1
|
Tan R, Hoare M, Bellomio P, Broas S, Camacho K, Swovick K, Welle KA, Hryhorenko JR, Ghaemmaghami S. Formylation facilitates the reduction of oxidized initiator methionines. Proc Natl Acad Sci U S A 2024; 121:e2403880121. [PMID: 39499632 DOI: 10.1073/pnas.2403880121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Within a cell, protein-bound methionines can be chemically or enzymatically oxidized, and subsequently reduced by methionine sulfoxide reductases (Msrs). Methionine oxidation can result in structural damage or be the basis of functional regulation of enzymes. In addition to participating in redox reactions, methionines play an important role as the initiator residue of translated proteins where they are commonly modified at their α-amine group by formylation or acetylation. Here, we investigated how formylation and acetylation of initiator methionines impact their propensity for oxidation and reduction. We show that in vitro, N-terminal methionine residues are particularly prone to chemical oxidation and that their modification by formylation or acetylation greatly enhances their subsequent enzymatic reduction by MsrA and MsrB. Concordantly, in vivo ablation of methionyl-tRNA formyltransferase (MTF) in Escherichia coli increases the prevalence of oxidized methionines within synthesized proteins. We show that oxidation of formylated initiator methionines is detrimental in part because it obstructs their ensuing deformylation by peptide deformylase (PDF) and hydrolysis by methionyl aminopeptidase (MAP). Thus, by facilitating their reduction, formylation mitigates the misprocessing of oxidized initiator methionines.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Philip Bellomio
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Sarah Broas
- Department of Biology, University of Rochester, Rochester, NY 14627
| | | | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY 14627
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY 14627
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY 14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY 14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY 14627
| |
Collapse
|
2
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
3
|
Starovoit MR, Jadeja S, Gazárková T, Lenčo J. Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals. Anal Chem 2024; 96:14531-14540. [PMID: 39196537 PMCID: PMC11391404 DOI: 10.1021/acs.analchem.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 °C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 °C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.
Collapse
Affiliation(s)
- Mykyta R Starovoit
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| | - Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Yang C, Wang X, Li S, Zhu X, Yu Y, Zhang S. Combined analysis of transcriptomics with metabolomics provides insights into the resistance mechanism in winter jujube using L-Methionine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108951. [PMID: 39047581 DOI: 10.1016/j.plaphy.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Black rots lead to great economic losses in winter jujube industry. The objective of this research was to delve into the underlying mechanisms of enhanced resistance of winter jujube fruit to black rot by L-Methionine (Met) treatment. The findings revealed that the application of Met significantly curtailed lesion diameter and decay incidence in winter jujube fruit. The peroxidase (POD) activity in the Met-treated jujubes was 3.06-fold that in the control jujubes after 4 d of treatment. By day 8, the activities of phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase (GLU) in the Met-treated jujubes had surged to their zenith, being 1.39, 1.22, and 1.52 times in the control group, respectively. At the end of storage, the flavonoid and total phenol content remained 1.58 and 1.06 times than that of the control group. Based on metabolomics and transcriptomics analysis, Met treatment upregulated 6 key differentially expressed metabolites (DEMs) (succinic acid, trans-ferulic acid, salicylic acid, delphinium pigments, (S)-abscisic acid, and hesperidin-7-neohesperidin), 12 key differentially expressed genes (DEGs) (PAL, CYP73A, COMT, 4CL, CAD, POD, UGT72E, ANS, CHS, IAA, TCH4 and PR1), which were involved in phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway and plant hormone signal transduction pathway. Further analysis revealed that the most of the enzymes, DEMs and DEGs in this study were associated with both antioxidant and disease resistance. Consequently, Met treatment enhanced disease resistance of winter jujube fruit by elevating antioxidant capacity and triggering defense response. This study might provide theoretical support for utilizing Met in the management and prevention of post-harvest black rot in winter jujube.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Xiaojia Wang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Shengwang Li
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Xianran Zhu
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China
| | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China.
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan, 030000, PR China.
| |
Collapse
|
5
|
Huang J, Zhao N, Wang L, He H, Song Z, Wang X. Effect of amino acids on the formation and distribution of volatile aldehydes in high oleic sunflower oil during frying. Food Res Int 2024; 192:114749. [PMID: 39147554 DOI: 10.1016/j.foodres.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
This research aims to assess the effect of amino acids as lipid antioxidants in reducing the formation of volatile aldehydes in frying oil. Methionine, histidine, and glycine at concentrations of 2.5, 5, and 10 mM were added to high oleic sunflower oil (HOSO) to investigate their effects on the distribution and formation of saturated, monounsaturated, and polyunsaturated volatile aldehydes. The results showed that the proportion of saturated volatile aldehydes was greater than that of unsaturated ones; Methionine exhibited the best inhibitory effect, after 12 h of frying, 10 mM methionine reduced the content of saturated volatile aldehydes by 24.21 %, monounsaturated by 52.4 %, and polyunsaturated by 54.73 % compared to the control. Methionine's sulfur-containing side chain was also proven to have strong antioxidant activity. Combined with the results of this study, this can also provide insights for using amino acids as lipid antioxidants.
Collapse
Affiliation(s)
- Jianhua Huang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nanyu Zhao
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lijun Wang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongying He
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhihua Song
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Tenopoulou M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J 2024. [PMID: 39180244 DOI: 10.1111/febs.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The structure of fibrinogen and resulting fibrin formed during the coagulation process have important biological functions in human physiology and pathology. Fibrinogen post-translational modifications (PTMs) increase the complexity of the protein structure and many studies have emphasized the potential associations of post-translationally altered fibrinogen with the formation of a fibrin clot with a prothrombotic phenotype. However, the mechanisms by which PTMs exert their action on fibrinogen, and their causal association with disease pathogenesis are relatively unexplored. Moreover, the significance of fibrinogen PTMs in health has yet to be appreciated. In this review, the impact of fibrinogen PTMs on fibrinogen functionality is discussed from a biochemical perspective, emphasizing the potential mechanisms by which PTMs mediate the acquisition of altered fibrinogen properties. A brief discussion on dysfibrinogenemias of genetic origin, attributed to single point variations of the fibrinogen molecule is also provided, highlighting the influence that amino acid properties have on fibrinogen structure, properties, and molecular interactions that arise during thrombus formation.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Greece
| |
Collapse
|
7
|
Zaparte A, Christopher CJ, Arnold C, Richey L, Castille A, Mistretta K, Taylor CM, Lin H, Nelson S, Kirwan JP, Apolzan JW, Campagna SR, Welsh DA. Effects of E-Cigarettes on the Lung and Systemic Metabolome in People with HIV. Metabolites 2024; 14:434. [PMID: 39195530 DOI: 10.3390/metabo14080434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The popularity of e-cigarettes (vaping) has soared, creating a public health crisis among teens and young adults. Chronic vaping can induce gut inflammation and reduce intestinal barrier function through the production of the proinflammatory molecule hydrogen sulfide (H2S). This is particularly concerning for people with HIV (PWH) as they already face impaired immune function and are at a higher risk for metabolic dysregulation, diabetes, and chronic liver disease. Furthermore, PWH experience unhealthy behaviors, making it crucial to understand the systemic metabolic dysregulation and pathophysiological mechanisms associated with vaping in this population. Here, we employed liquid chromatography-mass spectrometry (LC-MS)-based metabolomics to investigate the upper respiratory, circulation, and gut metabolic profiles of PWH who vape (n = 7) and smoke combustible tobacco/marijuana (n = 6) compared to control participants who did not vape or smoke (n = 10). This hypothesis-generating exploratory study revealed systemic alterations in purine, neurotransmitter, and vitamin B metabolisms and tissue-specific changes in inflammatory pathways and cryptic sulfur cycling associated with vaping and combustible tobacco/marijuana smoking in PWH. In addition, this study provides the first link between microbial-derived metabolite 2,3-dihydroxypropane-1-sulfonate (DHPS) and vaping/smoking (tobacco and marijuana)-induced metabolic dyshomeostasis in the gut. These findings highlight the importance of identifying the full biological and clinical significance of the physiological changes and risks associated with vaping.
