1
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
2
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Fathi F, Alizadeh B, Tabarzad MV, Tabarzad M. Important structural features of antimicrobial peptides towards specific activity: Trends in the development of efficient therapeutics. Bioorg Chem 2024; 149:107524. [PMID: 38850782 DOI: 10.1016/j.bioorg.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Proteins and peptides, as polypeptide chains, have usually got unique conformational structures for effective biological activity. Antimicrobial peptides (AMPs) are a group of bioactive peptides, which have been increasingly studied during recent years for their promising antibacterial, antifungal, antiviral and anti-inflammatory activity, as well as, other esteemed bioactivities. Numerous AMPs have been separated from a wide range of natural resources, or produced in vitro through chemical synthesis and recombinant protein expression. Natural AMPs have had limited clinical application due to several drawbacks, such as their short half-life due to protease degradation, lack of activity at physiological salt concentrations, toxicity to mammalian cells, and the absence of suitable methods of delivery for the AMPs that are targeted and sustained. The creation of synthetic analogs of AMPs would both avoid the drawbacks of the natural analogs and maintain or even increase the antimicrobial effectiveness. The structure-activity relationship of discovered AMPs or their derivatives facilitates the development of synthetic AMPs. This review discovered that the relationship between the activity of AMPs and their positive net charge, hydrophobicity, and amino acid sequence and the relationship between AMPs' function and other features like their topology, glycosylation, and halogenation.
Collapse
Affiliation(s)
- Fariba Fathi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bahareh Alizadeh
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vahid Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yang B, Li W, Mao Y, Zhao Y, Xue Y, Xu X, Zhao Y, Liu K. Study on antimicrobial activity of sturgeon skin mucus polypeptides (Rational Design, Self-Assembly and Application). Food Chem X 2024; 21:101236. [PMID: 38406763 PMCID: PMC10884804 DOI: 10.1016/j.fochx.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the favorable biocompatibility of natural antimicrobial peptides (AMPs), their scarcity limits their practical application. Through rational design, the activity of AMPs can be enhanced to expand their application. In this study, we selected a natural sturgeon epidermal mucus peptide, AP-16 (APATPAAPALLPLWLL), as the model molecule and studied its conformational regulation and antimicrobial activity through amino acid substitutions and N-terminal lipidation. The structural and morphological transitions of the peptide self-assemblies were investigated using circular dichroism and transmission electron microscopy. Following amino acid substitution, the conformation of AL-16 (AKATKAAKALLKLWLL) did not change. Following N-terminal alkylation, the C8-AL-16 and C12-AL-16 conformations changed from random coil to β-sheet or α-helix, and the self-assembly changed from nanofibers to nanospheres. AL-16, C8-AL-16, and C8-AL-16 presented significant antimicrobial activity against Pseudomonas and Shewanella at low concentrations. N-terminal alkylation effectively extended the shelf life of Litopenaeus vannamei. These results support the application of natural AMPs.
Collapse
Affiliation(s)
- Beining Yang
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Wei Li
- China Department of General Surgery, The District Hospital of Qingdao West Coast New Area, Qngdao, Shandong, China
| | - Yuxuan Mao
- National Engineering Research Center for Wheat and Corn Deep Processing, College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuanhui Zhao
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Yong Xue
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Yilin Zhao
- Sanya Oceanographic Institution /College of Food Science and Engineering, Ocean University of China, Sanya/Qingdao, China
- State Key Laboratory of Marine Food Processing & Safety Control, Ocean University of China, Qingdao, Shandong, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Xiamen, China
| |
Collapse
|
5
|
Purakkel U, Praveena G, Madabhushi VY, Jadav SS, Prakasham RS, Dasugari Varakala SG, Sriram D, Blanch EW, Maniam S. Thiazolotriazoles As Anti-infectives: Design, Synthesis, Biological Evaluation and In Silico Studies. ACS OMEGA 2024; 9:8846-8861. [PMID: 38434818 PMCID: PMC10905600 DOI: 10.1021/acsomega.3c06324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
The rational design of novel thiazolo[2,3-c][1,2,4]triazole derivatives was carried out based on previously identified antitubercular hit molecule H127 for discovering potent compounds showing antimicrobial activity. The designed compounds were screened for their binding efficacies against the antibacterial drug target enoyl-[acyl-carrier-protein] reductase, followed by prediction of drug-likeness and ADME properties. The designed analogues were chemically synthesized, characterized by spectroscopic techniques, followed by evaluation of antimicrobial activity against bacterial and fungal strains, as well as antitubercular activity against M. tuberculosis and M. bovis strains. Among the synthesized compounds, five compounds, 10, 11, 35, 37 and 38, revealed antimicrobial activity, albeit with differential potency against various microbial strains. Compounds 10 and 37 were the most active against S. mutans (MIC: 8 μg/mL), while compounds 11 and 37 showed the highest activity against B. subtillis (MIC: 16 μg/mL), whereas compounds 10, 11 and 37 displayed activities against E. coli (MIC: 16 μg/mL). Meanwhile, compounds 10 and 35 depicted activities against S. typhi (MIC: 16 μg/mL) and compound 10 showed antifungal activity against C. albicans (MIC: 32 μg/mL). The current study has identified two broad-spectrum antibacterial hit compounds (10 and 37). Further structural investigation on these molecules is underway to enhance their potency.
