism of ZXR-2.3 and IDR-1018. The results of this study provide a potential application using the combination of different AMPs in the treatment of mature biofilm infection.
Collapse
Affiliation(s)
- Yimeng Cao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Huiwei Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wujun Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yin Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xinyu Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jianhui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar, Xinjiang, 843300, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
48
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
49
|
Theansungnoen T, Jangpromma N, Anwised P, Daduang S, Fukumori Y, Taoka A, Klaynongsruang S. Membranolytic Effects of KT2 on Gram-Negative Escherichia coli Evaluated by Atomic Force Microscopy. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
|