Collapse
Affiliation(s)
- Aline Zaparte
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Courtney J Christopher
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
| | - Connie Arnold
- Department of Medicine, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Lauren Richey
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Adairre Castille
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kyle Mistretta
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, & Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Huiyi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Steve Nelson
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - John W Apolzan
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA
| | - David A Welsh
- Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Yurina LV, Vasilyeva AD, Gavrilina ES, Ivanov VS, Obydennyi SI, Chabin IA, Indeykina MI, Kononikhin AS, Nikolaev EN, Rosenfeld MA. A role of methionines in the functioning of oxidatively modified fibrinogen. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141013. [PMID: 38582358 DOI: 10.1016/j.bbapap.2024.141013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Posttranslational modifications in fibrinogen resulting from induced oxidation or oxidative stress in the organism can have deleterious influence on optimal functioning of fibrinogen, causing a disturbance in assembly and properties of fibrin. The protective mechanism supporting the ability of fibrinogen to function in ROS-generating environment remains completely unexplored. The effects of very low and moderately low HOCl/-OCl concentrations on fibrinogen oxidative modifications, the fibrin network structure as well as the kinetics of both fibrinogen-to-fibrin conversion and fibrin hydrolysis have been explored in the current study. As opposed to 25 Μm, HOCl/-OCl, 10 μM HOCl/-OCl did not affect the functional activity of fibrinogen. It is shown for the first time that a number of Met residues, AαMet476, AαMet517, AαMet584, BβMet367, γMet264, and γMet94, identified in 10 μM HOCl/-OCl fibrinogen by the HPLC-MS/MS method, operate as ROS scavengers, performing an important antioxidant function. In turn, this indicates that the fibrinogen structure is adapted to the detrimental action of ROS. The results obtained in our study provide evidence for a protective mechanism responsible for maintaining the structure and functioning of fibrinogen molecules in the bloodstream under conditions of mild and moderate oxidative stress.
Collapse
Affiliation(s)
- L V Yurina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia.
| | - A D Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia
| | - E S Gavrilina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia
| | - V S Ivanov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia
| | - S I Obydennyi
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Russia; Centre for Theoretical Problems of Physicochemical Pharmacology, Russia
| | - I A Chabin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Russia; Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - M I Indeykina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia; Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A S Kononikhin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - M A Rosenfeld
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Russia
| |
Collapse
|
9
|
Lopes FBTP, Schlatzer D, Li M, Yilmaz S, Wang R, Qi X, Ayati M, Koyutürk M, Chance MR. Methionine Sulfoxide Speciation in Mouse Hippocampus Revealed by Global Proteomics Exhibits Age- and Alzheimer's Disease-Dependent Changes Targeted to Mitochondrial and Glycolytic Pathways. Int J Mol Sci 2024; 25:6516. [PMID: 38928221 PMCID: PMC11203694 DOI: 10.3390/ijms25126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Methionine oxidation to the sulfoxide form (MSox) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MSox site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MSox across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states. Using this model, we analyzed age-, sex-, and disease-dependent MSox speciation in the mouse hippocampus. In addition, we explored the chemical stability and statistical variance of oxidized peptide signals to understand the needed power for MSox-based proteome studies. Our results identify mitochondrial and glycolytic pathway targets with increases in MSox with age as well as neuroinflammatory targets accumulating MSox with AD in proteome studies of the mouse hippocampus. Further, this paper establishes a foundation for reproducible and rigorous experimental MSox-omics appropriate for novel target identification in biological discovery and for biomarker analysis in ROS and other oxidation-linked diseases.
Collapse
Affiliation(s)
- Filipa Blasco Tavares Pereira Lopes
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| | - Mengzhen Li
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Serhan Yilmaz
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Rihua Wang
- Center for Mitochondrial Diseases, Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (R.W.); (X.Q.)
| | - Xin Qi
- Center for Mitochondrial Diseases, Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (R.W.); (X.Q.)
| | - Marzieh Ayati
- Department of Computer Science, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
- Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (M.L.); (S.Y.)
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (F.B.T.P.L.); (D.S.); (M.K.)
| |
Collapse
|
10
|
Babu S, Fronczek FR, Uppu RM, Claville MO. Crystal structures of the isomeric dipeptides l-glycyl-l-me-thio-nine and l-me-thionyl-l-glycine. Acta Crystallogr E Crystallogr Commun 2024; 80:725-728. [PMID: 38974159 PMCID: PMC11223706 DOI: 10.1107/s2056989024005504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024]
Abstract
The oxidation of me-thionyl peptides can contribute to increased biological (oxidative) stress and development of various inflammatory diseases. The conformation of peptides has an important role in the mechanism of oxidation and the inter-mediates formed in the reaction. Herein, the crystal structures of the isomeric dipeptides Gly-Met (Gly = glycine and Met = me-thio-nine) and Met-Gly, both C7H14N2O3S, are reported. Both mol-ecules exist in the solid state as zwitterions with nominal proton transfer from the carb-oxy-lic acid to the primary amine group. The Gly-Met mol-ecule has an extended backbone structure, while Met-Gly has two nearly planar regions kinked at the C atom bearing the NH3 group. In the crystals, both structures form extensive three-dimensional hydrogen-bonding networks via N-H⋯O and bifurcated N-H⋯(O,O) hydrogen bonds having N⋯O distances in the range 2.6619 (13)-2.8513 (13) Å for Gly-Met and 2.6273 (8)-3.1465 (8) Å for Met-Gly.
Collapse
Affiliation(s)
- Sainath Babu
- Department of Biological Sciences, School of Science, Hampton University, Hampton, VA, 23669, USA
| | - Frank R. Fronczek
- Department of Chemistry Louisiana State University,Baton Rouge LA 70803 USA
| | - Rao M. Uppu
- Department of Environmental Toxicology Southern University and A&M College Baton Rouge LA 70813 USA
| | | |
Collapse
|
11
|
Kalemba EM, Gevaert K, Impens F, Dufour S, Czerwoniec A. The association of protein-bound methionine sulfoxide with proteomic basis for aging in beech seeds. BMC PLANT BIOLOGY 2024; 24:377. [PMID: 38714916 PMCID: PMC11077735 DOI: 10.1186/s12870-024-05085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | | |
Collapse
|
12
|
Shinde V, Desai K. Selenium-Methionine-Folic Acid Nanoparticles (SeMetFa NPs) and Its In Vivo Efficacy Against Rheumatoid Arthritis. Biol Trace Elem Res 2024; 202:2184-2198. [PMID: 37682396 DOI: 10.1007/s12011-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Selenium nanoparticles can be beneficial against rheumatoid arthritis, with limitations in dosage formulation due to their toxicity and low bioavailability. In the present study, we investigated the bioavailability and in vivo efficiency of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) in chronic inflammatory arthritis in rats. The purpose of this study was to develop a therapeutic agent that is of low toxicity and readily available for the maintenance of rheumatoid arthritis. SeMetFa NPs were synthesised by a wet chemical method (precipitation using a reducing agent). The apparent permeability (Papp) of NPs was investigated to be 10 × 10-6 cm/s. The effect of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) on rats was investigated for oxidative status, anti-inflammatory markers, physical characteristics, radiography of the paw region, and histopathology. Groups with 250 and 500 mg/kg b.w SeMetFa NPs acted as a potent anti-inflammatory agent with reduced (p < 0.05) arthritis-induced parameters in a 21-day study on Wistar rats. The antioxidant enzyme levels in the liver, kidney, and spleen were restored significantly at 500 and 750 mg/kg b.w. Concluding SeMetFa NPs at a concentration of 500 mg/kg b.w. can be a potential therapeutic agent as compared to dextrin-coated nanoparticles.