Collapse
Affiliation(s)
- Umadevi
Kizhakke Purakkel
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ganji Praveena
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Valli Y. Madabhushi
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reddy Shetty Prakasham
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | | | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
& Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ewan W. Blanch
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Subashani Maniam
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
6
|
Posa L, Tomek P, Lamba S, Sarojini V, Barker D. Development of truncated Battacin antimicrobials featuring novel N-terminal fatty acids with an excellent safety profile. Bioorg Med Chem Lett 2023; 96:129535. [PMID: 37871890 DOI: 10.1016/j.bmcl.2023.129535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Octapeptin B5 peptides containing a novel fatty acids have been found to have enhanced antibacterial activity against Staphylococcus aureus and also have an excellent safety profile. Cyclic lipopeptides such as the polymyxins and battacin are potent antibacterial agents. It has been shown that truncated, non-linear, versions of these agents (e.g. octapeptin B5) can retain the activity of the more complex cyclic compounds. In this work the synthesis of Octapeptin B5 peptides containing a range of novel fatty acids is reported. Many of these lipopeptides have been found to have enhanced antibacterial activity against Staphylococcus aureus compared to Octapeptin B5 whilst also having an excellent safety profile in haemolytic and cytotoxicity assays.
Collapse
Affiliation(s)
- Luka Posa
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Saurabh Lamba
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand; Macdiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand; Macdiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| |
Collapse
|
7
|
Han Z, Feng D, Wang W, Wang Y, Cheng M, Yang H, Liu Y. Influence of Fatty Acid Modification on the Anticancer Activity of the Antimicrobial Peptide Figainin 1. ACS OMEGA 2023; 8:41876-41884. [PMID: 37970064 PMCID: PMC10633881 DOI: 10.1021/acsomega.3c06806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Antimicrobial peptides derived from the skin secretions of amphibians have made important progress in tumor therapy due to their unique mechanism of destroying cell membranes. Figainin 1 (F1) is an 18-amino acid antimicrobial peptide from the skin secretions of Boana raniceps frogs. In a previous study, F1 was shown to inhibit cancer cell proliferation. F1 is composed entirely of natural amino acids; therefore, it is easily degraded by a variety of proteases, resulting in poor stability and a short half-life. In the present study, we used a fatty acid modification strategy to improve the stability of Figainin 1. Among the 8 peptides synthesized, A-10 showed the strongest antiproliferative activity against K562 cells and the other four tumor cell lines, and its stability against serum and proteinase K was improved compared with F1. We found that A-10 works through two mechanisms, cell membrane destruction and apoptosis, and can arrest the cell cycle in the G0/G1 phase. Moreover, A-10 exhibited self-assembly behavior. Overall, it is necessary to select a fatty acid with a suitable length for modification to improve the stability and antiproliferative activity of antimicrobial peptides. This study provides a good reference for the development of antimicrobial peptides as effective anticancer compounds.
Collapse
Affiliation(s)
- Zhenbin Han
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Feng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxuan Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
9
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Liu H, Wang L, Yao C. Optimization of Antibacterial Activity and Biosafety through Ultrashort Peptide/Cyclodextrin Inclusion Complexes. Int J Mol Sci 2023; 24:14801. [PMID: 37834247 PMCID: PMC10573328 DOI: 10.3390/ijms241914801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Engineered ultrashort peptides, serving as an alternative to natural antimicrobial peptides, offer benefits of simple and modifiable structures, as well as ease of assembly. Achieving excellent antibacterial performance and favorable biocompatibility through structural optimization remains essential for further applications. In this study, we assembled lipoic acid (LA)-modified tripeptide RWR (LA-RWR) with β-cyclodextrin (β-CD) to form nano-inclusion complexes. The free cationic tripeptide region in the nano-inclusion complex provided high antibacterial activity, while β-CD enhanced its biocompatibility. Compared with peptides (LA-RWR, LA-RWR-phenethylamine) alone, inclusion complexes exhibited lower minimum inhibitory concentrations/minimum bactericidal concentrations (MICs/MBCs) against typical Gram-negative/Gram-positive bacteria and fungi, along with improved planktonic killing kinetics and antibiofilm efficiency. The antibacterial mechanism of the nano-inclusion complexes was confirmed through depolarization experiments, outer membrane permeability experiments, and confocal laser scanning microscopy observations. Furthermore, biological evaluations indicated that the hemolysis rate of the inclusion complexes decreased to half or even lower at high concentrations, and cell viability was superior to that of the non-included peptides. Preliminary in vivo studies suggested that the inclusion complexes, optimized for antibacterial activity and biosafety, could be used as promising antibacterial agents for potential applications.
Collapse
Affiliation(s)
| | | | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; (H.L.); (L.W.)
