1
|
Chucair-Elliott AJ, Pham K, Cleuren ACA, Schafer CM, Griffin CT, Ocanas SR, Freeman WM, Elliott MH. Comparative analysis of In vivo endothelial cell translatomes across central nervous system vascular beds. Exp Eye Res 2024; 248:110101. [PMID: 39303842 PMCID: PMC11532013 DOI: 10.1016/j.exer.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Endothelial cells (ECs) display organ- and tissue-specific heterogeneity. In the eye, the retinal and choroidal vascular beds are distinct networks with different molecular and morphological properties that serve location-specific functions, i.e., the former maintaining a tight barrier and the latter, a permeable fenestrated vasculature. Given that retinal health critically relies on the function of these vascular beds and that their dysfunction is implicated in a variety of retinal diseases, a molecular understanding of both physiological and pathophysiological characteristics of these distinct vasculatures is critical. Given their interspersed anatomic distribution among parenchymal cells, the study of EC gene expression, in vivo, has been hampered by the challenge of isolating pure populations of ocular ECs in sufficient quantities for large-scale transcriptomics. To address this challenge, we present a methodological and analytical workflow to facilitate inter-tissue comparisons of the in vivo EC translatome isolated from choroid, retina, and brain using the Cre-inducible NuTRAP flox construct and two widely-used endothelial Cre mouse lines: constitutive Tie2-Cre and tamoxifen-inducible Cdh5-CreERT2. For each Cre line, inter-tissue comparison of TRAP-RNAseq enrichment (TRAP-isolated translatome vs input transcriptome) showed tissue-specific gene enrichments with differential pathway representation. For each mouse model, inter-tissue comparison of the EC translatome (choroid vs brain, choroid vs retina, and brain vs retina) showed over 50% overlap of differentially expressed genes (DEGs) between the three paired comparisons, with differential pathway representation for each tissue. Pathway analysis of DEGs in the Cdh5-NuTRAP vs Tie2-NuTRAP comparison for retina, choroid, and brain predicted inhibition of processes related to myeloid cell function and activation, consistent with more specific targeting of ECs in the Cdh5-NuTRAP than in the Tie2-NuTRAP model which also targets hematopoietic progenitors giving rise to immune cells. Indeed, while TRAP enriches for EC transcripts in both models, myeloid transcripts were also captured in the Tie2-NuTRAP model which was confirmed using cell sorting. We suggest experimental/analytical considerations should be taken when selecting Cre-lines to target ECs.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Audrey C A Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R Ocanas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Michael H Elliott
- Department of Ophthalmology, McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Kolahi S, Zarei D, Issaiy M, Shakiba M, Azizi N, Firouznia K. Choroid plexus volume changes in multiple sclerosis: insights from a systematic review and meta-analysis of magnetic resonance imaging studies. Neuroradiology 2024; 66:1869-1886. [PMID: 39105769 DOI: 10.1007/s00234-024-03439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the destruction of the myelin sheath within the central nervous system. The etiology of MS involves a complex interplay of genetic, environmental, and immunological factors. Recent studies indicated the potential role of the choroid plexus (CP) in the pathogenesis and progression of MS. This systematic review aims to assess existing research on the volume alterations of the CP in MS patients compared to the normal population. METHODS A comprehensive search was conducted across databases including PubMed, Embase, Scopus, and Web of Science up to June 2024. Data from the included studies were synthesized using a meta-analytical approach with a random-effects model, assessing heterogeneity with the I2 and Tau-squared indices. RESULTS We included 17 studies in this systematic review. The meta-analysis, which included data from eight studies reporting CP volume relative to TIV, found a statistically significant increase in CP volume in MS patients compared to healthy controls (HCs). The SMD was 0.77 (95% CI: 0.61 to 0.93), indicating a large effect size. This analysis showed no heterogeneity (I² = 0%). A separate meta-analysis was conducted using five studies that reported CP volume as normalized volume, resulting in an SMD of 0.63 (95% CI: 0.2-1.06). CONCLUSION This study demonstrates an increase in CP volume among MS patients compared to HCs, implying the potential involvement of CP in MS pathogenesis and/or progression. These results show that CP might serve as a radiological indicator in the diagnosis and prognosis of MS.
Collapse
Affiliation(s)
- Shahriar Kolahi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbod Issaiy
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jakimovski D, Zivadinov R, Ramanathan M, Weinstock-Guttman B, Tavazzi E, Dwyer MG, Bergsland N. Greater humoral EBV response may be associated with choroid plexus inflammation in progressive MS. J Neurovirol 2024:10.1007/s13365-024-01231-w. [PMID: 39420132 DOI: 10.1007/s13365-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Choroid plexus (CP) inflammation can be quantified in vivo with MRI in people with multiple sclerosis (pwMS). It remains unknown whether Epstein Barr Virus (EBV) is related to CP changes. Total of 170 pwMS (116 relapsing-remitting; RRMS and 54 progressive MS; PMS) underwent MRI examination and measurement of humoral anti-EBV response. CP volume and CP pseudo-T2 (pT2), a relaxation time indicative of edema and neuroinflammation, were measured. Moreover, anti-EBV nuclear antigen-1 (EBNA-1) IgG and anti-EBV capsid antigen (VCA) IgG antibodies were measured. The PMS group had greater CP pT2 value when compared to RRMS (1120ms vs. 954ms, p = 0.037). After adjusting for age and therapy effects, higher CP pT2 values were associated with higher anti-EBNA-1 IgG levels only in PMS (r = 0.352, p = 0.015). Higher Anti-EBV humoral response in pwMS may be associated with increased CP neuroinflammatory changes and may be more relevant for the later chronic stage of the disease. Large-scale studies should investigate whether these findings are generalizable to all types of progressive MS.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St, Buffalo, NY, 14203, USA.