Collapse
Affiliation(s)
- Vrundali Shinde
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-Be) University, Mumbai, 400056, India
| | - Krutika Desai
- SVKM's Mithibai College of Arts Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Mumbai, 400056, India.
| |
Collapse
|
13
|
Jia D, Li S, Jiang M, Lv Z, Wang H, Zheng Z. Facile Reactive Oxygen Species-Scavenging Supramolecular Hydrogel to Promote Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15752-15760. [PMID: 38507518 DOI: 10.1021/acsami.3c17667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chronic wound healing impairment is a significant complication in diabetes. Hydrogels that maintain wound moisture and enable sustained drug release have become prominent for enhancing chronic wound care. Particularly, hydrogels that respond to reactive oxygen species (ROS) are sought-after for their dual capacity to mitigate ROS and facilitate controlled drug delivery at the wound site. We have strategically designed an ROS-responsive and scavenging supramolecular hydrogel composed of the simple hexapeptide Glu-Phe-Met-Phe-Met-Glu (EFM). This hydrogelator, composed solely of canonical amino acids without additional ROS-sensitive motifs, forms a hydrogel rapidly upon sonication. Interaction with ROS leads to the oxidation of Met residues to methionine sulfoxide, triggering hydrogel disassembly and consequent payload release. Cellular assays have verified their biocompatibility and efficacy in promoting cell proliferation and migration. In vivo investigations underscore the potential of this straightforward hydrogel as an ROS-scavenger and drug delivery vehicle, enhancing wound healing in diabetic mice. The simplicity and effectiveness of this hydrogel suggest its broader biomedical applications in the future.
Collapse
Affiliation(s)
- Deying Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shuangshuang Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mengmeng Jiang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zongyu Lv
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Haipeng Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Zheng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
14
|
Hoare M, Tan R, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:433-440. [PMID: 38324783 PMCID: PMC10921467 DOI: 10.1021/jasms.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.
Collapse
Affiliation(s)
- Margaret Hoare
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Ruiyue Tan
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Kyle Swovick
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
15
|
Nascimento NS, Torres-Obreque KM, Oliveira CA, Rabelo J, Baby AR, Long PF, Young AR, Rangel-Yagui CDO. Enzymes for dermatological use. Exp Dermatol 2024; 33:e15008. [PMID: 38284197 DOI: 10.1111/exd.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Collapse
Affiliation(s)
- Natália Santos Nascimento
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Karin Mariana Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Camila Areias Oliveira
- Laboratory of Analytical Validation and Development, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
16
|
Li R, Kato H, Fumimoto C, Nakamura Y, Yoshimura K, Minagawa E, Omatsu K, Ogata C, Taguchi Y, Umeda M. Essential Amino Acid Starvation-Induced Oxidative Stress Causes DNA Damage and Apoptosis in Murine Osteoblast-like Cells. Int J Mol Sci 2023; 24:15314. [PMID: 37894999 PMCID: PMC10607495 DOI: 10.3390/ijms242015314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Intracellular nutrient metabolism, particularly the metabolism of essential amino acids (EAAs), is crucial for cellular functions, including energy production and redox homeostasis. An EAA deficiency can lead to cellular dysfunction and oxidative stress. This study explores the mechanisms underlying cellular responses to EAA starvation, focusing on ROS-induced DNA damage and apoptosis. MC3T3-E1 cells were subjected to EAA starvation, and various assays were conducted to assess cell proliferation, survival, DNA damage, and apoptosis. The antioxidant N-acetylcysteine (NAC) was employed to block ROS formation and mitigate cellular damage. Gene expression and Western blot analyses were performed to elucidate molecular pathways. EAA starvation-induced ROS generation, DNA damage, and apoptosis in MC3T3-E1 cells. NAC administration effectively reduced DNA damage and apoptosis, highlighting the pivotal role of ROS in mediating these cellular responses during EAA deficiency. This study demonstrates that EAA starvation triggers ROS-mediated DNA damage and apoptosis, offering insights into the intricate interplay between nutrient deficiency, oxidative stress, and programmed cell death. NAC emerges as a potential therapeutic intervention to counteract these adverse effects.
Collapse
Affiliation(s)
- Runbo Li
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hirohito Kato
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chihiro Fumimoto
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yurika Nakamura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kimihiro Yoshimura
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Emika Minagawa
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Keiju Omatsu
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Chizuko Ogata
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
17
|
Sanclemente JL, Rivera-Velez SM, Horohov DW, Dasgupta N, Sanz MG. Plasma metabolome of healthy and Rhodococcus equi-infected foals over time. Equine Vet J 2023; 55:831-842. [PMID: 36273247 DOI: 10.1111/evj.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Foals that develop pulmonary ultrasonographic lesions on Rhodococcus equi (R. equi) endemic farms are treated with antibiotics because those at risk of developing clinical pneumonia (~20%) cannot be recognised early. Candidate biomarkers identified using metabolomics may aid targeted treatment strategies against R. equi. OBJECTIVES (1) To describe how foal ageing affects their plasma metabolome (birth to 8 weeks) and (2) to establish the effects that experimental infection with Rhodococcus equi (R. equi) has on foal metabolome. STUDY DESIGN Experimental study. METHODS Nine healthy newborn foals were experimentally infected with R. equi as described in a previous study. Foals were treated with oral antibiotics if they developed clinical pneumonia (n = 4, clinical group) or remained untreated if they showed no signs of disease (n = 5, subclinical group). A group of unchallenged foals (n = 4) was also included in the study. By the end of the study period (8 weeks), all foals were free of disease. This status was confirmed with transtracheal wash fluid evaluation and culture as well as thoracic ultrasonography. Plasma metabolomics was determined by GC-MS weekly for the study duration (8 weeks). RESULTS Foals' plasma metabolome was altered by ageing (birth to 8 weeks) and experimental infection with R. equi as demonstrated using multivariate statistical analysis. The intensities of 25 and 28 metabolites were altered by ageing and infection (p < 0.05) respectively. Furthermore, 20 metabolites changed by more than 2-fold between clinical and subclinical groups. MAIN LIMITATIONS The number of foals is limited. Foals were experimentally infected with R. equi. CONCLUSIONS Ageing and R. equi infection induced changes in the plasma metabolome of foals. These results provide an initial description of foal's plasma metabolome and serve as background for future identification of R. equi pneumonia biomarkers.
Collapse
Affiliation(s)
- Jorge L Sanclemente
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sol M Rivera-Velez
- Molecular Determinants Core, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Clinical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nairanjana Dasgupta
- Department of Mathematics and Statistics, College of Arts and Sciences, Washington State University, Pullman, Washington, USA
| | - Macarena G Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
18
|
Pittalà MG, Di Francesco A, Cucina A, Saletti R, Zilberstein G, Zilberstein S, Arhire T, Righetti PG, Cunsolo V. Count Dracula Resurrected: Proteomic Analysis of Vlad III the Impaler's Documents by EVA Technology and Mass Spectrometry. Anal Chem 2023; 95:12732-12744. [PMID: 37552208 PMCID: PMC10469356 DOI: 10.1021/acs.analchem.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
The interest of scientists in analyzing items of World Cultural Heritage has been exponentially increasing since the beginning of the new millennium. These studies have grown considerably in tandem with the development and use of sophisticated and sensitive technologies such as high-resolution mass spectrometry (MS) and the non-invasive and non-damaging technique, known under the acronym EVA (ethylene-vinyl acetate). Here, we report the results of the MS characterization of the peptides and proteins harvested by the EVA technology applied to three letters written in 1457 and 1475 by the voivode of Wallachia, Vlad III, also known as Vlad the Impaler, or Vlad Dracula. The discrimination of the "original" endogenous peptides from contaminant ones was obtained by monitoring their different levels of deamidation and of other diagenetic chemical modifications. The characterization of the ancient proteins extracted from these documents allowed us to explore the environmental conditions, in the second half of the 15th century, of the Wallachia, a region considered as a meeting point for soldiers, migrants, and travelers that probably carried not only trade goods and cultural traditions but also diseases and epidemics. In addition, the identification of many human peptides and proteins harvested from the letters allowed us to uncover more about Vlad Dracula the Impaler. Particularly, the experimental data show that he probably suffered from inflammatory processes of the respiratory tract and/or of the skin. In addition, proteomics data, although not exhaustive, suggest that, according to some stories, he might also have suffered from a pathological condition called hemolacria, that is, he could shed tears admixed with blood. It is worth noting that more medieval people may have touched these documents, which cannot be denied, but it is also presumable that the most prominent ancient proteins should be related to Prince Vlad the Impaler, who wrote and signed these letters. The data have been deposited to the ProteomeXchange with the identifier ⟨PXD041350⟩.
