1
|
Akhter J, Bakht P, Gupta R, Pathania R. Unveiling the Antibacterial Efficacy of a Benzonitrile Small Molecule, IITR00210, in Shigella Infection. ACS Infect Dis 2024; 10:4167-4181. [PMID: 39610198 DOI: 10.1021/acsinfecdis.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The escalating prevalence of bacterial infections and the rapid emergence of multidrug-resistant Gram-negative bacterial pathogens highlight an urgent demand for effective antibacterial agents. In this study, we report our findings on IITR00210, a small molecule belonging to the nitrile class. The small molecule demonstrates broad-spectrum activity against bacterial pathogens, specifically against enteric pathogens, and exhibits antibiofilm activity. IITR00210 displays potent bactericidal activity against enteropathogens, resulting in a reduction of bacterial counts greater than 3 Log10 CFU in time-kill kinetic assays. Mechanistic investigations revealed that IITR00210 induces bacterial cell envelope stress, leading to the alteration of the overall proton motive force (PMF). The disruption of PMF causes intracellular ATP dissipation and ultimately promotes cell death. The cell envelope stress generated in the presence of IITR00210 leads to a translational aberration. Importantly, IITR00210 exhibits a safe profile in in vitro and in vivo settings. The small molecule further showed potent intracellular antibacterial activity in polymorphonuclear cells infected with enteric pathogens and antiadhesion activity in mammalian cell lines. IITR00210 proves to be a promising therapeutic candidate, displaying a lack of stable resistance development, and it exhibited efficacy in the treatment of bacterial infections in a shigellosis murine model.
Collapse
Affiliation(s)
- Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Perwez Bakht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
2
|
Jin T, Pang L, Yue T, Niu L, Li T, Liang Y, Zhang Y, Yan C, Yang B, Zhang C, Xia X. The role of DsbA and PepP genes in the environmental tolerance and virulence factors of Cronobacter sakazakii. Food Res Int 2024; 190:114555. [PMID: 38945560 DOI: 10.1016/j.foodres.2024.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.
Collapse
Affiliation(s)
- Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Liuxin Pang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ting Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lingling Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tingting Li
- Food Science department, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, Netherlands
| | - Yujing Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 PR China
| | - Yunlong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunhong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
3
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
5
|
Zhang S, Yang N, Mao R, Hao Y, Teng D, Wang J. In Vitro/Vivo Mechanisms of Antibacterial Peptide NZ2114 against Staphylococcus pseudintermedius and Its Biofilms. Antibiotics (Basel) 2024; 13:341. [PMID: 38667017 PMCID: PMC11047522 DOI: 10.3390/antibiotics13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen commonly found in canines, and has garnered escalating interest due to its potential for zoonotic transmission and increasing antimicrobial resistance. However, the excessive use of antibiotics and the characteristic of S. pseudintermedius forming biofilms make treatment challenging. In this study, the in vivo and in vitro antimicrobial activity and mechanisms of action of NZ2114, a plectasin-derived peptide, against S. pseudintermedius were investigated. NZ2114 exhibited potent antibacterial activity towards S. pseudintermedius (minimum inhibitory concentration, MIC = 0.23 μM) with a lower probability of inducing drug-resistant mutations and efficient bactericidal action, which was superior to those of mopirucin (MIC = 0.25-0.5 μM) and lincomycin (MIC = 4.34-69.41 μM). The results of electron microscopy and flow cytometry showed that NZ2114 disrupted S. pseudintermedius' cell membrane, resulting in cellular content leakage, cytoplasmic membrane shrinkage, and, eventually, cell death. The intracellular ROS activity and Alamar Blue detection showed that NZ2114 interferes with intracellular metabolic processes. In addition, NZ2114 effectively inhibits biofilm formation, and confocal laser scanning microscopy further revealed its antibacterial and anti-biofilm activity (biofilm thickness reduced to 6.90-17.70 μm). The in vivo therapy of NZ2114 in a mouse pyoderma model showed that it was better than lincomycin in effectively decreasing the number of skin bacteria, alleviating histological damage, and reducing the skin damage area. These results demonstrated that NZ2114 may be a promising antibacterial candidate against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Shuang Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
6
|