- Wynn Hospital, Mohawk Valley Health System, Utica, NY, 13502, USA.
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Eleonora Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St, Buffalo, NY, 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St, Buffalo, NY, 14203, USA
| |
Collapse
|
4
|
Bretová K, Svobodová V, Dubový P. Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury. Int J Mol Sci 2024; 25:10989. [PMID: 39456773 PMCID: PMC11507206 DOI: 10.3390/ijms252010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Collapse
Affiliation(s)
| | | | - Petr Dubový
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic; (K.B.)
| |
Collapse
|
5
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Delvenne A, Gobom J, Schindler SE, Kate MT, Reus LM, Dobricic V, Tijms BM, Benzinger TLS, Cruchaga C, Teunissen CE, Ramakers I, Martinez‐Lage P, Tainta M, Vandenberghe R, Schaeverbeke J, Engelborghs S, Roeck ED, Popp J, Peyratout G, Tsolaki M, Freund‐Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. CSF proteomic profiles of neurodegeneration biomarkers in Alzheimer's disease. Alzheimers Dement 2024; 20:6205-6220. [PMID: 38970402 PMCID: PMC11497678 DOI: 10.1002/alz.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS Individuals without dementia were classified as A+ (CSF amyloid beta [Aβ]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
Collapse
|
7
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
8
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Aznar E, Strazielle N, Costa L, Poyart C, Tazi A, Ghersi-Egea JF, Guignot J. The hypervirulent Group B Streptococcus HvgA adhesin promotes central nervous system invasion through transcellular crossing of the choroid plexus. Fluids Barriers CNS 2024; 21:66. [PMID: 39152442 PMCID: PMC11330020 DOI: 10.1186/s12987-024-00564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.
Collapse
Affiliation(s)
- Eva Aznar
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Nathalie Strazielle
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Lionel Costa
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
| | - Claire Poyart
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Asmaa Tazi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France
- Service de Bactériologie, Centre National de Référence des Streptocoques, AP-HP, Hôpital Cochin, Paris, F-75014, France
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France
| | - Jean-François Ghersi-Egea
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
- Lyon Neurosciences Research Center, BIP Facility, Bron, France
| | - Julie Guignot
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 22 rue Méchain, F-75014, France.
- Fédération Hospitalo-Universitaire Préma, Paris, F-75014, France.
| |
Collapse
|
10
|
Kamalian A, Shirzadeh Barough S, Ho SG, Albert M, Luciano MG, Yasar S, Moghekar A. Molecular signatures of normal pressure hydrocephalus: a large-scale proteomic analysis of cerebrospinal fluid. Fluids Barriers CNS 2024; 21:64. [PMID: 39118132 PMCID: PMC11312837 DOI: 10.1186/s12987-024-00561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Given the persistent challenge of differentiating idiopathic Normal Pressure Hydrocephalus (iNPH) from similar clinical entities, we conducted an in-depth proteomic study of cerebrospinal fluid (CSF) in 28 shunt-responsive iNPH patients, 38 Mild Cognitive Impairment (MCI) due to Alzheimer's disease, and 49 healthy controls. Utilizing the Olink Explore 3072 panel, we identified distinct proteomic profiles in iNPH that highlight significant downregulation of synaptic markers and cell-cell adhesion proteins. Alongside vimentin and inflammatory markers upregulation, these results suggest ependymal layer and transependymal flow dysfunction. Moreover, downregulation of multiple proteins associated with congenital hydrocephalus (e.g., L1CAM, PCDH9, ISLR2, ADAMTSL2, and B4GAT1) points to a possible shared molecular foundation between congenital hydrocephalus and iNPH. Through orthogonal partial least squares discriminant analysis (OPLS-DA), a panel comprising 13 proteins has been identified as potential diagnostic biomarkers of iNPH, pending external validation. These findings offer novel insights into the pathophysiology of iNPH, with implications for improved diagnosis.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | | | - Sara G Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mark G Luciano
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Sevil Yasar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Hu WX, Zhan X, Lu D, Li ZQ. Is choroid plexus growth altered in isolated ventriculomegaly on fetal neuro-ultrasound? Eur Radiol 2024:10.1007/s00330-024-10966-3. [PMID: 39014090 DOI: 10.1007/s00330-024-10966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVES Reveal developmental alterations in choroid plexus volume (CPV) among fetuses with isolated ventriculomegaly (VM) through neuro-ultrasound. METHODS This prospective study aimed to assess the development of fetal CPV in normal fetuses and those with isolated VM through neuro-ultrasound. The fetuses of isolated VM were categorized into mild, moderate, and severe groups, and subsequently, the lateral ventricle evolution was monitored. The developmental alterations in CPV among fetuses with isolated VM were determined by comparing the CPV z-scores with those of normal fetuses. Receiver operating characteristics curve analysis was used to assess the predictive value of altered CPV in lateral ventricle evolution. RESULTS A total of 218 normal fetuses and 114 isolated VM fetuses from 22 weeks to 35 weeks of gestation were included. The CPV decreased as the isolated VM was getting worse. Both fetuses with isolated moderate ventriculomegaly and those with isolated severe ventriculomegaly exhibited reduced CPV compared to normal fetuses. The CPV in fetuses with isolated mild ventriculomegaly (IMVM) varied, with some showing a larger CPV compared to normal fetuses, while others exhibited a smaller CPV. The larger CPV in cases of IMVM may serve as a predictive factor for either regression or stability of the lateral ventricle, while reduced CPV in cases of isolated VM may indicate worsening of the lateral ventricle. CONCLUSION The growth volume of fetal CP exhibited alterations in fetuses with isolated VM, and these changes were found to be correlated with the evolution of the lateral ventricle. CLINICAL RELEVANCE STATEMENT Neuro-ultrasound revealed varying degrees of alterations in the volume development of the choroid plexus within the fetus with isolated VM. The findings can help predict lateral ventricle prognosis, greatly contributing to prenatal diagnosis strategies for fetuses with isolated VM. KEY POINTS The volume of choroid plexus growth is altered in fetuses with isolated VM. The altered CPV in isolated VM was associated with lateral ventricle evolution. The findings are useful for prenatal counseling and managing fetuses with isolated VM.