Collapse
Affiliation(s)
- Maria
Gaetana Giovanna Pittalà
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Antonella Di Francesco
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Annamaria Cucina
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Rosaria Saletti
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Gleb Zilberstein
- SpringStyle
Tech Design Ltd, Oppenheimer
7, Rehovot 7670107, Israel
| | | | - Tudor Arhire
- Sibiu
County Department of Romania National Archives, Strada Arhivelor 3, Sibiu 557260, Romania
| | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering ‘‘Giulio
Natta’’, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| | - Vincenzo Cunsolo
- Laboratory
of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| |
Collapse
|
19
|
Eckersley A, Morais MR, Ozols M, Lennon R. Peptide location fingerprinting identifies structural alterations within basement membrane components in ageing kidney. Matrix Biol 2023; 121:167-178. [PMID: 37437747 DOI: 10.1016/j.matbio.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
During ageing, the glomerular and tubular basement membranes (BM) of the kidney undergo a progressive decline in function that is underpinned by histological changes, including glomerulosclerosis and tubular interstitial fibrosis and atrophy. This BM-specific ageing is thought to result from damage accumulation to long-lived extracellular matrix (ECM) protein structures. Determining which BM proteins are susceptible to these structure-associated changes, and the possible mechanisms and downstream consequences, is critical to understand age-related kidney degeneration and to identify markers for therapeutic intervention. Peptide location fingerprinting (PLF) is an emerging proteomic mass spectrometry analysis technique capable of identifying ECM proteins with structure-associated differences that may occur by damage modifications in ageing. Here, we apply PLF as a bioinformatic screening tool to identify BM proteins with structure-associated differences between young and aged human glomerular and tubulointerstitial compartments. Several functional regions within key BM components displayed alterations in tryptic peptide yield, reflecting potential age-dependent shifts in molecular (e.g. laminin-binding regions in agrin) and cellular (e.g. integrin-binding regions in laminins 521 and 511) interactions, oxidation (e.g. collagen IV) and the fragmentation and release of matrikines (e.g. canstatin and endostatin from collagens IV and XVIII). Furthermore, we found that periostin and the collagen IV α2 chain exhibited structure-associated differences in ageing that were conserved between human kidney and previously analysed mouse lung, revealing BM components that harbour shared susceptibilities across species and organs.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Mychel Rpt Morais
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Rachel Lennon
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
20
|
Johnston E, Buckley M. Age-Related Changes in Post-Translational Modifications of Proteins from Whole Male and Female Skeletal Elements. Molecules 2023; 28:4899. [PMID: 37446562 DOI: 10.3390/molecules28134899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
One of the key questions in forensic cases relates to some form of age inference, whether this is how old a crime scene is, when in time a particular crime was committed, or how old the victim was at the time of the crime. These age-related estimations are currently achieved through morphological methods with varying degrees of accuracy. As a result, biomolecular approaches are considered of great interest, with the relative abundances of several protein markers already recognized for their potential forensic significance; however, one of the greatest advantages of proteomic investigations over genomics ones is the wide range of post-translational modifications (PTMs) that make for a complex but highly dynamic resource of information. Here, we explore the abundance of several PTMs including the glycosylation, deamidation, and oxidation of several key proteins (collagen, fetuin A, biglycan, serum albumin, fibronectin and osteopontin) as being of potential value to the development of an age estimation tool worthy of further evaluation in forensic contexts. We find that glycosylations lowered into adulthood but deamidation and oxidation increased in the same age range.
Collapse
Affiliation(s)
- Elizabeth Johnston
- School of Natural Sciences, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Michael Buckley
- School of Natural Sciences, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
21
|
Rosenfeld MA, Yurina LV, Vasilyeva AD. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys Rev 2023; 15:367-383. [PMID: 37396452 PMCID: PMC10310685 DOI: 10.1007/s12551-023-01056-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 07/04/2023] Open
Abstract
Significant evidence suggests that reversible oxidation of methionine residues provides a mechanism capable of scavenging reactive species, thus creating a cycle with catalytic efficiency to counteract or mitigate deleterious effects of ROS on other functionally important amino acid residues. Because of the absence of MSRs in the blood plasma, oxidation of methionines in extracellular proteins is effectively irreversible and, therefore, the ability of methionines to serve as interceptors of oxidant molecules without impairment of the structure and function of plasma proteins is still debatable. This review presents data on the oxidative modification of both intracellular and extracellular proteins that differ drastically in their spatial structures and functions indicating that the proteins contain antioxidant methionines/the oxidation of which does not affect (or has a minor effect) on their functional properties. The functional consequences of methionine oxidation in proteins have been mainly identified from studies in vitro and, to a very limited extent, in vivo. Hence, much of the functioning of plasma proteins constantly subjected to oxidative stress remains unclear and requires further research to understand the evolutionary role of methionine oxidation in proteins for the maintenance of homeostasis and risk factors affecting the development of ROS-related pathologies. Data presented in this review contribute to increased evidence of antioxidant role of surface-exposed methionines and can be useful for understanding a possible mechanism that supports or impairs structure-function relationships of proteins subjected to oxidative stress.
Collapse
Affiliation(s)
- Mark A. Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Lyubov V. Yurina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Alexandra D. Vasilyeva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
22
|
Nagel AS, Rudenko NV, Luchkina PN, Karatovskaya AP, Zamyatina AV, Andreeva-Kovalevskaya ZI, Siunov AV, Brovko FA, Solonin AS. Region Met225 to Ile412 of Bacillus cereus Hemolysin II Is Capable to Agglutinate Red Blood Cells. Molecules 2023; 28:molecules28083581. [PMID: 37110815 PMCID: PMC10140989 DOI: 10.3390/molecules28083581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Hemolysin II (HlyII) is one of the virulence factors of the opportunistic bacterium Bacillus cereus belonging to the group of β-pore-forming toxins. This work created a genetic construct encoding a large C-terminal fragment of the toxin (HlyIILCTD, M225-I412 according to the numbering of amino acid residues in HlyII). A soluble form of HlyIILCTD was obtained using the SlyD chaperone protein. HlyIILCTD was first shown to be capable of agglutinating rabbit erythrocytes. Monoclonal antibodies against HlyIILCTD were obtained by hybridoma technology. We also proposed a mode of rabbit erythrocyte agglutination by HlyIILCTD and selected three anti-HlyIILCTD monoclonal antibodies that inhibited the agglutination.
Collapse
Affiliation(s)
- Alexey S Nagel
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Natalia V Rudenko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Polina N Luchkina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna P Karatovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna V Zamyatina
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander V Siunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Fedor A Brovko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander S Solonin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Centre of Biological Research, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
23
|
Zhou Z, Li M, Zhang Y, Kong L, Smith VF, Zhang M, Gulbrandson AJ, Waller GH, Lin F, Liu X, Durkin DP, Chen H, Shuai D. Fe-Fe Double-Atom Catalysts for Murine Coronavirus Disinfection: Nonradical Activation of Peroxides and Mechanisms of Virus Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3804-3816. [PMID: 36880272 PMCID: PMC9999944 DOI: 10.1021/acs.est.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Peroxides find broad applications for disinfecting environmental pathogens particularly in the COVID-19 pandemic; however, the extensive use of chemical disinfectants can threaten human health and ecosystems. To achieve robust and sustainable disinfection with minimal adverse impacts, we developed Fe single-atom and Fe-Fe double-atom catalysts for activating peroxymonosulfate (PMS). The Fe-Fe double-atom catalyst supported on sulfur-doped graphitic carbon nitride outperformed other catalysts for oxidation, and it activated PMS likely through a nonradical route of catalyst-mediated electron transfer. This Fe-Fe double-atom catalyst enhanced PMS disinfection kinetics for inactivating murine coronaviruses (i.e., murine hepatitis virus strain A59 (MHV-A59)) by 2.17-4.60 times when compared to PMS treatment alone in diverse environmental media including simulated saliva and freshwater. The molecular-level mechanism of MHV-A59 inactivation was also elucidated. Fe-Fe double-atom catalysis promoted the damage of not only viral proteins and genomes but also internalization, a key step of virus lifecycle in host cells, for enhancing the potency of PMS disinfection. For the first time, our study advances double-atom catalysis for environmental pathogen control and provides fundamental insights of murine coronavirus disinfection. Our work paves a new avenue of leveraging advanced materials for improving disinfection, sanitation, and hygiene practices and protecting public health.