| |
Collapse
|
11
|
Jahan I, Kumar SD, Shin SY, Lee CW, Shin SH, Yang S. Multifunctional Properties of BMAP-18 and Its Aliphatic Analog against Drug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1356. [PMID: 37895827 PMCID: PMC10609797 DOI: 10.3390/ph16101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BMAP-18, derived from the N-terminal region of bovine myeloid antimicrobial peptide BMAP-27, demonstrates potent antimicrobial activity without cytotoxicity. This study aimed to compare the antibacterial, antibiofilm, and anti-inflammatory properties of BMAP-18, rich in aromatic phenylalanine residues, with its aliphatic analog, BMAP-18-FL. Both aromatic BMAP-18 and aliphatic BMAP-18-FL exhibited equally potent antimicrobial activities against Gram-positive and Gram-negative bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Mechanistic investigations employing SYTOX green uptake, DNA binding, and FACScan analysis revealed that both peptides acted by inducing membrane permeabilization and subsequent intracellular targeting. Moreover, both BMAP-18 and BMAP-18-FL effectively prevented biofilm formation and eradicated existing biofilms of MRSA and MDRPA. Notably, BMAP-18-FL displayed a superior anti-inflammatory activity compared to BMAP-18, significantly reducing the expression levels of pro-inflammatory cytokines in lipopolysaccharide-stimulated macrophages. This study emphasizes the similarities and differences in the antimicrobial, antibiofilm, and anti-inflammatory properties between aromatic BMAP-18 and aliphatic BMAP-18-FL, providing valuable insights for the development of multifunctional antimicrobial peptides against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Sukumar Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sung-Heui Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
12
|
Yang L, Chen C, Liang T, Hao L, Gu Q, Xu H, Zhao Y, Jiang L, Fan X. Disassembling ability of lipopeptide promotes the antibacterial activity. J Colloid Interface Sci 2023; 649:535-546. [PMID: 37356155 DOI: 10.1016/j.jcis.2023.05.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Lipopeptides have become one of the most potent antibacterial agents, however, there is so far no consensus about the link between their physic-chemical properties and biological activity, in particular their inherent aggregation propensity and antibacterial potency. To this end, we here de novo design a series of lipopeptides (CnH(2n-1)O-(VVKK)2V-NH2), in which an alkyl chain is covalently attached onto the N-terminus of a short cationic peptide sequence with an alternating pattern of hydrophobic VV (Val) and positively charged KK (Lys) motifs. By varying the alkyl chain length (ortho-octanoic acid (C8), lauric acid (C12), and palmitic acid (C16)), the lipopeptides show distinct physicochemical properties and self-assembly behaviors, which have great effect on their antibacterial activities. C8H15O-(VVKK)2V-NH2, which contains the lowest hydrophobicity and surface activity has the lowest antibacterial activity. C12H23O-(VVKK)2V-NH2 and C16H31O-(VVKK)2V-NH2 both have high hydrophobicity and surface activity, and self-assembled into long nanofibers. However, the nanofibers formed by C12H23O-(VVKK)2V-NH2 disassembled by dilution, resulting in its high antibacterial activity via bacterial membrane disruption. Comparatively, the nanofibers formed by C16H31O-(VVKK)2V-NH2 were very stable, which can closely attach on bacterial surface but not permeate bacterial membrane, leading to its low antibacterial activity. Thus, the stability other than the morphologies of lipopeptides' nanostructures contribute to their antibacterial ability. Importantly, this study enhances our understanding of the antibacterial mechanisms of self-assembling lipopeptides that will be helpful in exploring their biomedical applications.
Collapse
Affiliation(s)
- Liuxin Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Liyun Hao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Qilong Gu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lixia Jiang
- Hospital of China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| |
Collapse
|
13
|
Secondary metabolic profiling of Serratia marcescens NP10 reveals new stephensiolides and glucosamine derivatives with bacterial membrane activity. Sci Rep 2023; 13:2360. [PMID: 36759548 PMCID: PMC9911388 DOI: 10.1038/s41598-023-28502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Secondary metabolic profiling, using UPLC-MSE and molecular networking, revealed the secondary metabolites produced by Serratia marcescens NP10. The NP10 strain co-produced cyclic and open-ring stephensiolides (i.e., fatty acyl chain linked to Thr-Ser-Ser-Ile/Leu-Ile/Leu/Val) and glucosamine derivatives (i.e., fatty acyl chain linked to Val-glucose-butyric/oxo-hexanoic acid), with the structures of sixteen new stephensiolides (L-Y) and three new glucosamine derivatives (L-N) proposed. Genome mining identified sphA (stephensiolides) and gcd (glucosamine derivatives) gene clusters within Serratia genomes available on NBCI using antiSMASH, revealing specificity scores of the adenylation-domains within each module that corroborates MSE data. Of the nine RP-HPLC fractions, two stephensiolides and two glucosamine derivatives exhibited activity against Staphylococcus aureus (IC50 of 25-79 µg/mL). 1H NMR analysis confirmed the structure of the four active compounds as stephensiolide K, a novel analogue stephensiolide U, and glucosamine derivatives A and C. Stephensiolides K and U were found to cause membrane depolarisation and affect the membrane permeability of S. aureus, while glucosamine derivatives A and C primarily caused membrane depolarisation. New members of the stephensiolide and glucosamine derivative families were thus identified, and results obtained shed light on their antibacterial properties and mode of membrane activity.