Collapse
Affiliation(s)
- Wei-Xi Hu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhan
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Lu
- Department of Ultrasound in Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Huang C, Hoque MT, Qu QR, Henderson J, Bendayan R. Antiretroviral drug dolutegravir induces inflammation at the mouse brain barriers. FASEB J 2024; 38:e23790. [PMID: 38982638 DOI: 10.1096/fj.202400558r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1β, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Mack AF, Bihlmaier R, Deffner F. Shifting from ependyma to choroid plexus epithelium and the changing expressions of aquaporin-1 and aquaporin-4. J Physiol 2024; 602:3097-3110. [PMID: 37975746 DOI: 10.1113/jp284196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
The cells of the choroid plexus (CP) epithelium are specialized ependymal cells (ECs) but have distinct properties. The CP cells and ECs form single-cell sheets contiguous to each other at a transitional zone. The CP is underlined by a basal lamina and has barrier properties, whereas the ECs do not. The basal lamina of the CP is continuous with the glia limitans superficialis and, consequently, the CP stroma is continuous with the meninges along entering blood vessels. The CP has previously been reported to express aquaporin-1 (AQP1) mostly apically, and ECs show mostly basolateral aquaporin-4 (AQP4) expression. Recent evidence in various systems has shown that in changing conditions the expression and distribution of AQP4 can be modified, involving phosphorylation and calmodulin-triggered translocation. Studies on the human CP revealed that AQP4 is also expressed in some CP cells, which is likely to be increased during ageing based on mouse data. Moreover, subependymal astrocytic processes in the ependyma-CP transition, forming a glial plate around blood vessels and facing the CP stroma, were strongly positive for AQP4. We propose that the increased AQP4 expression might be a compensatory mechanism for the observed reduction in CSF production in the ageing human brain. The high AQP4 density in the transition zone might facilitate the transport of water into and out of the CP stroma and serve as a drainage and clearing pathway for metabolites in the CNS.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Ronja Bihlmaier
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Felix Deffner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Vandendriessche C, Bruggeman A, Foroozandeh J, Van Hoecke L, Dujardin P, Xie J, Van Imschoot G, Van Wonterghem E, Castelein J, Lucci C, De Groef L, Vandenbroucke RE. The Spreading and Effects of Human Recombinant α-Synuclein Preformed Fibrils in the Cerebrospinal Fluid of Mice. eNeuro 2024; 11:ENEURO.0024-23.2024. [PMID: 38383588 PMCID: PMC10925901 DOI: 10.1523/eneuro.0024-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) patients harbor seeding-competent α-synuclein (α-syn) in their cerebrospinal fluid (CSF), which is mainly produced by the choroid plexus (ChP). Nonetheless, little is known about the role of the CSF and the ChP in PD pathogenesis. To address this question, we used an intracerebroventricular (icv) injection mouse model to assess CSF α-syn spreading and its short- and long-term consequences on the brain. Hereby, we made use of seeding-competent, recombinant α-syn preformed fibrils (PFF) that are known to induce aggregation and subsequent spreading of endogenous α-syn in stereotactic tissue injection models. Here, we show that icv-injected PFF, but not monomers (Mono), are rapidly removed from the CSF by interaction with the ChP. Additionally, shortly after icv injection both Mono and PFF were detected in the olfactory bulb and striatum. This spreading was associated with increased inflammation and complement activation in these tissues as well as leakage of the blood-CSF barrier. Despite these effects, a single icv injection of PFF didn't induce a decline in motor function. In contrast, daily icv injections over the course of 5 days resulted in deteriorated grip strength and formation of phosphorylated α-syn inclusions in the brain 2 months later, whereas dopaminergic neuron levels were not affected. These results point toward an important clearance function of the CSF and the ChP, which could mediate removal of PFF from the brain, whereby chronic exposure to PFF in the CSF may negatively impact blood-CSF barrier functionality and PD pathology.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Joyce Foroozandeh
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
- Department of Neurosciences, Brain Institute KU Leuven, 3000, Leuven, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Cristiano Lucci
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Lies De Groef
- Cellular Communication and Neurodegeneration Research Group, Department of Biology, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
15
|
Parekh P, Badachhape AA, Tanifum EA, Annapragada AV, Ghaghada KB. Advances in nanoprobes for molecular MRI of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1946. [PMID: 38426638 PMCID: PMC10983770 DOI: 10.1002/wnan.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is the most common cause of dementia and a leading cause of mortality in the elderly population. Diagnosis of Alzheimer's disease has traditionally relied on evaluation of clinical symptoms for cognitive impairment with a definitive diagnosis requiring post-mortem demonstration of neuropathology. However, advances in disease pathogenesis have revealed that patients exhibit Alzheimer's disease pathology several decades before the manifestation of clinical symptoms. Magnetic resonance imaging (MRI) plays an important role in the management of patients with Alzheimer's disease. The clinical availability of molecular MRI (mMRI) contrast agents can revolutionize the diagnosis of Alzheimer's disease. In this article, we review advances in nanoparticle contrast agents, also referred to as nanoprobes, for mMRI of Alzheimer's disease. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Andrew A. Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
16
|
Raghib MF, Bao F, Elkhooly M, Bernitsas E. Choroid plexus volume as a marker of retinal atrophy in relapsing remitting multiple sclerosis. J Neurol Sci 2024; 457:122884. [PMID: 38237367 DOI: 10.1016/j.jns.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.