Collapse
Affiliation(s)
- Zhe Zhou
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Mengqiao Li
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yuxin Zhang
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lingchen Kong
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Virginia F. Smith
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Mengyang Zhang
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Anders J. Gulbrandson
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Gordon H. Waller
- Chemistry
Division, United States Naval Research Laboratory, Washington, District of
Columbia 20375, United States
| | - Feng Lin
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xitong Liu
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - David P. Durkin
- Department
of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, The University
of Texas at Austin, Austin, Texas 78758, United States
| | - Danmeng Shuai
- Department
of Civil and Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
24
|
On the electrochemical oxidation of methionine residues of proteins. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Santana TP, Gasparino E, de Souza Khatlab A, Pereira AMFE, Barbosa LT, Fernandes RPM, Lamont SJ, Del Vesco AP. Effects of maternal methionine supplementation on the response of Japanese quail (Coturnix coturnix japonica) chicks to heat stress. J Anim Sci 2023; 101:skad042. [PMID: 36734330 PMCID: PMC10103070 DOI: 10.1093/jas/skad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
This study investigated the hypothesis that methionine supplementation of Japanese quail (Coturnix coturnix japonica) hens can reduce the effects of oxidative stress and improve the performance of the offspring exposed to heat stress during growth. For that, the quail hens were fed with three diets related to the methionine supplementation: methionine-deficient diet (Md); diet supplemented with the recommended methionine level (Met1); and diet supplemented with methionine above the recommended level (Met2). Their chicks were identified, weighed, and housed according to the maternal diet group from 1 to 14 d of age. On 15 d of age, chicks were weighed and divided into two groups: thermoneutral ambient (constant temperature of 23 °C) and intermittent heat stress ambient (daily exposure to 34 °C for 6 h). Methionine-supplemented (Met1 and Met2) hens had higher egg production, better feed conversion ratio, higher hatchability of total and fertile eggs, and offspring with higher body weight. Supplemented (Met1 and Met2) hens showed greater expression of glutathione synthase (GSS) and methionine sulfoxide reductase A (MSRA) genes, greater total antioxidant capacity, and lower lipid peroxidation in the liver. The offspring of hens fed the Met2 diet had lower death rate (1 to 14 d), higher weight on 15 d of age, weight gain, and better feed conversion ratio from 1 to 14 d of age. Among chicks reared under heat stress, the progeny of methionine-supplemented hens had higher weight on 35 d, weight gain, expression of GSS, MSRA, and thermal shock protein 70 (HSP70) genes, and total antioxidant capacity in the liver, as well as lower heterophil/lymphocyte ratio. Positive correlations between expression of glutathione peroxidase 7 (GPX7) and MSRA genes in hens and offspring were observed. Our results show that maternal methionine supplementation contributes to offspring development and performance in early stages and that, under conditions of heat stress during growth, chicks from methionine-supplemented hens respond better to hot environmental conditions than chicks from nonsupplemented hens. Supplementation of quail hens diets with methionine promoted activation of different metabolic pathways in offspring subjected to stress conditions.
Collapse
Affiliation(s)
- Thaís Pacheco Santana
- Animal Science Department, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| | - Eliane Gasparino
- Animal Science Department, State University of Maringá, 87020-900 Maringá, Paraná, Brazil
| | | | | | - Leandro Teixeira Barbosa
- Animal Science Department, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| | | | - Susan J Lamont
- Animal Science Department, Iowa State University, Iowa State University, Iowa 50011, USA
| | - Ana Paula Del Vesco
- Animal Science Department, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
| |
Collapse
|
26
|
Yuan X, Liu Y, Chen Y, Jiao H, Zhao J, Wang X, Zhou Y, Lin H. Effect of substitution of taurine for methionine and additional taurine supplementation on the performance and antioxidative capacity of laying hens. Poult Sci 2022; 102:102426. [PMID: 36587450 PMCID: PMC9811254 DOI: 10.1016/j.psj.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Taurine (TAU), a sulfur-containing amino acid that synthesized from methionine and cystine, plays vital roles in maintenance of redox balance. The effect of substitution of TAU for methionine was evaluated in vivo and in vitro. The effects of replacing methionine with TAU and additional TAU supplementation on the performance and antioxidant capacity of laying hens were evaluated. The in vitro cultured chicken primary hepatocytes and intestinal epithelial cells were further employed. Two hubdred eighty-eight 40-wk-old Isa brown laying hens were divided into 4 groups and subjected one to the following treatments: fed with basal diet with 0.17% crystallized DL-Met (CON), the control diet and replace 25% (21% total Met, 21TAU) or 50% (42% total Met, 42TAU) of crystallized DL-Met with taurine, the control diet supplemented with 0.1% taurine (0.1% TAU). The laying rate, feed intake, egg weight, and feed efficiency were not influenced (P > 0.05) by TAU replacement or additional TAU supplementation. In the liver, 0.1% TAU decreased SOD but increased GSH-Px activity (P < 0.01). In duodenum, 42TAU decreased SOD activity (P < 0.05) while 0.1% TAU decreased GSH level and SOD activity (P < 0.05). In the hepatocytes, TAU treatment decreased (P < 0.05) the MDA and GSH contents, whereas increased SOD and GSH-Px activities (P < 0.05). Meanwhile, TAU treatment decreased (P < 0.05) the protein expression of Nrf2 while increase Keap1 expression. The mRNA expression of Nrf2, SOD1, SOD2, CAT, and GCLC were increased (P < 0.05) and GSR were decreased (P < 0.05) by 0.1% TAU. In the intestinal epithelial cells, TAU treatment decreased (P < 0.05) SOD activity, increased (P < 0.05) CAT activity, and decreased (P < 0.05) the mRNA and protein expression of Nrf2. In summary, partial substitution methionine for taurine (21-42%) has no influence on egg performance of hens. Taurine enhances the antioxidative capacity in hepatocyte but not in the enterocytes and if taurine could offer an improved effect on antioxidant capacity needs to be verified under oxidative stress-challenged conditions.
Collapse
Affiliation(s)
- Xiukang Yuan
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Yu Liu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Yanling Chen
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian, Shandong 271018, China.
| |
Collapse
|
27
|
Yoo HJ, Choi DW, Roh YJ, Lee YM, Lim JH, Eo S, Lee HJ, Kim NY, Kim S, Cho S, Im G, Lee BC, Kim JH. MsrB1-regulated GAPDH oxidation plays programmatic roles in shaping metabolic and inflammatory signatures during macrophage activation. Cell Rep 2022; 41:111598. [DOI: 10.1016/j.celrep.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
28
|
Huang P, Yue Y, Yin C, Huo F. Design of Dual‐responsive ROS/RSS Fluorescent Probes and Their Application in Bioimaging. Chem Asian J 2022; 17:e202200907. [DOI: 10.1002/asia.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pei Huang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
29
|
Dailah HG. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022; 27:molecules27175542. [PMID: 36080309 PMCID: PMC9458015 DOI: 10.3390/molecules27175542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing and major global health problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place when various reactive species and free radicals swamp the availability of antioxidants. Reactive nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important for host defense and physiological signaling pathways, and the development and progression of inflammation. During the disturbance of their normal steady states, imbalances between antioxidants and oxidants might induce pathological mechanisms that can further result in many non-respiratory and respiratory diseases including COPD. ROS might be either endogenously produced in response to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS), and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine, erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease OS and affect the expressions of several pro-inflammatory genes and genes that are involved with redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous chemicals, particularly antioxidants in the treatment of COPD.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
30
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform-Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022; 61:e202200721. [PMID: 35446460 PMCID: PMC9276647 DOI: 10.1002/anie.202200721] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 01/28/2023]
Abstract
Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.