Schäfer AB, Sidarta M, Abdelmesseh Nekhala I, Marinho Righetto G, Arshad A, Wenzel M. Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiol Spectr 2024; 12:e0327523. [PMID: 38289933 PMCID: PMC10913488 DOI: 10.1128/spectrum.03275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Phenotypic analysis assays such as bacterial cytological profiling (BCP) have become increasingly popular for antibiotic mode of action analysis. A plethora of dyes, protein fusions, and reporter strains are available and have been used for this purpose, enabling both rapid mode of action categorization and in-depth analysis of antibiotic mechanisms. However, non-expert researchers may struggle choosing suitable assays and interpreting results. This is a particular problem for antibiotics that have multiple or complex targets, such as the bacterial cell envelope. Here, we set out to curate a minimal set of accessible and affordable phenotypic assays that allow distinction between membrane and cell wall targets, can identify dual-action inhibitors, and can be implemented in most research environments. To this end, we employed BCP, membrane potential, fluidity, and cell wall synthesis assays. To assess specificity and ease of interpretation, we tested three well-characterized and commercially available reference antibiotics: the potassium ionophore valinomycin, the lipid II-binding glycopeptide vancomycin, and the dual-action lantibiotic nisin, which binds lipid II and forms a membrane pore. Based on our experiments, we suggest a minimal set of BCP, a membrane-potentiometric probe, and fluorescent protein fusions to MinD and MreB as basic assay set and recommend complementing these assays with Laurdan-based fluidity measurements and a PliaI reporter fusion, where indicated. We believe that our results can provide guidance for researchers who wish to use phenotypic analysis for mode of action studies but do not possess the specialized equipment or expert knowledge to employ the full breadth of possible techniques.IMPORTANCEPhenotypic analysis assays using specialized fluorescence fusions and dyes have become increasingly popular in antibiotic mode of action analysis. However, it can be difficult to implement these methods due to the need for specialized equipment and/or the complexity of bacterial cell biology and physiology, making the interpretation of results difficult for non-experts. This is especially problematic for compounds that have multiple or pleiotropic effects, such as inhibitors of the bacterial cell envelope. In order to make phenotypic analysis assays accessible to labs, whose primary expertise is not bacterial cell biology, or with limited equipment and resources, a set of simple and broadly accessible assays is needed that is easy to implement, execute, and interpret. Here, we have curated a set of assays and strains that does not need highly specialized equipment, can be performed in most labs, and is straightforward to interpret without knowing the intricacies of bacterial cell biology.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Margareth Sidarta
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Aysha Arshad
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
7
|
Bozsó Z, Lapat V, Ott PG, Móricz ÁM. Disparate Effects of Two Clerodane Diterpenes of Giant Goldenrod ( Solidago gigantea Ait.) on Bacillus spizizenii. Int J Mol Sci 2024; 25:1531. [PMID: 38338810 PMCID: PMC10855248 DOI: 10.3390/ijms25031531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
New substances with antimicrobial properties are needed to successfully treat emerging human, animal, or plant pathogens. Seven clerodane diterpenes, previously isolated from giant goldenrod (Solidago gigantea) root, were tested against Gram-positive Bacillus subtilis, Bacillus spizizenii and Rhodococcus fascians by measuring minimal bactericidal concentration (MBC), minimal inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50). Two of them, Sg3a (a dialdehyde) and Sg6 (solidagoic acid B), were proved to be the most effective and were selected for further study. Bacillus spizizenii was incubated with the two diterpenes for shorter (1 h) or longer (5 h) periods and then subjected to genome-wide transcriptional analyses. Only a limited number of common genes (28 genes) were differentially regulated after each treatment, and these were mainly related to the restoration of cell membrane integrity and to membrane-related transports. Changes in gene activity indicated that, among other things, K+ and Na+ homeostasis, pH and membrane electron transport processes may have been affected. Activated export systems can be involved in the removal of harmful molecules from the bacterial cells. Inhibition of bacterial chemotaxis and flagellar assembly, as well as activation of genes for the biosynthesis of secondary metabolites, were observed as a general response. Depending on the diterpenes and the duration of the treatments, down-regulation of the protein synthesis-related, oxidative phosphorylation, signal transduction and transcription factor genes was found. In other cases, up-regulation of the genes of oxidation-reduction processes, sporulation and cell wall modification could be detected. Comparison of the effect of diterpenes with the changes induced by different environmental and nutritional conditions revealed several overlapping processes with stress responses. For example, the Sg6 treatment seems to have caused a starvation-like condition. In summary, there were both common and diterpene-specific changes in the transcriptome, and these changes were also dependent on the length of treatments. The results also indicated that Sg6 exerted its effect more slowly than Sg3a, but ultimately its effect was greater.