Collapse
Affiliation(s)
- Muhammad F Raghib
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Mahmoud Elkhooly
- Department of Neurology, Wayne State University School of Medicine, United States of America; Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States of America; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, United States of America; Detroit Medical Center, Detroit, MI, United States of America.
| |
Collapse
|
17
|
Stielow M, Witczyńska A, Kubryń N, Fijałkowski Ł, Nowaczyk J, Nowaczyk A. The Bioavailability of Drugs-The Current State of Knowledge. Molecules 2023; 28:8038. [PMID: 38138529 PMCID: PMC10745386 DOI: 10.3390/molecules28248038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Drug bioavailability is a crucial aspect of pharmacology, affecting the effectiveness of drug therapy. Understanding how drugs are absorbed, distributed, metabolized, and eliminated in patients' bodies is essential to ensure proper and safe treatment. This publication aims to highlight the relevance of drug bioavailability research and its importance in therapy. In addition to biochemical activity, bioavailability also plays a critical role in achieving the desired therapeutic effects. This may seem obvious, but it is worth noting that a drug can only produce the expected effect if the proper level of concentration can be achieved at the desired point in a patient's body. Given the differences between patients, drug dosages, and administration forms, understanding and controlling bioavailability has become a priority in pharmacology. This publication discusses the basic concepts of bioavailability and the factors affecting it. We also looked at various methods of assessing bioavailability, both in the laboratory and in the clinic. Notably, the introduction of new technologies and tools in this field is vital to achieve advances in drug bioavailability research. This publication also discusses cases of drugs with poorly described bioavailability, providing a deeper understanding of the complex challenges they pose to medical researchers and practitioners. Simultaneously, the article focuses on the perspectives and trends that may shape the future of research regarding bioavailability, which is crucial to the development of modern pharmacology and drug therapy. In this context, the publication offers an essential, meaningful contribution toward understanding and highlighting bioavailability's role in reliable patient treatment. The text also identifies areas that require further research and exploration.
Collapse
Affiliation(s)
| | - Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Natalia Kubryń
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 Jurasza Street, 85-089 Bydgoszcz, Poland; (A.W.); (N.K.); (Ł.F.)
| |
Collapse
|
18
|
Mehranpour M, Moghaddam MH, Abdollahifar MA, Salehi M, Aliaghaei A. Tramadol induces apoptosis, inflammation, and oxidative stress in rat choroid plexus. Metab Brain Dis 2023; 38:2679-2690. [PMID: 37831362 DOI: 10.1007/s11011-023-01307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The choroid plexus (CP) is the principal source of cerebrospinal fluid (CSF). It can produce and release a wide range of materials, including growth and neurotrophic factors which have a crucial role in the maintenance and proper functioning of the brain. Tramadol is a synthetic analog of codeine, mainly prescribed to alleviate mild to moderate pains. Nevertheless, it causes several side effects, such as emotional instability and anxiety. METHODS In this study, we focused on alterations in the expression of inflammatory and apoptotic genes in the CP under chronic tramadol exposure. Herein, rats were treated daily with tramadol at 50 mg/kg doses for three weeks. CSF samples were collected, with superoxide dismutase (SOD) and glutathione (GSH) measured in the CSF. RESULTS We found that tramadol reduced the SOD and GSH levels in the CSF. Furthermore, the stereological analysis revealed a significant increase in the CP volume, epithelial cells, and capillary number upon tramadol administration. Tramadol elevated the number of blob mitochondria in CP. Also, we observed the upregulation of inflammatory and apoptosis genes following tramadol administration in the CP. CONCLUSIONS Our findings indicate that tramadol induces neurotoxicity in the CP via apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Salehi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Jeong SH, Park CJ, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Chung SJ. Association of choroid plexus volume with motor symptoms and dopaminergic degeneration in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:1047-1055. [PMID: 37399288 DOI: 10.1136/jnnp-2023-331170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND The choroid plexus (CP) is involved in the clearance of harmful metabolites from the brain, as a part of the glymphatic system. This study aimed to investigate the association between CP volume (CPV), nigrostriatal dopaminergic degeneration and motor outcomes in Parkinson's disease (PD). METHODS We retrospectively searched drug-naïve patients with early-stage PD who underwent dopamine transporter (DAT) scanning and MRI. Automatic CP segmentation was performed, and the CPV was calculated. The relationship between CPV, DAT availability and Unified PD Rating Scale Part III (UPDRS-III) scores was assessed using multivariate linear regression. We performed longitudinal analyses to assess motor outcomes according to CPV. RESULTS CPV was negatively associated with DAT availability in each striatal subregion (anterior caudate, β=-0.134, p=0.012; posterior caudate, β=-0.162, p=0.002; anterior putamen, β=-0.133, p=0.024; posterior putamen, β=-0.125, p=0.039; ventral putamen, β=-0.125, p=0.035), except for the ventral striatum. CPV was positively associated with the UPDRS-III score even after adjusting for DAT availability in the posterior putamen (β=0.121; p=0.035). A larger CPV was associated with the future development of freezing of gait in the Cox regression model (HR 1.539, p=0.027) and a more rapid increase in dopaminergic medication in the linear mixed model (CPV×time, p=0.037), but was not associated with the risk of developing levodopa-induced dyskinesia or wearing off. CONCLUSION These findings suggest that CPV has the potential to serve as a biomarker for baseline and longitudinal motor disabilities in PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea (the Republic of)
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Geyonggi-do, Korea (the Republic of)
| | - Hyun-Jae Jeong
- Research Institute of Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Mun Kyung Sunwoo
- Department of Neurology, Daejin Medical Foundation Bundang Jesaeng Hospital, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Korea (the Republic of)
- YONSEI BEYOND LAB, Yongin, Gyeonggi-do, South Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Korea (the Republic of)
- YONSEI BEYOND LAB, Yongin, Gyeonggi-do, South Korea
| |
Collapse
|
20
|