Collapse
Affiliation(s)
- Manxi Yang
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| | - Pei Su
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paul M. Thomas
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Jeannie M. Camarillo
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Joseph B. Greer
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Bryan P. Early
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan T. Fellers
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Neil L. Kelleher
- Departments of Chemistry and Molecular BiosciencesNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN 47907USA
| |
Collapse
|
31
|
Krauze M, Ognik K, Mikulski D, Jankowski J. Assessment of Neurodegenerative Changes in Turkeys Fed Diets with Different Proportions of Arginine and Methionine Relative to Lysine. Animals (Basel) 2022; 12:ani12121535. [PMID: 35739872 PMCID: PMC9219421 DOI: 10.3390/ani12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary It is important to take care of a properly balanced amino acid composition in the diet in order to inhibit or delay the occurrence of processes and changes related to the destruction of nervous tissue. Therefore, an attempt was made in this manuscript to evaluate the effect of different ratios of the key amino acids arginine and methionine, relative to lysine, in relation to two turkey feeding standards. The amino acid guidelines formulated by British United Turkeys (BUT) suggest higher levels of lysine (Lys) in turkey diets than those recommended by the National Research Council (NRC). In order to assess the impact of such supplementation, we analyzed the level of indicators informing the presence or degree of advancement of neurodegenerative processes in the nervous tissue (the level of acetylcholinesterase and amyloid-β; the concentration of AChE complexes with amyloid-β and Tau protein, called glycosylated acetylcholinesterase (GAChE), indicative of the destruction of neurons). The level of low-density lipoprotein receptor-related protein 1, or LRP-1, which facilitates the breakdown of toxic amyloid-β, was also assessed. In addition, the effect of different doses of these amino acids on neurodegenerative changes in DNA, especially the degree of methylation of histone proteins resulting from covalent modifications was compared between lysine and arginine residues. Abstract We postulated that the use of optimal levels and proportions of Arg and Met relative to a low or high concentration of Lys in diets for meat turkeys would reduce the occurrence of metabolic disturbances in the nervous tissue that can lead to neurodegenerative changes. The aim of the study was to determine the effect of various proportions of Lys, Arg, and Met in diets for turkeys, with a low content of Lys in accordance with NRC (Experiment 1) recommendations, and in diets with high Lys levels that are close to the recommendations of breeding companies (Experiment 2) on selected indicators of potential neurodegenerative effects in the brain and liver of turkeys. The Experiment 1 and Experiment 2 was conducted using 864 day-old turkey chicks randomly assigned to six groups, in eight replicates (6 groups × 18 birds × 8 replicates). A full description of the methodology can be found in previously published papers using the same experimental design. Indicators informing about the presence or advancement of neurodegenerative processes in the nervous tissue were determined in the brain and liver (level of: AChE, amyloid-β, GAChE, Tau protein, LRP1, and the degree of DNA methylation). It was established that in the case of both a low (National Research Council, NRC) and a high (British United Turkeys, BUT) level of Lys in the diet of turkeys, the Arg level can be reduced to 90% of the Lys level and Met to 30% of the Lys level, because this does not cause neurodegenerative changes in turkeys. Unfavorable neurodegenerative changes may appear if the Arg level is increased from 100 to 110% of the Lys level recommended by the NRC. However, due to the lack of such a relationship when Arg is increased from 100 to 110% of the Lys level recommended by BUT, at this stage of research no definitive conclusions can be drawn regarding the risk of neurodegenerative changes caused by increasing Arg in the diet of turkeys.
Collapse
Affiliation(s)
- Magdalena Krauze
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
- Correspondence:
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland;
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (D.M.); (J.J.)
| |
Collapse
|
32
|
Gaur A, Lipponen J, Yang Y, Armen RS, Wang B. Mutation of Methionine to Asparagine but Not Leucine in Parathyroid Hormone Mimics the Loss of Biological Function upon Oxidation. Biochemistry 2022; 61:981-991. [PMID: 35533300 PMCID: PMC9179810 DOI: 10.1021/acs.biochem.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Human parathyroid hormone (PTH) is an 84-amino acid peptide that contains two methionine (Met) residues located at positions 8 and 18. It has long been recognized that Met residues in PTH are subject to oxidation to become Met sulfoxide, resulting in a decreased biological function of the peptide. However, the mechanism of the lost biological function of PTH oxidation remains elusive. To characterize whether the shift from the hydrophobic nature of the native Met residue to the hydrophilic nature of Met sulfoxide plays a role in the reduction of biological activity upon PTH oxidation, we conducted in silico and in vitro site-directed mutagenesis of Met-8 and Met-18 to the hydrophilic residue asparagine (Asn) or to the hydrophobic residue leucine (Leu) and compared the behavior of these mutated peptides with that of PTH oxidized at Met-8 and/or Met-18. Our results showed that the biological activity of the Asn-8 and Asn-8/Asn-18 mutants was significantly reduced, similar to Met-8 sulfoxide and Met-8/Met-18 sulfoxide analogues, while the functions of Asn-18, Leu-8, Leu-8/Leu-18 mutants, or Met-18 sulfoxide analogues were similar to wild-type PTH. This is rationalized from molecular modeling and immunoprecipitation assay, demonstrating disruption of hydrophobic interactions between Met-8 and Met-18 of PTH and type-1 PTH receptor (PTHR1) upon mutation or oxidation. Thus, these novel findings support the notion that the loss of biological function of PTH upon oxidation of Met-8 is due, at least in part, to the conversion from a hydrophobic to a hydrophilic residue that disrupts direct hydrophobic interaction between PTH and PTHR1.
Collapse
Affiliation(s)
- Amit Gaur
- Center
for Translational Medicine, Departments of Medicine and Orthopaedic
Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| | - Jessica Lipponen
- Center
for Translational Medicine, Departments of Medicine and Orthopaedic
Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| | - Yanmei Yang
- Center
for Translational Medicine, Departments of Medicine and Orthopaedic
Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| | - Roger S. Armen
- Department
of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Bin Wang
- Center
for Translational Medicine, Departments of Medicine and Orthopaedic
Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
33
|
Bettinger JQ, Simon M, Korotkov A, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. J Proteome Res 2022; 21:1495-1509. [PMID: 35584362 PMCID: PMC9171897 DOI: 10.1021/acs.jproteome.2c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.
Collapse
Affiliation(s)
- John Q. Bettinger
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Simon
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anatoly Korotkov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Andrei Seluanov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Vera Gorbunova
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States,University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States,. Phone: 585-275-4829
| |
Collapse
|
34
|
He Y, Chen Y, Yao L, Wang J, Sha X, Wang Y. The Inflamm-Aging Model Identifies Key Risk Factors in Atherosclerosis. Front Genet 2022; 13:865827. [PMID: 35706446 PMCID: PMC9191626 DOI: 10.3389/fgene.2022.865827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis, one of the main threats to human life and health, is driven by abnormal inflammation (i.e., chronic inflammation or oxidative stress) during accelerated aging. Many studies have shown that inflamm-aging exerts a significant impact on the occurrence of atherosclerosis, particularly by inducing an immune homeostasis imbalance. However, the potential mechanism by which inflamm-aging induces atherosclerosis needs to be studied more thoroughly, and there is currently a lack of powerful prediction models.Methods: First, an improved inflamm-aging prediction model was constructed by integrating aging, inflammation, and disease markers with the help of machine learning methods; then, inflamm-aging scores were calculated. In addition, the causal relationship between aging and disease was identified using Mendelian randomization. A series of risk factors were also identified by causal analysis, sensitivity analysis, and network analysis.Results: Our results revealed an accelerated inflamm-aging pattern in atherosclerosis and suggested a causal relationship between inflamm-aging and atherosclerosis. Mechanisms involving inflammation, nutritional balance, vascular homeostasis, and oxidative stress were found to be driving factors of atherosclerosis in the context of inflamm-aging.Conclusion: In summary, we developed a model integrating crucial risk factors in inflamm-aging and atherosclerosis. Our computation pipeline could be used to explore potential mechanisms of related diseases.