Collapse
|
14
|
Glossop HD, Sarojini V. Accessing the Thiol Toolbox: Synthesis and Structure-Activity Studies on Fluoro-Thiol Conjugated Antimicrobial Peptides. Bioconjug Chem 2023; 34:218-227. [PMID: 36524416 DOI: 10.1021/acs.bioconjchem.2c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The para-fluoro-thiol reaction (PFTR) is a modern name for the much older concept of a nucleophilic aromatic substitution reaction in which the para-position fluorine of a perfluorinated benzene moiety is substituted by a thiol. As a rapid and mild reaction, the PFTR is a useful technique for the post-synthetic modification of macromolecules like peptides on the solid phase. This reaction is of great potential since it allows for peptide chemists to access the vast catalogue of commercially available thiols with diverse structures to conjugate to peptides, which may impart favorable biological activity, particularly in antimicrobial sequences. This work covers the generation of a library of antimicrobial peptides by modifying a relatively inactive tetrapeptide with thiols of various structures using the PFTR to grant antimicrobial potency to the core sequence. In general, nucleophilic substitution of the peptide scaffold by hydrophobic thiols like cyclohexanethiol and octanethiol imparted the greatest antimicrobial activity over that of hydrophilic thiols bearing carboxylic acid or sugar moieties, which were ineffectual at improving the antimicrobial activity. The general trend here follows expected structure-activity relationship outcomes like that of changing the acyl group of lipopeptide antibiotics and is encouraging for the use of this reaction for structural modifications of antimicrobial sequences further.
Collapse
Affiliation(s)
- Hugh D Glossop
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
15
|
Ley-López N, Basilio Heredia J, San Martín-Hernández C, Ibarra-Rodríguez JR, Angulo-Escalante MÁ, García-Estrada RS. [Induced biosynthesis of fengycin and surfactin in a strain of Bacillus amyloliquefaciens with oomyceticidal activity on zoospores of Phytophthora capsici]. Rev Argent Microbiol 2022; 54:181-191. [PMID: 35597695 DOI: 10.1016/j.ram.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/04/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
A potential alternative to the use of chemical products with oomyceticidal action for the control of Phytophthora capsici in vegetables is the use of antimicrobial metabolites, biosynthesized in Bacillus species. The objective of this study was to induce the biosynthesis of lipopeptides in Bacillus amyloliquefaciens KX953161.1 by using glutamic acid, iron, cellulose, chitin, or inactive Colletotrichum spp. cells. The in vitro oomyceticidal effect of the bacterial lipopeptides on zoospores of Phytophthora capsici was evaluated. The lipopeptides identified and quantified in the crude extracts by high performance thin layer chromatography (HPTLC) were fengycin and surfactin. The bacterial culture with inactive fungal cells yielded the greatest biosynthesis of lipopeptides, at 1847.02± 11.8 and 2563.45± 18.4 μg/ml of fengycin and surfactin, respectively and the treatments that obtained lower production of these lipopeptides, were those to which iron and cellulose were added with 608.05 ± 22.6 and 903.74± 22.1; 563.31± 11.9 and 936.96± 41.1 μg/ml for fengicin and surfactin, respectively. The lipopeptide extracted showed 100% germination inhibition on zoospores of P. capsici, revealing encystment, malformations in the germ tube and cellular degradation. Lipopeptides have the potential to control P. capsici; however, the biosynthesis of these lipopeptides requires further study to determine their biological mode of action and optimize lipopeptide performance and profile.
Collapse
Affiliation(s)
- Nancy Ley-López
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | - José Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | | | - J Ramón Ibarra-Rodríguez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México
| | | | - Raymundo Saúl García-Estrada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación Culiacán (CIAD), Culiacán, Sinaloa, México.
| |
Collapse
|
16
|
Panjla A, Kaul G, Chopra S, Titz A, Verma S. Short Peptides and Their Mimetics as Potent Antibacterial Agents and Antibiotic Adjuvants. ACS Chem Biol 2021; 16:2731-2745. [PMID: 34779605 DOI: 10.1021/acschembio.1c00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antimicrobial resistance (AMR) has been increasing unrelentingly worldwide, thus negatively impacting human health. The discovery and development of novel antibiotics is an urgent unmet need of the hour. However, it has become more challenging, requiring increasingly time-consuming efforts with increased commercial risks. Hence, alternative strategies are urgently needed to potentiate the existing antibiotics. In this context, short cationic peptides or peptide-based antimicrobials that mimic the activity of naturally occurring antimicrobial peptides (AMPs) could overcome the disadvantages of AMPs having evolved as potent antibacterial agents. Besides their potent antibacterial efficacy, short peptide conjugates have also gained attention as potent adjuvants to conventional antibiotics. Such peptide antibiotic combinations have become an increasingly cost-effective therapeutic option to tackle AMR. This Review summarizes the recent progress for peptide-based small molecules as promising antimicrobials and as adjuvants for conventional antibiotics to counter multidrug resistant (MDR) pathogens.
Collapse
Affiliation(s)
- Apurva Panjla
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 38124, Standort Hannover-Braunschweig, Germany
| | - Sandeep Verma
- Department of Chemistry, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
- Center for Nanoscience, IIT Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
17
|
Posada V, Espejo BF, Orduz S. De novo design of short antimicrobial lipopeptides. AN ACAD BRAS CIENC 2021; 93:e20210362. [PMID: 34817038 DOI: 10.1590/0001-3765202120210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The increase in bacterial resistance to antibiotics available leads to the search for new compounds with antimicrobial potential, such as peptides and lipopeptides. In this work, eight short lipopeptides with the structural pattern Cn-X1 X2 X3-NH2 were de novo designed, synthesized by Fmoc solid phase and characterized by instrumental techniques. The results of the in vitro tests indicated that two of them, LIP 4 and LIP 12 display antibacterial activity against 4 pathogenic bacteria with minimum inhibitory concentrations (MIC) between 9.50 and 100 μM and between 8.50 and 10.0 μM, respectively; they did not displayed toxicity to human erythrocytes at concentrations between 3.13 and 50.0 μM. The antibacterial mechanism of action observed by scanning electron microscopy indicate that the cell membrane was the target, causing the formation of blisters and vesicles, with size ranging from 100 to 120 nm. The lipopeptide LIP 12, with higher activity, was stable to proteases of human blood serum.