Collapse
Affiliation(s)
| | | | | | - Ágnes M. Móricz
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary; (Z.B.); (P.G.O.)
| |
Collapse
|
8
|
Kamal El-sagheir A, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. N4-Substituted Piperazinyl Norfloxacin Derivatives with Broad-Spectrum Activity and Multiple Mechanisms on Gyrase, Topoisomerase IV, and Bacterial Cell Wall Synthesis. ACS BIO & MED CHEM AU 2023; 3:494-506. [PMID: 38144255 PMCID: PMC10739246 DOI: 10.1021/acsbiomedchemau.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 12/26/2023]
Abstract
Fluoroquinolones are an important class of antibiotics with broad-spectrum antibacterial and antitubercular activity. Here, we describe the design and synthesis of a series of 38 N4-substituted piperazinyl norfloxacin derivatives. Their activity and mechanism of action were characterized using in silico, in vitro, and in vivo approaches. Several compounds displayed interesting activities against both Gram-negative and Gram-positive bacteria, and few displayed antimycobacterial activity, whereby some were as potent as norfloxacin and ciprofloxacin. Molecular docking experiments suggested that the new derivatives inhibit both DNA gyrase and DNA topoisomerase IV in a similar manner as norfloxacin. Selecting the most promising candidates for experimental mode of action analysis, we confirmed DNA gyrase and topoisomerase IV as targets of all tested compounds using enzymatic in vitro assays. Phenotypic analysis of both Escherichia coli and Bacillus subtilis confirmed a typical gyrase inhibition phenotype for all of the tested compounds. Assessment of possible additional targets revealed three compounds with unique effects on the B. subtilis cell wall synthesis machinery, suggesting that they may have an additional target in this pathway. Comparison with known cell wall synthesis inhibitors showed that the new compounds elicit a distinct and, so far, unique phenotype, suggesting that they act differently from known cell wall synthesis inhibitors. Interestingly, our phenotypic analysis revealed that both norfloxacin and ciprofloxacin displayed additional cellular effects as well, which may be indicative of the so far unknown additional mechanisms of fluoroquinolones.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Ahmed S. Aboraia
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jonatan Persson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Farghaly A. Omar
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
9
|
Ji Y, He R. Bacterial Inhibition Mechanism of Rhamnolipid-Modified β-Carotene/Rutinoside Complex Liposomes. Indian J Microbiol 2023; 63:222-229. [PMID: 37325019 PMCID: PMC10267087 DOI: 10.1007/s12088-023-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/17/2023] Open
Abstract
In this study, a new cholesterol-free delivery system named RL-βC-Rts was developed using rhamnolipid (RL) as the surfactant and encapsulating both β-carotene (βC) and rutinoside (Rts). The purpose was to examine its antibacterial properties against four food-borne pathogenic microorganisms including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. m), and Salmonella typhimurium (S. typhimurium) and to investigate the mechanism behind the inhibition. Results from bacterial viability tests and minimum inhibitory concentration (MIC) showed RL-βC-Rts possessed antibacterial activity. Upon further examination of the cell membrane potential, it was observed that E. coli, S. aureus, L. m, and S. typhimurium exhibited a reduction in mean fluorescence intensity by 50.17%, 34.07%, 34.12%, and 47.05%, respectively. These decreases suggested damage to the structure of the cell membrane, which subsequently resulted in the discharge of proteins from the bacteria and the consequential impairment of crucial functions. This was supported by alterations in protein concentration. The results of the RT-qPCR showcased that the expression of genes associated with energy metabolism, tricarboxylic acid cycle, DNA metabolism, virulence factor formation and cell membrane formation could be suppressed by RL-βC-Rts. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01077-6.