Israelsen IME, Kamp-Jensen C, Westgate CSJ, Styrishave B, Jensen RH, Eftekhari S. Cycle-dependent sex differences in expression of membrane proteins involved in cerebrospinal fluid secretion at rat choroid plexus. BMC Neurosci 2023; 24:60. [PMID: 37946101 PMCID: PMC10633912 DOI: 10.1186/s12868-023-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Female sex is a known risk factor of brain disorders with raised intracranial pressure (ICP) and sex hormones have been suggested to alter cerebrospinal fluid (CSF) dynamics, thus impairing ICP regulation in CSF disorders such as idiopathic intracranial hypertension (IIH). The choroid plexus (CP) is the tissue producing CSF and it has been hypothesized that altered hormonal composition could affect the activity of transporters involved in CSF secretion, thus affecting ICP. Therefore, we aimed to investigate if expression of various transporters involved in CSF secretion at CP were different between males and females and between females in different estrous cycle states. Steroid levels in serum was also investigated. METHODS Female and male rats were used to determine sex-differences in the genes encoding for the transporters Aqp1 and 4, NKCC1, NBCe2, NCBE; carbonic anhydrase enzymes II and III (CA), subunits of the Na+/K+-ATPase including Atp1a1, Atp1b1 and Fxyd1 at CP. The estrous cycle stage metestrus (MET) and estrous (ES) were determined before euthanasia. Serum and CP were collected and subjected to RT-qPCR analysis and western blots. Serum was used to measure steroid levels using liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Significant differences in gene expression and steroid levels between males and ES females were found, while no differences were found between male and MET females. During ES, expression of Aqp1 was lower (p < 0.01) and NKCC1 was higher in females compared to males. CAII was lower while CAIII was higher in ES females (p < 0.0001). Gene expression of Atp1a1 was lower in ES compared to male (p = 0.0008). Several of these choroidal genes were also significantly different in MET compared to females in ES. Differences in gene expression during the estrus cycle were correlated to serum level of steroid hormones. Protein expression of AQP1 (p = 0.008) and CAII (p = 0.035) was reduced in ES females compared to males. CONCLUSIONS This study demonstrates for the first time that expression at CP is sex-dependent and markedly affected by the estrous cycle in female rats. Further, expression was related to hormone levels in serum. This opens a completely new avenue for steroid regulation of the expression of CSF transporters and the close link to the understanding of CSF disorders such as IIH.
Collapse
Affiliation(s)
- Ida Marchen Egerod Israelsen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Christina Kamp-Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
21
|
Jakimiuk A, Piechal A, Wiercińska-Drapało A, Nowaczyk A, Mirowska-Guzel D. Central nervous system disorders after use of dolutegravir: evidence from preclinical and clinical studies. Pharmacol Rep 2023; 75:1138-1151. [PMID: 37605102 PMCID: PMC10539422 DOI: 10.1007/s43440-023-00515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The evaluation of dolutegravir based on available preclinical and clinical studies reveals a risk of central nervous system (CNS) disorders associated with long-term use of the drug. The available literature on the pharmacokinetics of the drug, including its penetration of the blood-brain barrier, was reviewed, as well as clinical trials assessing the incidence of adverse effects in the CNS and the frequency of its discontinuation. This paper also summarizes the impact of factors affecting the occurrence of CNS disorders and indicates the key role of pharmacovigilance in the process of supplementing knowledge on the safety of drugs, especially those that are newly registered.
Collapse
Affiliation(s)
- Alicja Jakimiuk
- Department of Clinical and Experimental Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Clinical and Experimental Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Hepatology and Infectious and Tropical Diseases, Medical University of Warsaw, Provincial Infectious Diseases Hospital in Warsaw, Wolska 37, 01-201, Warsaw, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza, 85-094, Bydgoszcz, Poland
| | - Dagmara Mirowska-Guzel
- Department of Clinical and Experimental Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| |
Collapse
|
22
|
Jeong SH, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Park CJ, Chung SJ. Association between choroid plexus volume and cognition in Parkinson disease. Eur J Neurol 2023; 30:3114-3123. [PMID: 37498202 DOI: 10.1111/ene.15999] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) clears harmful metabolites from the central nervous system as part of the glymphatic system. We investigated the association of CP volume (CPV) with baseline and longitudinal cognitive decline in patients with Parkinson disease (PD). METHODS We retrospectively reviewed the medical records of 240 patients with newly diagnosed PD who had undergone detailed neuropsychological tests and high-resolution T1-weighted structural magnetic resonance imaging during the initial assessment. The CPV of each patient was automatically segmented, and the intracranial volume ratio was used in subsequent analyses. The relationship between CPV and baseline composite scores of each cognitive domain was assessed using multivariate linear regression analyses. A Cox proportional hazards model was used to compare the risk of dementia conversion with CPV. RESULTS CPV negatively correlated with composite scores of the frontal/executive function domain (β = -0.375, p = 0.002) after adjusting for age, sex, years of education, and parkinsonian symptom duration. The Cox regression model revealed that a larger CPV was associated with a higher risk of dementia conversion (hazard ratio [HR] = 1.509, p = 0.038), which was no longer significant after adjusting for the composite scores of the frontal/executive function domain. A mediation analysis demonstrated that the effect of CPV on the risk of dementia conversion was completely mediated by frontal/executive function (direct effect: HR = 1.203, p = 0.396; indirect effect: HR = 1.400, p = 0.015). CONCLUSIONS Baseline CPV is associated with baseline frontal/executive function, which subsequently influences dementia conversion risk in patients with PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Jae Jeong
- Research Institute of Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mun Kyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Korea
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| |
Collapse
|
23
|
Khan F, Qiu H. Amyloid-β: A potential mediator of aging-related vascular pathologies. Vascul Pharmacol 2023; 152:107213. [PMID: 37625763 DOI: 10.1016/j.vph.2023.107213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Aging is one of the most promising risk factors for vascular diseases, however, the precise mechanisms mediating aging-related pathologies are not fully understood. Amyloid beta (Aβ), a peptide produced by the proteolytic processing of amyloid precursor protein (APP), is known as a key mediator of brain damage involved in the pathogenesis of Alzheimer's disease (AD). Recently, it was found that the accumulation of Aβ in the vascular wall is linked to a range of aging-related vascular pathologies, indicating a potential role of Aβ in the pathogenesis of aging-associated vascular diseases. In the present review, we have updated the molecular regulation of Aβ in vascular cells and tissues, summarized the relevance of the Aβ deposition with vascular aging and diseases, and the role of Aβ dysregulation in aging-associated vascular pathologies, including the impaired vascular response, endothelial dysfunction, oxidative stress, and inflammation. This review will provide advanced information in understanding aging-related vascular pathologies and a new avenue to explore therapeutic targets.