Collapse
Affiliation(s)
- Vanessa Posada
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Química, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| | - Blanca Fabiola Espejo
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Química, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| | - Sergio Orduz
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Biociencias, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| |
Collapse
|
18
|
Boda RLB, Caluag CAM, Dante RAS, Petate AGJ, Candaza HPT, Rivera WL, Jacinto SD, Sabido PMG. Evaluation of
l
‐2,4‐diaminobutyric acid‐based ultrashort cationic lipopeptides as potential antimicrobial and anticancer agents. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ramoncito Luis B. Boda
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
- Natural Sciences Research Institute, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Carl Angelo M. Caluag
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Rachelle Anne S. Dante
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Art Gersun J. Petate
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Hermie Patrice T. Candaza
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Windell L. Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Sonia D. Jacinto
- Institute of Biology, College of Science, University of the Philippines Diliman Quezon City Philippines
| | - Portia Mahal G. Sabido
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City Philippines
| |
Collapse
|
19
|
Abstract
Lipopeptides are an exceptional example of amphiphilic molecules that self-assemble into functional structures with applications in the areas of nanotechnology, catalysis or medicinal chemistry. Herein, we report a library of 21 short lipopeptides, together with their supramolecular characterization and antimicrobial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) strains. This study shows that simple lipoamino acids self-assemble into micellar or vesicular structures, while incorporating dipeptides capable of stablishing hydrogen bonds results in the adoption of advanced fibrilar structures. The self-assembly effect has proven to be key to achieve antimicrobial activity.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain and Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
20
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
21
|
Nasompag S, Siritongsuk P, Thammawithan S, Srichaiyapol O, Prangkio P, Camesano TA, Sinthuvanich C, Patramanon R. AFM Study of Nanoscale Membrane Perturbation Induced by Antimicrobial Lipopeptide C 14 KYR. MEMBRANES 2021; 11:membranes11070495. [PMID: 34208993 PMCID: PMC8307486 DOI: 10.3390/membranes11070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Lipopeptides have been extensively studied as potential antimicrobial agents. In this study, we focused on the C14-KYR lipopeptide, a modified version of the KYR tripeptide with myristic acid at the N-terminus. Here, membrane perturbation of live E. coli treated with the parent KYR and C14-KYR peptides was compared at the nanoscale level using AFM imaging. AFM analyses, including average cellular roughness and force spectroscopy, revealed the severe surface disruption mechanism of C14-KYR. A loss of surface roughness and changes in topographic features included membrane shrinkage, periplasmic membrane separation from the cell wall, and cytosolic leakage. Additional evidence from synchrotron radiation FTIR microspectroscopy (SR-FTIR) revealed a marked structural change in the membrane component after lipopeptide attack. The average roughness of the E. coli cell before and after treatment with C14-KYR was 129.2 ± 51.4 and 223.5 ± 14.1 nm, respectively. The average rupture force of the cell treated with C14-KYR was 0.16 nN, four times higher than that of the untreated cell. Our study demonstrates that the mechanistic effect of the lipopeptide against bacterial cells can be quantified through surface imaging and adhesion force using AFM.
Collapse
Affiliation(s)
- Sawinee Nasompag
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
| | - Panchika Prangkio
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Chomdao Sinthuvanich
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (S.N.); (C.S.)
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (P.S.); (S.T.); (O.S.)
- Correspondence:
| |
Collapse
|
22
|
Chu T, Wang C, Wang J, Wang H, Geng D, Wu C, Zhao L, Zhao L. Chiral 4- O-acylterpineol as transdermal permeation enhancers: insights of the enhancement mechanisms of a transdermal enantioselective delivery system for flurbiprofen. Drug Deliv 2021; 27:723-735. [PMID: 32397753 PMCID: PMC7269032 DOI: 10.1080/10717544.2020.1760403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In order to devise more effective penetration enhancers, 4-O-acylterpineol derivatives which were expected to be hydrolyzed into nontoxic metabolites by esterase in the living epidermis, were synthesized from 4-terpineol (4-TER) enantiomers and straight chain fatty acids. Their promoting activities on the SR-flurbiprofen and its enantiomers were tested across full-thickness rabbit skin, as well as to correlate under in vitro and in vivo conditions. The permeation studies indicated that both d-4-O-acylterpineol and l-4-O-acylterpineol had significant enhancing effects, interestingly, d-4-O-aclyterpineol had higher enhancing effects than l-4-O-aclyterpineol with the exception of d-4-methyl-1-(1-methylethyl)-3-cyclohexen-1-yl octadec-9-enoate (d-4-T-dC18). The mechanism of 4-O-acylterpineol facilitating the drug penetration across the skin was confirmed by Attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR) and molecular simulation. The mechanism of penetration enhancers promoting drug release was explored by the in vitro release experiment. Finally, a relative safety skin irritation of enhancers was also investigated by in vivo histological evaluation. The present research suggested that d-4-O-aclyterpineol and l-4-O-aclyterpineol could significantly promote the penetration of SR-flurbiprofen and its enantiomers both in vitro and in vivo, with the superiorities of high flux and low dermal toxicity.