Collapse
Affiliation(s)
- Ying Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| |
Collapse
|
10
|
Schäfer AB, Steenhuis M, Jim KK, Neef J, O’Keefe S, Whitehead RC, Swanton E, Wang B, Halbedel S, High S, van Dijl JM, Luirink J, Wenzel M. Dual Action of Eeyarestatin 24 on Sec-Dependent Protein Secretion and Bacterial DNA. ACS Infect Dis 2023; 9:253-269. [PMID: 36637435 PMCID: PMC9926488 DOI: 10.1021/acsinfecdis.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Eeyarestatin 24 (ES24) is a promising new antibiotic with broad-spectrum activity. It shares structural similarity with nitrofurantoin (NFT), yet appears to have a distinct and novel mechanism: ES24 was found to inhibit SecYEG-mediated protein transport and membrane insertion in Gram-negative bacteria. However, possible additional targets have not yet been explored. Moreover, its activity was notably better against Gram-positive bacteria, for which its mechanism of action had not yet been investigated. We have used transcriptomic stress response profiling, phenotypic assays, and protein secretion analyses to investigate the mode of action of ES24 in comparison with NFT using the Gram-positive model bacterium Bacillus subtilis and have compared our findings to Gram-negative Escherichia coli. Here, we show the inhibition of Sec-dependent protein secretion in B. subtilis and additionally provide evidence for DNA damage, probably caused by the generation of reactive derivatives of ES24. Interestingly, ES24 caused a gradual dissipation of the membrane potential, which led to delocalization of cytokinetic proteins and subsequent cell elongation in E. coli. However, none of those effects were observed in B. subtilis, thereby suggesting that ES24 displays distinct mechanistic differences with respect to Gram-positive and Gram-negative bacteria. Despite its structural similarity to NFT, ES24 profoundly differed in our phenotypic analysis, which implies that it does not share the NFT mechanism of generalized macromolecule and structural damage. Importantly, ES24 outperformed NFT in vivo in a zebrafish embryo pneumococcal infection model. Our results suggest that ES24 not only inhibits the Sec translocon, but also targets bacterial DNA and, in Gram-negative bacteria, the cell membrane.
Collapse
Affiliation(s)
- Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Maurice Steenhuis
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kin Ki Jim
- Department
of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers - Location Vrije Universiteit
Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam
Institute for Infection and Immunity, Amsterdam
University Medical Centers, 1081 HZ Amsterdam, The Netherlands
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Sarah O’Keefe
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Roger C. Whitehead
- School
of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Eileithyia Swanton
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Biwen Wang
- Bacterial
Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sven Halbedel
- FG11
Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
- Institute
for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephen High
- School
of
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Joen Luirink
- Molecular
Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14030642. [PMID: 35336016 PMCID: PMC8950055 DOI: 10.3390/pharmaceutics14030642] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.
Collapse
|
12
|
Liu S, Brul S, Zaat SAJ. Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. Int J Mol Sci 2021; 22:10059. [PMID: 34576222 PMCID: PMC8470456 DOI: 10.3390/ijms221810059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Persister cells are growth-arrested subpopulations that can survive possible fatal environments and revert to wild types after stress removal. Clinically, persistent pathogens play a key role in antibiotic therapy failure, as well as chronic, recurrent, and antibiotic-resilient infections. In general, molecular and physiological research on persister cells formation and compounds against persister cells are much desired. In this study, we firstly demonstrated that the spore forming Gram-positive model organism Bacillus subtilis can be used to generate persister cells during exposure to antimicrobial compounds. Interestingly, instead of exhibiting a unified antibiotic tolerance profile, different number of persister cells and spores were quantified in various stress conditions. qPCR results also indicated that differential stress responses are related to persister formation in various environmental conditions. We propose, for the first time to the best of our knowledge, an effective method to isolate B. subtilis persister cells from a population using fluorescence-activated cell sorting (FACS), which makes analyzing persister populations feasible. Finally, we show that alpha-helical cationic antimicrobial peptides SAAP-148 and TC-19, derived from human cathelicidin LL-37 and human thrombocidin-1, respectively, have high efficiency against both B. subtilis vegetative cells and persisters, causing membrane permeability and fluidity alteration. In addition, we confirm that in contrast to persister cells, dormant B. subtilis spores are not susceptible to the antimicrobial peptides.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