Collapse
Affiliation(s)
- Fazlullah Khan
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA.
| |
Collapse
|
24
|
Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, Zetterberg H, Blennow K, Gasparotti R, Padovani A, Tadayon E, Romanella S, Sprugnoli G, Pascual-Leone A, Di Lorenzo F, Koch G, Borroni B, Santarnecchi E. Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum. Neurology 2023; 101:e1218-e1230. [PMID: 37500561 PMCID: PMC10516270 DOI: 10.1212/wnl.0000000000207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
Collapse
Affiliation(s)
- Martina Assogna
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Enrico Premi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Stefano Gazzina
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alberto Benussi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Nicholas J Ashton
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Henrik Zetterberg
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Kaj Blennow
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Roberto Gasparotti
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alessandro Padovani
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Ehsan Tadayon
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Sara Romanella
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giulia Sprugnoli
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alvaro Pascual-Leone
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Francesco Di Lorenzo
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giacomo Koch
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Barbara Borroni
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Emiliano Santarnecchi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy.
| |
Collapse
|
25
|
Jia S, Yang H, Huang F, Fan W. Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders. Inflamm Res 2023; 72:1895-1907. [PMID: 37688642 DOI: 10.1007/s00011-023-01792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed database (on July 20, 2023). The search terms used were "delirium", "post operative cognitive dysfunction", "perioperative neurocognitive disorder", "inflammation" and "systemic", alone and in combination. All articles identified were English-language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated and how we can translate these findings into prevention and/or treatment for PND.
Collapse
Affiliation(s)
- Shilin Jia
- Department of Anesthesiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
26
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Xiang J, Hua Y, Xi G, Keep RF. Mechanisms of cerebrospinal fluid and brain interstitial fluid production. Neurobiol Dis 2023; 183:106159. [PMID: 37209923 PMCID: PMC11071066 DOI: 10.1016/j.nbd.2023.106159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Fluid homeostasis is fundamental for brain function with cerebral edema and hydrocephalus both being major neurological conditions. Fluid movement from blood into brain is one crucial element in cerebral fluid homeostasis. Traditionally it has been thought to occur primarily at the choroid plexus (CP) as cerebrospinal fluid (CSF) secretion due to polarized distribution of ion transporters at the CP epithelium. However, there are currently controversies as to the importance of the CP in fluid secretion, just how fluid transport occurs at that epithelium versus other sites, as well as the direction of fluid flow in the cerebral ventricles. The purpose of this review is to evaluate evidence on the movement of fluid from blood to CSF at the CP and the cerebral vasculature and how this differs from other tissues, e.g., how ion transport at the blood-brain barrier as well as the CP may drive fluid flow. It also addresses recent promising data on two potential targets for modulating CP fluid secretion, the Na+/K+/Cl- cotransporter, NKCC1, and the non-selective cation channel, transient receptor potential vanilloid 4 (TRPV4). Finally, it raises the issue that fluid secretion from blood is not constant, changing with disease and during the day. The apparent importance of NKCC1 phosphorylation and TRPV4 activity at the CP in determining fluid movement suggests that such secretion may also vary over short time frames. Such dynamic changes in CP (and potentially blood-brain barrier) function may contribute to some of the controversies over its role in brain fluid secretion.