Collapse
Affiliation(s)
- Tianzhe Chu
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Chunyan Wang
- Department of Pharmacy, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Jing Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Heping Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Dandan Geng
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Chensi Wu
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Linlin Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Ligang Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, China.,Tangshan key laboratory of novel preparations and drug release technology, Tangshan, China
| |
Collapse
|
23
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
24
|
Stergiou V, Krikorian D, Koukkou AI, Sakarellos-Daitsiotis M, Panou-Pomonis E. Novel anoplin-based (lipo)-peptide models show potent antimicrobial activity. J Pept Sci 2021; 27:e3303. [PMID: 33506605 DOI: 10.1002/psc.3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/07/2022]
Abstract
The subject of this study is the synthesis and biological evaluation of anoplin-based (Gly-Leu-Leu3 -Lys-Arg5 -Ile-Lys-Thr8 -Leu-Leu-NH2 )-designed (lipo)-peptides, aiming at the development of new antibiotic substances. The design of synthetic compounds based on natural bioactive molecules is an optimistic strategy for the development of new pharmaceutics. Antimicrobial peptides (AMPs) and (lipo)-peptides are two classes of promising compounds, with characteristics that allow them to express their activity by differentiated mechanisms of action. On this basis, anoplin, a natural AMP, was used as a scaffold to design five peptides and seven lipopeptide analogs of them. Substitutions were made on residues Leu3 and Arg5 of the interphase and on Thr8 of the polar phase, as well as N-terminus conjunctions with octanoic and decanoic acid. The outcome of the biological evaluation revealed that some analogs might have substantial clinical potential. Specifically, Ano 1-F, Ano 3-F, Ano 4-C10 , and Ano 5-F are strongly active against Gram-negative bacteria at minimum inhibitory concentration (MIC) values of 3 μg/ml, while Ano 4-F is active against Gram-positive bacteria at 1 μg/ml. Ano 2-C10 , C10 -Gly-Leu-Lys3 -Lys-Ile5 -Ile-Lys-Lys8 -Leu-Leu-NH2 , is the most promising compound (MIC = 0.5 μg/ml) for the development of new pharmaceutics. The conformational features of the synthetic peptides were investigated by circular dichroism spectroscopy, and their physicochemical parameters were calculated. Our study shows that appropriate substitutions in the anoplin sequence in combination with Nα -acylation may lead to new effective AMPs.
Collapse
|
25
|
Rounds T, Straus SK. Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. Int J Mol Sci 2020; 21:ijms21249692. [PMID: 33353161 PMCID: PMC7766664 DOI: 10.3390/ijms21249692] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Multi-drug-resistant bacteria are becoming more prevalent, and treating these bacteria is becoming a global concern. One alternative approach to combat bacterial resistance is to use antimicrobial (AMPs) or host-defense peptides (HDPs) because they possess broad-spectrum activity, function in a variety of ways, and lead to minimal resistance. However, the therapeutic efficacy of HDPs is limited by a number of factors, including systemic toxicity, rapid degradation, and low bioavailability. One approach to circumvent these issues is to use lipidation, i.e., the attachment of one or more fatty acid chains to the amine groups of the N-terminus or a lysine residue of an HDP. In this review, we examined lipidated analogs of 66 different HDPs reported in the literature to determine: (i) whether there is a link between acyl chain length and antibacterial activity; (ii) whether the charge and (iii) the hydrophobicity of the HDP play a role; and (iv) whether acyl chain length and toxicity are related. Overall, the analysis suggests that lipidated HDPs with improved activity over the nonlipidated counterpart had acyl chain lengths of 8–12 carbons. Moreover, active lipidated peptides attached to short HDPs tended to have longer acyl chain lengths. Neither the charge of the parent HDP nor the percent hydrophobicity of the peptide had an apparent significant impact on the antibacterial activity. Finally, the relationship between acyl chain length and toxicity was difficult to determine due to the fact that toxicity is quantified in different ways. The impact of these trends, as well as combined strategies such as the incorporation of d- and non-natural amino acids or alternative approaches, will be discussed in light of how lipidation may play a role in the future development of antimicrobial peptide-based alternatives to current therapeutics.
Collapse
|
26
|
de Souza Freitas F, Coelho de Assis Lage T, Ayupe BAL, de Paula Siqueira T, de Barros M, Tótola MR. Bacillus subtilis TR47II as a source of bioactive lipopeptides against Gram-negative pathogens causing nosocomial infections. 3 Biotech 2020; 10:474. [PMID: 33072469 PMCID: PMC7550419 DOI: 10.1007/s13205-020-02459-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 10/29/2022] Open
Abstract
This study aimed to investigate the antimicrobial, antibiofilm, and cytotoxic effects of biosurfactant lipopeptides synthesized by Bacillus subtilis TR47II. For this purpose, the lipopeptides were partially purified using a three-step process and characterized. In the first step, the crude extract obtained from acid precipitation exhibited strong antibacterial activity against the Gram-negative opportunistic pathogens Alcaligenes faecalis ATCC 8750, Achromobacter xylosoxidans ATCC 13138, Pseudomonas alcaligenes ATCC 14909, and Pseudomonas putida ATCC 15175. Moreover, partial inhibition was observed against Klebsiella aerogenes ATCC 13048 (42%), Escherichia coli ATCC 25922 (16%), and Pseudomonas aeruginosa ATCC 27853 (47%). The lipopeptides in the crude extract were extracted with methanol and fractioned on a silica gel chromatography column, rendering four TLC-pooled chromatographic fractions, named F1, F2, F3, and F4. The chromatographic fraction F4 was the most bioactive, with MIC values between 300 and 600 µg mL-1. Besides, F4 at sub-MIC doses dislodged the biofilms of A. faecalis, A. xylosoxidans, and P. alcaligenes by about 100, 85, and 81%, respectively. No cytotoxic effect was observed in mammalian cells at MIC. MALDI-TOF-MS analysis revealed that F4 contained cyclic lipopeptides belonging to two families: iturins (m/z 1004 to 1087) and fengycins (m/z 1424 to 1545). The dual effect of F4 on planktonic and sessile growth could suggest that the synergistic application of these biosurfactants could be efficient in the control of these opportunistic pathogens.