Collapse
Affiliation(s)
- Yudan He
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yao Chen
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Junyi Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yin Wang,
| |
Collapse
|
35
|
Gu SX, Dayal S. Redox Mechanisms of Platelet Activation in Aging. Antioxidants (Basel) 2022; 11:995. [PMID: 35624860 PMCID: PMC9137594 DOI: 10.3390/antiox11050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is intrinsically linked with physiologic decline and is a major risk factor for a broad range of diseases. The deleterious effects of advancing age on the vascular system are evidenced by the high incidence and prevalence of cardiovascular disease in the elderly. Reactive oxygen species are critical mediators of normal vascular physiology and have been shown to gradually increase in the vasculature with age. There is a growing appreciation for the complexity of oxidant and antioxidant systems at the cellular and molecular levels, and accumulating evidence indicates a causal association between oxidative stress and age-related vascular disease. Herein, we review the current understanding of mechanistic links between oxidative stress and thrombotic vascular disease and the changes that occur with aging. While several vascular cells are key contributors, we focus on oxidative changes that occur in platelets and their mediation in disease progression. Additionally, we discuss the impact of comorbid conditions (i.e., diabetes, atherosclerosis, obesity, cancer, etc.) that have been associated with platelet redox dysregulation and vascular disease pathogenesis. As we continue to unravel the fundamental redox mechanisms of the vascular system, we will be able to develop more targeted therapeutic strategies for the prevention and management of age-associated vascular disease.
Collapse
Affiliation(s)
- Sean X. Gu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06511, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
36
|
Cui L, Zheng F, Zhang D, Li C, Li M, Ye J, Zhang Y, Wang T, Ouyang B, Hong Z, Ye Z, Zhang J. Tomato methionine sulfoxide reductase B2 functions in drought tolerance by promoting ROS scavenging and chlorophyll accumulation through interaction with Catalase 2 and RBCS3B. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111206. [PMID: 35351297 DOI: 10.1016/j.plantsci.2022.111206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) are inevitably generated in aerobic organisms as by-products of common metabolism and as the result of defense and development. ROS readily oxidizes methionine (Met) residues of proteins to form Met-R-sulfoxide or Met-S-sulfoxide (MetSO), resulting in protein inactivation or malfunction. Although it is known that MetSO can be reverted to Met by methionine sulfoxide reductase (Msr), the mechanism how Msr interacts with its target proteins is poorly understood. In this study, two target proteins of tomato MsrB2 (SlMsrB2), catalase 2 (CAT2) and the Rubisco small subunit RBCS3B, were identified. Silencing of SlMsrB2 by RNA interference (RNAi) in tomato led to decreased drought tolerance, accompanied by increased ROS accumulation and chlorophyll degradation. By contrast, overexpression of SlMsrB2 in tomato significantly reduced ROS accumulation and enhanced drought tolerance. Protein interaction analysis showed that SlMsrB2 interacts with CAT2 and RBCS3B in vitro and in planta. Silencing of CAT2 by RNAi and RBCS3B by virus-induced gene silencing (VIGS) resulted in development of pale green leaves and enhanced ROS accumulation in tomato plants. These results demonstrate that SlMsrB2 functions in drought tolerance and promotes chlorophyll accumulation by modulating ROS accumulation.
Collapse
Affiliation(s)
- Long Cui
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangyan Zheng
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedi Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxing Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Miao Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Yang M, Hu H, Su P, Thomas PM, Camarillo JM, Greer JB, Early BP, Fellers RT, Kelleher NL, Laskin J. Proteoform‐Selective Imaging of Tissues Using Mass Spectrometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manxi Yang
- Purdue University Department of Chemistry chemistry 560 Oval Dr. 47906 West Lafayette UNITED STATES
| | - Hang Hu
- Purdue University Chemistry UNITED STATES
| | - Pei Su
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Paul M. Thomas
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | | | - Joseph B. Greer
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Bryan P. Early
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Ryan T. Fellers
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Neil L. Kelleher
- Northwestern University Chemistry and Molecular Biosciences UNITED STATES
| | - Julia Laskin
- Purdue University Department of Chemistry 560 Oval Dr. 47907 West Lafayette UNITED STATES
| |
Collapse
|
38
|
Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues. J Biol Chem 2022; 298:101872. [PMID: 35346688 PMCID: PMC9062257 DOI: 10.1016/j.jbc.2022.101872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
The oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a given protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the Escherichia coli proteome using several proteomic methodologies and globally measured oxidation rates of methionine residues in the presence and absence of tertiary structure, as well as the folding stabilities of methionine-containing domains. These data indicated that buried methionines have a wide range of protection factors against oxidation that correlate strongly with folding stabilities. Consistent with this, we show that in comparison to E. coli, the proteome of the thermophile Thermus thermophilus is significantly more stable and thus more resistant to methionine oxidation. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and propose a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures. Overall, these results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability.
Collapse
|
39
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
40
|
A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. J Proteomics 2022; 261:104576. [DOI: 10.1016/j.jprot.2022.104576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
|
41
|
Kalemba EM, Valot B, Job D, Bailly C, Meimoun P. Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsisthaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. PLANTS (BASEL, SWITZERLAND) 2022; 11:569. [PMID: 35214905 PMCID: PMC8875303 DOI: 10.3390/plants11040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Benoît Valot
- PAPPSO, INRA, CNRS, AgroParisTech, Université Paris-Saclay, GQE-Le Moulon, 91190 Gif-sur-Yvette, France;
- UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Dominique Job
- UMR5240, CNRS, Université Claude Bernarnard Lyon 1, INSA, Bayer CropScience, 69622 Lyon, France;
| | - Christophe Bailly
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Patrice Meimoun
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| |
Collapse
|
42
|
(De)Activation (Ir)Reversibly or Degradation: Dynamics of Post-Translational Protein Modifications in Plants. Life (Basel) 2022; 12:life12020324. [PMID: 35207610 PMCID: PMC8874572 DOI: 10.3390/life12020324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The increasing dynamic functions of post-translational modifications (PTMs) within protein molecules present outstanding challenges for plant biology even at this present day. Protein PTMs are among the first and fastest plant responses to changes in the environment, indicating that the mechanisms and dynamics of PTMs are an essential area of plant biology. Besides being key players in signaling, PTMs play vital roles in gene expression, gene, and protein localization, protein stability and interactions, as well as enzyme kinetics. In this review, we take a broader but concise approach to capture the current state of events in the field of plant PTMs. We discuss protein modifications including citrullination, glycosylation, phosphorylation, oxidation and disulfide bridges, N-terminal, SUMOylation, and ubiquitination. Further, we outline the complexity of studying PTMs in relation to compartmentalization and function. We conclude by challenging the proteomics community to engage in holistic approaches towards identification and characterizing multiple PTMs on the same protein, their interaction, and mechanism of regulation to bring a deeper understanding of protein function and regulation in plants.