13
|
Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
15
|
Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123542. [PMID: 32745874 DOI: 10.1016/j.jhazmat.2020.123542] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, the nanocomposite film (SA-CS@CuO/ZnO) composed of sodium alginate (SA) and chitosan (CS) functionalized by copper oxide nanoparticles (CuONPs) and zinc oxide nanoparticles (ZnONPs) was fabricated, then its antibacterial mechanisms against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically investigated. When the contents of CuONPs and ZnONPs reached 1.5 % (w/w) and 0.5 % (w/w), respectively, the SA-CS@CuO/ZnO exhibited great mechanical, barrier, and optical properties. Moreover, the incorporation of ZnONPs enhanced the photocatalytic ability of SA-CS@CuO/ZnO, producing a high level of reactive oxygen species under light irradiation. Further, antibacterial results showed that SA-CS@CuO/ZnO treatment inhibited the growth of E. coli and S. aureus higher than 60 % in the dark and exceeded 90 % under light irradiation. This was also manifested in the incompleteness of bacterial cell structure, accompanied by unstable cellular redox balance and DNA disruption. The functions of differentially expressed genes screened by transcriptome analysis were mainly involved in membrane transport, cell wall and membrane synthesis, cellular antioxidant defense system, cell membrane and DNA repair system. The changes in bacterial transcriptional regulation reflected the disturbance in the physiological activities and loss of cell integrity, leading to damage of bacterial cells or death.
Collapse
Affiliation(s)
- Guilin Guan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China
| | - Linan Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China.
| | - Wenxiang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, People's Republic of China
| |
Collapse
|
16
|
Zang H, Dai Y, Sun Y, Jia T, Song Q, Li X, Jiang X, Sui D, Han Z, Li D, Hou N. Mechanism of the biodemulsifier-enhanced biodegradation of phenanthrene by Achromobacter sp. LH-1. Colloids Surf B Biointerfaces 2020; 195:111253. [DOI: 10.1016/j.colsurfb.2020.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
17
|
Schäfer AB, Wenzel M. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Front Cell Infect Microbiol 2020; 10:540898. [PMID: 33194788 PMCID: PMC7604286 DOI: 10.3389/fcimb.2020.540898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a promising alternative to classical antibiotics in the fight against multi-resistant bacteria. They are produced by organisms from all domains of life and constitute a nearly universal defense mechanism against infectious agents. No drug can be approved without information about its mechanism of action. In order to use them in a clinical setting, it is pivotal to understand how AMPs work. While many pore-forming AMPs are well-characterized in model membrane systems, non-pore-forming peptides are often poorly understood. Moreover, there is evidence that pore formation may not happen or not play a role in vivo. It is therefore imperative to study how AMPs interact with their targets in vivo and consequently kill microorganisms. This has been difficult in the past, since established methods did not provide much mechanistic detail. Especially, methods to study membrane-active compounds have been scarce. Recent advances, in particular in microscopy technology and cell biological labeling techniques, now allow studying mechanisms of AMPs in unprecedented detail. This review gives an overview of available in vivo methods to investigate the antibacterial mechanisms of AMPs. In addition to classical mode of action classification assays, we discuss global profiling techniques, such as genomic and proteomic approaches, as well as bacterial cytological profiling and other cell biological assays. We cover approaches to determine the effects of AMPs on cell morphology, outer membrane, cell wall, and inner membrane properties, cellular macromolecules, and protein targets. We particularly expand on methods to examine cytoplasmic membrane parameters, such as composition, thickness, organization, fluidity, potential, and the functionality of membrane-associated processes. This review aims to provide a guide for researchers, who seek a broad overview of the available methodology to study the mechanisms of AMPs in living bacteria.