Collapse
|
27
|
Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rawan Huwaitat
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
- Department of Pharmacy Al‐Zaytoonah University of Jordan Amman Jordan
| | - Sophie M. Coulter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Simon L. Porter
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| | - Garry Laverty
- Biofunctional Nanomaterials Group School of Pharmacy, Queen's University Belfast, Medical Biology Centre Belfast N. Ireland UK
| |
Collapse
|
28
|
Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis. Molecules 2020; 25:molecules25020257. [PMID: 31936341 PMCID: PMC7024302 DOI: 10.3390/molecules25020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.
Collapse
|
29
|
Gomes A, Bessa LJ, Fernandes I, Ferraz R, Mateus N, Gameiro P, Teixeira C, Gomes P. Turning a Collagenesis-Inducing Peptide Into a Potent Antibacterial and Antibiofilm Agent Against Multidrug-Resistant Gram-Negative Bacteria. Front Microbiol 2019; 10:1915. [PMID: 31481944 PMCID: PMC6710338 DOI: 10.3389/fmicb.2019.01915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance is becoming one the most serious health threats worldwide, as it not only hampers effective treatment of infectious diseases using current antibiotics, but also increases the risks of medical procedures like surgery, transplantation, bone and dental implantation, chemotherapy, or chronic wound management. To date, there are no effective measures to tackle life-threatening nosocomial infections caused by multidrug resistant bacterial species, of which Gram-negative species within the so-called "ESKAPE" pathogens are the most worrisome. Many such bacteria are frequently isolated from severely infected skin lesions such as diabetic foot ulcers (DFU). In this connection, we are pursuing new peptide constructs encompassing antimicrobial and collagenesis-inducing motifs, to tackle skin and soft tissue infections by exerting a dual effect: antimicrobial protection and faster healing of the wound. This produced peptide 3.1-PP4 showed MIC values as low as 1.0 and 2.1 μM against Escherichia coli and Pseudomonas aeruginosa, respectively, and low toxicity to HFF-1 human fibroblasts. Remarkably, the peptide was also potent against multidrug-resistant isolates of Klebsiella pneumoniae, E. coli, and P. aeruginosa (MIC values between 0.5 and 4.1 μM), and hampered the formation of/disaggregated K. pneumoniae biofilms of resistant clinical isolates. Moreover, this notable hybrid peptide retained the collagenesis-inducing behavior of the reference cosmeceutical peptide C16-PP4 ("Matrixyl"). In conclusion, 3.1-PP4 is a highly promising lead toward development of a topical treatment for severely infected skin injuries.
Collapse
Affiliation(s)
- Ana Gomes
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Lucinda J. Bessa
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ricardo Ferraz
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Porto, Portugal
| | - Nuno Mateus
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gameiro
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Armas F, Pacor S, Ferrari E, Guida F, Pertinhez TA, Romani AA, Scocchi M, Benincasa M. Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides. PLoS One 2019; 14:e0212447. [PMID: 30789942 PMCID: PMC6383929 DOI: 10.1371/journal.pone.0212447] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
The increasing emergence of multidrug-resistant microorganisms represents one of the greatest challenges in the clinical management of infectious diseases, and requires the development of novel antimicrobial agents. To this aim, we de novo designed a library of Arg-rich ultra-short cationic antimicrobial lipopeptides (USCLs), based on the Arg-X-Trp-Arg-NH2 peptide moiety conjugated with a fatty acid, and investigated their antibacterial potential. USCLs exhibited an excellent antimicrobial activity against clinically pathogenic microorganisms, in particular Gram-positive bacteria, including multidrug resistant strains, with MIC values ranging between 1.56 and 6.25 μg/mL. The capability of the two most active molecules, Lau-RIWR-NH2 and Lau-RRIWRR-NH2, to interact with the bacterial membranes has been predicted by molecular dynamics and verified on liposomes by surface plasmon resonance. Both compounds inhibited the growth of S. aureus even at sub MIC concentrations and induced cell membranes permeabilization by producing visible cell surface alterations leading to a significant decrease in bacterial viability. Interestingly, no cytotoxic effects were evidenced for these lipopeptides up to 50–100 μg/mL in hemolysis assay, in human epidermal model and HaCaT cells, thus highlighting a good cell selectivity. These results, together with the simple composition of USCLs, make them promising lead compounds as new antimicrobials.