Collapse
Affiliation(s)
- Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Meng CY, Ma XY, Xu MY, Pei SF, Liu Y, Hao ZL, Li QZ, Feng FM. Transcriptomics-based investigation of manganese dioxide nanoparticle toxicity in rats' choroid plexus. Sci Rep 2023; 13:8510. [PMID: 37231062 PMCID: PMC10213021 DOI: 10.1038/s41598-023-35341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese dioxide nanoparticles (MnO2-NPs) have a wide range of applications in biomedicine. Given this widespread usage, it is worth noting that MnO2-NPs are definitely toxic, especially to the brain. However, the damage caused by MnO2-NPs to the choroid plexus (CP) and to the brain after crossing CP epithelial cells has not been elucidated. Therefore, this study aims to investigate these effects and elucidate potential underlying mechanisms through transcriptomics analysis. To achieve this objective, eighteen SD rats were randomly divided into three groups: the control group (control), low-dose exposure group (low-dose) and high-dose exposure group (high-dose). Animals in the two treated groups were administered with two concentrations of MnO2-NPs (200 mg kg-1 BW and 400 mg kg-1 BW) using a noninvasive intratracheal injection method once a week for three months. Finally, the neural behavior of all the animals was tested using a hot plate tester, open-field test and Y-type electric maze. The morphological characteristics of the CP and hippocampus were observed by H&E stain, and the transcriptome of CP tissues was analysed by transcriptome sequencing. The representative differentially expressed genes were quantified by qRT-PCR. We found that treatment with MnO2-NPs could induce learning capacity and memory faculty decline and destroy the structure of hippocampal and CP cells in rats. High doses of MnO2-NPs had a more obvious destructive capacity. For transcriptomic analysis, we found that there were significant differences in the numbers and types of differential genes in CP between the low- and high-dose groups compared to the control. Through GO terms and KEGG analysis, high-dose MnO2-NPs significantly affected the expression of transporters, ion channel proteins, and ribosomal proteins. There were 17 common differentially expressed genes. Most of them were transporter and binding genes on the cell membrane, and some of them had kinase activity. Three genes, Brinp, Synpr and Crmp1, were selected for qRT-PCR to confirm their expression differences among the three groups. In conclusion, high-dose MnO2-NPs exposure induced abnormal neurobehaviour, impaired memory function, destroyed the structure of the CP and changed its transcriptome in rats. The most significant DEGs in the CP were within the transport system.
Collapse
Affiliation(s)
- Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xin-Yi Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Ming-Yan Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Sheng-Fei Pei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Yang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhuo-Lu Hao
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Qing-Zhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Fu-Min Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
29
|
Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, Bergink V, Perez-Rodriquez MM, De Witte LD. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:1502-1515. [PMID: 37055513 PMCID: PMC10266485 DOI: 10.1038/s41380-023-01976-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear. METHODS We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples. RESULTS A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35). CONCLUSION This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Clinical and Medical Psychology, Tilburg University, Tilburg, The Netherlands.
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Emma Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brett Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kendall Moore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gijsje J L J Snijders
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Katz
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
30
|
Liu K, Li H, Zeng N, Lu W, Wu X, Xu H, Yan C, Wu L. Decline of stress resilience in aging rats: Focus on choroid plexus-cerebrospinal fluid-hippocampus. World J Biol Psychiatry 2022:1-15. [PMID: 36416065 DOI: 10.1080/15622975.2022.2151044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives: This study was designed to examine the mechanisms underlying decline of stress resilience in aged rats from the perspective of CP-CSF-hippocampus.Methods: Male Wistar rats (7-8 weeks old or 20 months old) were subjected to chronic unpredictable mild stress (CUMS) for 6 weeks. The behavioral tests were conducted to assess anxiety, depression and cognitive function. Hippocampal neurogenesis, apoptosis and synaptic plasticity were detected by western blot (WB) and/or immunofluorescence (IF) assay. Differential expression of growth factors (GFs) and axon guidance proteins (AGPs) in CSF was analyzed using the quantitative proteomics approach. IF and WB were performed to detect expression of occludin-1, Ki-67/Transthyretin, and folate transporters in choroid plexus (CP).Results: Decreased proliferation, impaired structure and transport function of CP were correlated with CSF composition alterations in stressed aging rats, including reduced 5-Methyltetrahydrofolate, growth factors and axon growth factors. Nutritional support of CSF upon hippocampus was attenuated, therefore affecting hippocampal plasticity. It has led to depression-like behaviors and cognitive deficits in stressful aged rats.Conclusions: Keeping normal structure and function of CP-CSF system may be a practical strategy for neuropsychological disorders in the elderly. This work provides evidential basis for CP transplant and CSF replacement therapy in future studies.
Collapse
Affiliation(s)
- Kaige Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ningxi Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Lu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaofeng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanfang Xu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022; 14:pharmaceutics14081729. [PMID: 36015358 PMCID: PMC9412499 DOI: 10.3390/pharmaceutics14081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.
Collapse
|
32
|
Deffner F, Gleiser C, Mattheus U, Wagner A, Neckel PH, Fallier-Becker P, Hirt B, Mack AF. Aquaporin-4 expression in the human choroid plexus. Cell Mol Life Sci 2022; 79:90. [PMID: 35072772 PMCID: PMC8785037 DOI: 10.1007/s00018-022-04136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74–91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.
Collapse
Affiliation(s)
- Felix Deffner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Corinna Gleiser
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Andreas Wagner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstr. 3, 72074, Tübingen, Germany.
| |
Collapse
|
33
|
Gião T, Teixeira T, Almeida MR, Cardoso I. Choroid Plexus in Alzheimer's Disease-The Current State of Knowledge. Biomedicines 2022; 10:224. [PMID: 35203434 PMCID: PMC8869376 DOI: 10.3390/biomedicines10020224] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/31/2023] Open
Abstract
The choroid plexus (CP), located in each of the four ventricles of the brain, is formed by a monolayer of epithelial cells that surrounds a highly vascularized connective tissue with permeable capillaries. These cells are joined by tight junctions forming the blood-cerebrospinal fluid barrier (BCSFB), which strictly regulates the exchange of substances between the blood and cerebrospinal fluid (CSF). The primary purpose of the CP is to secrete CSF, but it also plays a role in the immune surveillance of the central nervous system (CNS) and in the removal of neurotoxic compounds from the CSF. According to recent findings, the CP is also involved in the modulation of the circadian cycle and neurogenesis. In diseases such as Alzheimer's disease (AD), the function of the CP is impaired, resulting in an altered secretory, barrier, transport, and immune function. This review describes the current state of knowledge concerning the roles of the CP and BCSFB in the pathophysiology of AD and summarizes recently proposed therapies that aim to restore CP and BCSFB functions.