Collapse
Affiliation(s)
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
Affiliation(s)
- Michaela Wenzel
- Department of Biology & Biological Engineering, Division of Chemical Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
19
|
Abstract
This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study. Bacillus subtilis spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study. For each time point sampled, the changes in the spore proteome were quantitatively monitored relative to the proteome of metabolically 15N-labeled vegetative cells. Of the quantified proteins, 60% are shared by vegetative cells and spores, indicating that the spores have a minimal protein set, sufficient to resume metabolism upon completion of germination. These shared proteins thus represent the most basic “survival kit” for spore-based life. We observed no significant change in the proteome or the transcriptome until the spore’s completion of germination. Our analysis identified 34 abundant mRNA transcripts in the dormant spores, 31 of which are rapidly degraded after germination. In outgrowing spores, we identified 3,152 differentially expressed genes and have demonstrated the differential expression of 322 proteins with our mass spectrometry analyses. Our data also showed that 173 proteins from dormant spores, including both proteins unique to spores and proteins shared with vegetative cells, were lost after completion of germination. The observed diverse timings of synthesis of different protein sets in spore outgrowth revealed a putative core strategy underlying the revival of ‘life’ from the B. subtilis spore. IMPORTANCE This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study.
Collapse
|
20
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
21
|
Riool M, de Breij A, Kwakman PHS, Schonkeren-Ravensbergen E, de Boer L, Cordfunke RA, Malanovic N, Drijfhout JW, Nibbering PH, Zaat SAJ. Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183282. [PMID: 32376222 DOI: 10.1016/j.bbamem.2020.183282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes. In agreement, TC19 combined low cytotoxicity towards human fibroblasts with efficient and rapid killing in human plasma of MDR strains of several bacterial species of the ESKAPE panel. In addition, TC19 induced minor resistance in vitro, neutralized pro-inflammatory activity of bacterial cell envelope components while displaying slight chemotactic activity for human neutrophils. Importantly, topical application of TC19-containing hypromellose gel significantly reduced numbers of viable methicillin-resistant Staphylococcus aureus (MRSA) and MDR Acinetobacter baumannii in a superficial wound infection in mice. Together, TC19 is an attractive candidate for further development as a novel agent against (MDR) bacterial skin wound infections.
Collapse
Affiliation(s)
- Martijn Riool
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Anna de Breij
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Paulus H S Kwakman
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | | | - Leonie de Boer
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Robert A Cordfunke
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nermina Malanovic
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Jan W Drijfhout
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter H Nibbering
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sebastian A J Zaat
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Wu T, Sun M, Liu R, Sui W, Zhang J, Yin J, Fang S, Zhu J, Zhang M. Bifidobacterium longum subsp. longum Remodeled Roseburia and Phosphatidylserine Levels and Ameliorated Intestinal Disorders and liver Metabolic Abnormalities Induced by High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4632-4640. [PMID: 32237746 DOI: 10.1021/acs.jafc.0c00717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bifidobacterium longum is considered as a potential supplement in antiobesity treatment; however, the underlying molecular mechanism has rarely been studied. To understand the contributions of B. longum subsp. longum (BL21) in the prevention of obesity, we investigated alterations in the liver metabonomic phenotype and gut microbiota by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and 16S ribosomal RNA gene sequencing in C57BL/6J male mice orally administered with BL21 for 8 weeks [high-fat diet (HFD)]. BL21 at 1 × 109 CFU·day-1 per mouse reduced the weight of mice by 16.9% relative to that of the mice fed with HFD and significantly lowered the serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. BL21 also ameliorated fat vacuolization in liver cells and epididymal fat accumulation. BL21 also lowered the Firmicutes/Bacteroidetes ratio, regulated liver remodeling in glycerophospholipids, and alleviated the levels of d-tryptophan. A positive correlation between the butyrate-producing strain Roseburia and the cell membrane component phosphatidylserine was found for the first time. Thus, BL21 can potentially prevent mice from being obese by rebalancing the gut microbiota and glycerophospholipid metabolism. BL21 can be a promising dietary supplement for weight control.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengzhen Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuguang Fang
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Jianguo Zhu
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
23
|