Collapse
Affiliation(s)
- Federica Armas
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Area Science Park, Padriciano, Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Filomena Guida
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Transfusion Medicine Unit, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste, Italy
- * E-mail:
| |
Collapse
|
31
|
Andreev K, Martynowycz MW, Huang ML, Kuzmenko I, Bu W, Kirshenbaum K, Gidalevitz D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1414-1423. [PMID: 29621496 DOI: 10.1016/j.bbamem.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Hydrophobic interactions govern specificity for natural antimicrobial peptides. No such relationship has been established for synthetic peptoids that mimic antimicrobial peptides. Peptoid macrocycles synthesized with five different aromatic groups are investigated by minimum inhibitory and hemolytic concentration assays, epifluorescence microscopy, atomic force microscopy, and X-ray reflectivity. Peptoid hydrophobicity is determined using high performance liquid chromatography. Disruption of bacterial but not eukaryotic lipid membranes is demonstrated on the solid supported lipid bilayers and Langmuir monolayers. X-ray reflectivity studies demonstrate that intercalation of peptoids with zwitterionic or negatively charged lipid membranes is found to be regulated by hydrophobicity. Critical levels of peptoid selectivity are demonstrated and found to be modulated by their hydrophobic groups. It is suggested that peptoids may follow different optimization schemes as compared to their natural analogues.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States
| | - Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States; Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Mia L Huang
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, United States
| | - Wei Bu
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, IL 60637, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 South Dearborn Street, Chicago, IL 60616, United States.
| |
Collapse
|
32
|
Koh JJ, Lin S, Beuerman RW, Liu S. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 2017; 49:1653-1677. [PMID: 28823054 DOI: 10.1007/s00726-017-2476-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
33
|
Meir O, Zaknoon F, Cogan U, Mor A. A broad-spectrum bactericidal lipopeptide with anti-biofilm properties. Sci Rep 2017; 7:2198. [PMID: 28526864 PMCID: PMC5438364 DOI: 10.1038/s41598-017-02373-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
Previous studies of the oligoacyllysyl (OAK) series acyl-lysyl-lysyl-aminoacyl-lysine-amide, suggested their utility towards generating robust linear lipopeptide-like alternatives to antibiotics, although to date, none exhibited potent broad-spectrum bactericidal activity. To follow up on this premise, we produced a new analog (C14KKc12K) and investigated its properties in various media. Mechanistic studies suggest that C14KKc12K uses a non-specific membrane-disruptive mode of action for rapidly reducing viability of Gram-negative bacteria (GNB) similarly to polymyxin B (PMB), a cyclic lipopeptide used as last resort antibiotic. Indeed, C14KKc12K displayed similar affinity for lipopolysaccharides and induced cell permeabilization associated with rapid massive membrane depolarization. Unlike PMB however, C14KKc12K was also bactericidal to Gram-positive bacteria (GPB) at or near the minimal inhibitory concentration (MIC), as assessed against a multispecies panel of >50 strains, displaying MIC50 at 3 and 6 µM, respectively for GPB and GNB. C14KKc12K retained activity in human saliva, reducing the viability of cultivable oral microflora by >99% within two minutes of exposure, albeit at higher concentrations, which, nonetheless, were similar to the commercial gold standard, chlorhexidine. This equipotent bactericidal activity was also observed in pre-formed biofilms of Streptococcus mutans, a major periodontal pathogen. Such compounds therefore, may be useful for eradication of challenging poly-microbial infections.
Collapse
Affiliation(s)
- Ohad Meir
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Fadia Zaknoon
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Uri Cogan
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Amram Mor
- Department of Biotechnology & Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
34
|
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 2017; 11:73. [PMID: 28261050 PMCID: PMC5306396 DOI: 10.3389/fnins.2017.00073] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Collapse
Affiliation(s)
- Jianguo Li
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| | - Jun-Jie Koh
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | - Shouping Liu
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
| | | | - Chandra S. Verma
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Agency for Science, Technology and Research (ASTAR), Bioinformatics InstituteSingapore, Singapore
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| | - Roger W. Beuerman
- Ocular Chemistry and Anti-Infectives, Singapore Eye Research InstituteSingapore, Singapore
- Duke-NUS Graduate Medical School, SRP Neuroscience and BDSingapore, Singapore
| |
Collapse
|
35
|
Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol 2016; 4:55. [PMID: 27376064 PMCID: PMC4894902 DOI: 10.3389/fcell.2016.00055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction.
Collapse
Affiliation(s)
- Rafi Rashid
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
36
|
Wenzel M, Schriek P, Prochnow P, Albada HB, Metzler-Nolte N, Bandow JE. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1004-11. [PMID: 26603779 DOI: 10.1016/j.bbamem.2015.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptides are a potent class of antibiotics. In the Gram-positive model organism Bacillus subtilis the synthetic peptide RWRWRW-NH2 integrates into the bacterial membrane and delocalizes essential peripheral membrane proteins involved in cell wall biosynthesis and respiration. A lysine residue has been added to the hexapeptide core structure, either C or N-terminally. Lipidation of the lysine residues by a C8-acyl chain significantly improved antibacterial activity against both Gram-positive and Gram-negative bacteria. Here, we report a comparative proteomic study in B. subtilis on the mechanism of action of the lipidated and non-lipidated peptides. All derivatives depolarized the bacterial membrane without forming pores and all affected cell wall integrity. Proteomic profiling of the bacterial stress responses to the small RW-rich antimicrobial peptides was reflective of non-disruptive membrane integration. Overall, our results indicate that antimicrobial peptides can be derivatized with lipid chains enhancing antibacterial activity without significantly altering the mechanism of action. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
|