Collapse
Affiliation(s)
- Tiago Gião
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| | - Tiago Teixeira
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| | - Isabel Cardoso
- Molecular Neurobiology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (T.T.); (M.R.A.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, 4050-013 Porto, Portugal
| |
Collapse
|
34
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Ruchoux MM, Kalaria RN, Román GC. The pericyte: A critical cell in the pathogenesis of CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100031. [PMID: 34950895 PMCID: PMC8661128 DOI: 10.1016/j.cccb.2021.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
CADASIL is the most common hereditary small vessel disease presenting with strokes and subcortical vascular dementia caused by mutations in the NOTCH3 gene. CADASIL is a vasculopathy primarily involving vascular smooth-muscle cells. Arteriolar and capillary pericyte damage or deficiency is a key feature in disease pathogenesis. Pericyte-mediated cerebral venous insufficiency may explain white matter lesions and increased perivascular spaces. Central role of the pericyte offers novel approaches to the treatment of CADASIL.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small vessel disease presenting with migraine, mood and cognitive disorders, focal neurological deficits, recurrent ischemic attacks, lacunar infarcts and brain white matter changes. As they age, CADASIL patients invariably develop cognitive impairment and subcortical dementia. CADASIL is caused by missense mutations in the NOTCH3 gene resulting in a profound cerebral vasculopathy affecting primarily arterial vascular smooth muscle cells, which target the microcirculation and perfusion. Based on a thorough review of morphological lesions in arteries, veins, and capillaries in CADASIL, we surmise that arteriolar and capillary pericyte damage or deficiency appears a key feature in the pathogenesis of the disease. This may affect critical pericyte-endothelial interactions causing stroke injury and vasomotor disturbances. Changes in microvascular permeability due to perhaps localized blood-brain barrier alterations and pericyte secretory dysfunction likely contribute to delayed neuronal as well as glial cell death. Moreover, pericyte-mediated cerebral venous insufficiency may explain white matter lesions and the dilatation of Virchow-Robin perivascular spaces typical of CADASIL. The postulated central role of the pericyte offers some novel approaches to the study and treatment of CADASIL and enable elucidation of other forms of cerebral small vessel diseases and subcortical vascular dementia.
Collapse
Affiliation(s)
- Marie-Magdeleine Ruchoux
- Former researcher, Université d'Artois, Blood-Brain-Barrier Laboratory Lens France, Former advisor, Alzheimer's Clinic Methodist Neurological Institute, Houston TX, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gustavo C Román
- Methodist Neurological Institute, Department of Neurology, Houston Methodist Hospital Houston TX 77030, USA, Weill Cornell Medical College, New York NY, USA and Texas A&M Medical School, Bryan TX, USA
| |
Collapse
|
36
|
Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021; 9:1734. [PMID: 34829963 PMCID: PMC8615927 DOI: 10.3390/biomedicines9111734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of central nervous system (CNS) pathologies is severely hampered by the presence of tightly regulated CNS barriers that restrict drug delivery to the brain. An increasing amount of data suggests that extracellular vesicles (EVs), i.e., membrane derived vesicles that inherently protect and transfer biological cargoes between cells, naturally cross the CNS barriers. Moreover, EVs can be engineered with targeting ligands to obtain enriched tissue targeting and delivery capacities. In this review, we provide a detailed overview of the literature describing a natural and engineered CNS targeting and therapeutic efficiency of different cell type derived EVs. Hereby, we specifically focus on peripheral administration routes in a broad range of CNS diseases. Furthermore, we underline the potential of research aimed at elucidating the vesicular transport mechanisms across the different CNS barriers. Finally, we elaborate on the practical considerations towards the application of EVs as a brain drug delivery system.
Collapse
Affiliation(s)
- Marie J. Pauwels
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Wang R, Xu Z, Li Y, Li W, Gao X, Liu C, Liu C. Lycopene can modulate the LRP1 and RAGE transporters expression at the choroid plexus in Alzheimer’s disease rat. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
38
|
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci 2021; 15:639140. [PMID: 33633540 PMCID: PMC7900543 DOI: 10.3389/fnins.2021.639140] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The classic concept of the absence of lymphatic vessels in the central nervous system (CNS), suggesting the immune privilege of the brain in spite of its high metabolic rate, was predominant until recent times. On the other hand, this idea left questioned how cerebral interstitial fluid is cleared of waste products. It was generally thought that clearance depends on cerebrospinal fluid (CSF). Not long ago, an anatomically and functionally discrete paravascular space was revised to provide a pathway for the clearance of molecules drained within the interstitial space. According to this model, CSF enters the brain parenchyma along arterial paravascular spaces. Once mixed with interstitial fluid and solutes in a process mediated by aquaporin-4, CSF exits through the extracellular space along venous paravascular spaces, thus being removed from the brain. This process includes the participation of perivascular glial cells due to a sieving effect of their end-feet. Such draining space resembles the peripheral lymphatic system, therefore, the term "glymphatic" (glial-lymphatic) pathway has been coined. Specific studies focused on the potential role of the glymphatic pathway in healthy and pathological conditions, including neurodegenerative diseases. This mainly concerns Alzheimer's disease (AD), as well as hemorrhagic and ischemic neurovascular disorders; other acute degenerative processes, such as normal pressure hydrocephalus or traumatic brain injury are involved as well. Novel morphological and functional investigations also suggested alternative models to drain molecules through perivascular pathways, which enriched our insight of homeostatic processes within neural microenvironment. Under the light of these considerations, the present article aims to discuss recent findings and concepts on nervous lymphatic drainage and blood-brain barrier (BBB) in an attempt to understand how peripheral pathological conditions may be detrimental to the CNS, paving the way to neurodegeneration.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
39
|
Herve JC. The vertebrate epithelial apical junctional complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183409. [PMID: 32653529 DOI: 10.1016/j.bbamem.2020.183409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|