Weishaupt R, Zünd JN, Heuberger L, Zuber F, Faccio G, Robotti F, Ferrari A, Fortunato G, Ren Q, Maniura‐Weber K, Guex AG. Antibacterial, Cytocompatible, Sustainably Sourced: Cellulose Membranes with Bifunctional Peptides for Advanced Wound Dressings. Adv Healthc Mater 2020; 9:e1901850. [PMID: 32159927 DOI: 10.1002/adhm.201901850] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Progressive antibiotic resistance is a serious condition adding to the challenges associated with skin wound treatment, and antibacterial wound dressings with alternatives to antibiotics are urgently needed. Cellulose-based membranes are increasingly considered as wound dressings, necessitating further functionalization steps. A bifunctional peptide, combining an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), is designed. AMPs affect bacteria via multiple modes of action, thereby reducing the evolutionary pressure selecting for antibiotic resistance. The bifunctional peptide is successfully immobilized on cellulose membranes of bacterial origin or electrospun fibers of plant-derived cellulose, with tight control over peptide concentrations (0.2 ± 0.1 to 4.6 ± 1.6 µg mm-2 ). With this approach, new materials with antibacterial activity against Staphylococcus aureus (log4 reduction) and Pseudomonas aeruginosa (log1 reduction) are developed. Furthermore, membranes are cytocompatible in cultures of human fibroblasts. Additionally, a cell adhesive CBP-RGD peptide is designed and immobilized on membranes, inducing a 2.2-fold increased cell spreading compared to pristine cellulose. The versatile concept provides a toolbox for the functionalization of cellulose membranes of different origins and architectures with a broad choice in peptides. Functionalization in tris-buffered saline avoids further purification steps, allowing for translational research and multiple applications outside the field of wound dressings.
Collapse
Affiliation(s)
- Ramon Weishaupt
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Janina N. Zünd
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Lukas Heuberger
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Flavia Zuber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Greta Faccio
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Francesco Robotti
- Laboratory of Thermodynamics in Emerging TechnologiesDepartment of Mechanical and Process EngineeringETH Zurich Sonneggstrasse 3 Zurich 8092 Switzerland
| | - Aldo Ferrari
- EmpaSwiss Federal Laboratories for Material Science and TechnologiesLaboratory for Experimental Continuum Mechanics Überlandstrasse 129 Dübendorf 8600 Switzerland
| | - Giuseppino Fortunato
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Qun Ren
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Katharina Maniura‐Weber
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| | - Anne Géraldine Guex
- Empa Swiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biointerfaces Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyLaboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 St. Gallen 9014 Switzerland
| |
Collapse
|
24
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int J Mol Sci 2019; 20:ijms20194877. [PMID: 31581426 PMCID: PMC6801614 DOI: 10.3390/ijms20194877] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/28/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria has attracted great attention worldwide. As a response to this growing challenge, diverse studies have focused on the development of novel anti-infective therapies, including antimicrobial peptides (AMPs). The biological properties of this class of antimicrobials have been thoroughly investigated, and membranolytic activities are the most reported mechanisms by which AMPs kill bacteria. Nevertheless, an increasing number of works have pointed to a different direction, in which AMPs are seen to be capable of displaying non-lytic modes of action by internalizing bacterial cells. In this context, this review focused on the description of the in vitro and in vivo antibacterial and antibiofilm activities of non-lytic AMPs, including indolicidin, buforin II PR-39, bactenecins, apidaecin, and drosocin, also shedding light on how AMPs interact with and further translocate through bacterial membranes to act on intracellular targets, including DNA, RNA, cell wall and protein synthesis.
Collapse
|
26
|
Elnahriry KA, Wai DC, Krishnarjuna B, Badawy NN, Chittoor B, MacRaild CA, Williams-Noonan BJ, Surm JM, Chalmers DK, Zhang AH, Peigneur S, Mobli M, Tytgat J, Prentis P, Norton RS. Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon 2019; 168:104-112. [DOI: 10.1016/j.toxicon.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
|
27
|
Buck AK, Elmore DE, Darling LEO. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med Chem 2019; 11:2445-2458. [PMID: 31517514 PMCID: PMC6787493 DOI: 10.4155/fmc-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising in the fight against increasing bacterial resistance, but the development of AMPs with enhanced activity requires a thorough understanding of their mechanisms of action. Fluorescence microscopy is one of the most flexible and effective tools to characterize AMPs, particularly in its ability to measure the membrane interactions and cellular localization of peptides. Recent advances have increased the scope of research questions that can be addressed via microscopy through improving spatial and temporal resolution. Unique combinations of fluorescent labels and dyes can simultaneously consider different aspects of peptide-membrane interaction mechanisms. This review emphasizes the central role that fluorescence microscopy will continue to play in the interrogation of AMP structure-function relationships and the engineering of more potent peptides.
Collapse
Affiliation(s)
- Anne K Buck
- Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Donald E Elmore
- Department of Chemistry & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Louise EO Darling
- Department of Biological Sciences & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
28
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
29
|
Song Z, Niu C, Wu H, Wei J, Zhang Y, Yue T. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21874-21886. [PMID: 31185568 DOI: 10.1021/acsami.9b02990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple and no-drug resistance antibacterial method was developed by the synthesis of heat-stable and pH-tolerant nisin-loaded iron oxide nanoparticles polydopamine (IONPs@pDA) composites. The composites had a crystal structure and diameters of 25 ± 3 nm, with a saturation magnetization ( Ms) of 43.7995 emu g-1. Nisin was successfully conjugated onto the IONPs@pDA nanoparticles, as evinced by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. The novel synthesized material showed good performance in reducing Alicyclobacillus acidoterrestris, a common food spoilage bacterium that represents a significant problem for the food industry. Treatment of A. acidoterrestris cells with composites resulted in membrane damage, as observed by live/dead staining and scanning electron microscopy and transmission electron microscopy analyses. Further, the composites exhibited highly efficient antibacterial activity against cells in only 5 min. Transcriptomic sequencing of culture RNA pools after exposure to composites resulted in a total of 334 differentially expressed genes that were primarily associated with transcriptional regulation, energy metabolism, membrane transporters, membrane and cell wall syntheses, and cell motility. Thus, these results suggested that changes in transcriptional regulation caused by aggregated composites on target cells led to major changes in homeostasis that manifested by decreased energy metabolism, pore formation in the membrane, and repressed cell wall synthesis. Concomitantly, cell motility and sporulation activities were both repressed, and finally, intracellular substances flowed out of leaky cells. The proposed biocontrol method represents a novel means to control microorganisms without inducing drug resistance. Further, these results provide novel insights into the molecular mechanisms underlying the antibacterial activity of composites against microorganisms.
Collapse
Affiliation(s)
- Zihan Song
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Chen Niu
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| | - Hao Wu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jianping Wei
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Yuxiang Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| |
Collapse
|
30
|
Omardien S, Drijfhout JW, Zaat SA, Brul S. Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front Microbiol 2018; 9:2277. [PMID: 30319583 PMCID: PMC6168669 DOI: 10.3389/fmicb.2018.02277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
The mode of action of four cationic amphipathic antimicrobial peptides (AMPs) was evaluated against the non-pathogenic, Gram-positive, spore-forming bacterium, Bacillus subtilis. The AMPs were TC19, TC84, BP2, and the lantibiotic Nisin A. TC19 and TC84 were derived from the human thrombocidin-1. Bactericidal peptide 2 (BP2) was derived from the human bactericidal permeability increasing protein (BPI). We employed structured illumination microscopy (SIM), fluorescence microscopy, Alexa 488-labeled TC84, B. subtilis mutants producing proteins fused to the green fluorescent protein (GFP) and single-cell live imaging to determine the effects of the peptides against spores. TC19, TC84, BP2, and Nisin A showed to be bactericidal against germinated spores by perturbing the inner membrane, thus preventing outgrowth to vegetative cells. Single cell live imaging showed that the AMPs do not affect the germination process, but the burst time and subsequent generation time of vegetative cells. Alexa 488-labeled TC84 suggested that the TC84 might be binding to the dormant spore-coat. Therefore, dormant spores were also pre-coated with the AMPs and cultured on AMP-free culture medium during single-cell live imaging. Pre-coating of the spores with TC19, TC84, and BP2 had no effect on the germination process, and variably affected the burst time and generation time. However, the percentage of spores that burst and grew out into vegetative cells was drastically lower when pre-coated with Nisin A, suggesting a novel application potential of this lantibiotic peptide against spores. Our findings contribute to the understanding of AMPs and show the potential of AMPs as eventual therapeutic agents against spore-forming bacteria.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | | | - Sebastian A Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|