Collapse
|
43
|
Marciniak B, Bobrowski K. Photo- and Radiation-Induced One-Electron Oxidation of Methionine in Various Structural Environments Studied by Time-Resolved Techniques. Molecules 2022; 27:1028. [PMID: 35164293 PMCID: PMC8915190 DOI: 10.3390/molecules27031028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidation of methionine (Met) is an important reaction that plays a key role in protein modifications during oxidative stress and aging. The first steps of Met oxidation involve the creation of very reactive and short-lived transients. Application of complementary time-resolved radiation and photochemical techniques (pulse radiolysis and laser flash photolysis together with time-resolved CIDNP and ESR techniques) allowed comparing in detail the one-electron oxidation mechanisms initiated either by ●OH radicals and other one-electron oxidants or the excited triplet state of the sensitizers e.g., 4-,3-carboxybenzophenones. The main purpose of this review is to present various factors that influence the character of the forming intermediates. They are divided into two parts: those inextricably related to the structures of molecules containing Met and those related to external factors. The former include (i) the protection of terminal amine and carboxyl groups, (ii) the location of Met in the peptide molecule, (iii) the character of neighboring amino acid other than Met, (iv) the character of the peptide chain (open vs cyclic), (v) the number of Met residues in peptide and protein, and (vi) the optical isomerism of Met residues. External factors include the type of the oxidant, pH, and concentration of Met-containing compounds in the reaction environment. Particular attention is given to the neighboring group participation, which is an essential parameter controlling one-electron oxidation of Met. Mechanistic aspects of oxidation processes by various one-electron oxidants in various structural and pH environments are summarized and discussed. The importance of these studies for understanding oxidation of Met in real biological systems is also addressed.
Collapse
Affiliation(s)
- Bronislaw Marciniak
- Center for Advanced Technology, and Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-712 Poznan, Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
44
|
Girard-Perier N, Claeys-Bruno M, Marque SR, Dupuy N, Gaston F, Dorey S. Monitoring of peroxide in gamma irradiated PE/EVOH/PE multilayer film using methionine probe. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Karuppasamy P. Selective Oxidation of L-Methionine, L-Ethionine, N-Acetyl-L-Methionine, L-Buthionine Catalyzed by [FeIII-Salen]Cl Complexes: A Spectral, Kinetic, and Electrochemical Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Meta-proteomic analysis of two mammoth's trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence. Amino Acids 2022; 54:935-954. [PMID: 35434776 PMCID: PMC9213349 DOI: 10.1007/s00726-022-03160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/27/2022] [Indexed: 12/30/2022]
Abstract
The recent paleoproteomic studies, including paleo-metaproteomic analyses, improved our understanding of the dietary of ancient populations, the characterization of past human diseases, the reconstruction of the habitat of ancient species, but also provided new insights into the phylogenetic relationships between extant and extinct species. In this respect, the present work reports the results of the metaproteomic analysis performed on the middle part of a trunk, and on the portion of a trunk tip tissue of two different woolly mammoths some 30,000 years old. In particular, proteins were extracted by applying EVA (Ethylene-Vinyl Acetate studded with hydrophilic and hydrophobic resins) films to the surface of these tissues belonging to two Mammuthus primigenus specimens, discovered in two regions located in the Russian Far East, and then investigated via a shotgun MS-based approach. This approach allowed to obtain two interesting results: (i) an indirect description of the habitat of these two mammoths, and (ii) an improved characterization of the collagen type I, alpha-1 and alpha-2 chains (col1a1 and col1a2). Sequence characterization of the col1a1 and col1a2 highlighted some differences between M. primigenius and other Proboscidea together with the identification of three (two for col1a1, and one for col1a2) potentially diagnostic amino acidic mutations that could be used to reliably distinguish the Mammuthus primigenius with respect to the other two genera of elephantids (i.e., Elephas and Loxodonta), and the extinct American mastodon (i.e., Mammut americanum). The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the "original" endogenous peptides from contaminant ones. The data have been deposited to the ProteomeXchange with identifier < PXD029558 > .
Collapse
|
47
|
Proietti G, Kuzmin J, Temerdashev AZ, Dinér P. Accessing Perfluoroaryl Sulfonimidamides and Sulfoximines via Photogenerated Perfluoroaryl Nitrenes: Synthesis and Application as a Chiral Auxiliary. J Org Chem 2021; 86:17119-17128. [PMID: 34766772 PMCID: PMC8650101 DOI: 10.1021/acs.joc.1c02241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sulfonimidamides
(SIAs) and sulfoximines (SOIs) have attracted
attention due to their potential in agriculture and in medicinal chemistry
as bioisosteres of biologically active compounds, and new synthetic
methods are needed to access and explore these compounds. Herein,
we present a light-promoted generation of perfluorinated aromatic
nitrenes, from perfluorinated azides, that subsequently are allowed
to react with sulfinamides and sulfoxides, generating achiral and
chiral SIAs and SOIs. One of the enantiopure SIAs was evaluated as
a novel chiral auxiliary in Grignard additions to the imines yielding
the product in up to 96:4 diastereomeric ratio.
Collapse
Affiliation(s)
- Giampiero Proietti
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Julius Kuzmin
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropolskaya St. 149, 350040 Krasnodar, Russia
| | - Peter Dinér
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| |
Collapse
|
48
|
VDACs Post-Translational Modifications Discovery by Mass Spectrometry: Impact on Their Hub Function. Int J Mol Sci 2021; 22:ijms222312833. [PMID: 34884639 PMCID: PMC8657666 DOI: 10.3390/ijms222312833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
VDAC (voltage-dependent anion selective channel) proteins, also known as mitochondrial porins, are the most abundant proteins of the outer mitochondrial membrane (OMM), where they play a vital role in various cellular processes, in the regulation of metabolism, and in survival pathways. There is increasing consensus about their function as a cellular hub, connecting bioenergetics functions to the rest of the cell. The structural characterization of VDACs presents challenging issues due to their very high hydrophobicity, low solubility, the difficulty to separate them from other mitochondrial proteins of similar hydrophobicity and the practical impossibility to isolate each single isoform. Consequently, it is necessary to analyze them as components of a relatively complex mixture. Due to the experimental difficulties in their structural characterization, post-translational modifications (PTMs) of VDAC proteins represent a little explored field. Only in recent years, the increasing number of tools aimed at identifying and quantifying PTMs has allowed to increase our knowledge in this field and in the mechanisms that regulate functions and interactions of mitochondrial porins. In particular, the development of nano-reversed phase ultra-high performance liquid chromatography (nanoRP-UHPLC) and ultra-sensitive high-resolution mass spectrometry (HRMS) methods has played a key role in this field. The findings obtained on VDAC PTMs using such methodologies, which permitted an in-depth characterization of these very hydrophobic trans-membrane pore proteins, are summarized in this review.
Collapse
|
49
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
50
|
Ducatez F, Mauhin W, Boullier A, Pilon C, Pereira T, Aubert R, Benveniste O, Marret S, Lidove O, Bekri S, Tebani A. Parsing Fabry Disease Metabolic Plasticity Using Metabolomics. J Pers Med 2021; 11:jpm11090898. [PMID: 34575675 PMCID: PMC8468728 DOI: 10.3390/jpm11090898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Fabry disease (FD) is an X-linked lysosomal disease due to a deficiency in the activity of the lysosomal α-galactosidase A (GalA), a key enzyme in the glycosphingolipid degradation pathway. FD is a complex disease with a poor genotype–phenotype correlation. FD could involve kidney, heart or central nervous system impairment that significantly decreases life expectancy. The advent of omics technologies offers the possibility of a global, integrated and systemic approach well-suited for the exploration of this complex disease. Materials and Methods: Sixty-six plasmas of FD patients from the French Fabry cohort (FFABRY) and 60 control plasmas were analyzed using liquid chromatography and mass spectrometry-based targeted metabolomics (188 metabolites) along with the determination of LysoGb3 concentration and GalA enzymatic activity. Conventional univariate analyses as well as systems biology and machine learning methods were used. Results: The analysis allowed for the identification of discriminating metabolic profiles that unambiguously separate FD patients from control subjects. The analysis identified 86 metabolites that are differentially expressed, including 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphingomyelins, 5 Aminoacids and 5 Biogenic Amines. Thirteen consensus metabolites were identified through network-based analysis, including 1 biogenic amine, 2 lysophosphatidylcholines and 10 glycerophospholipids. A predictive model using these metabolites showed an AUC-ROC of 0.992 (CI: 0.965–1.000). Conclusion: These results highlight deep metabolic remodeling in FD and confirm the potential of omics-based approaches in lysosomal diseases to reveal clinical and biological associations to generate pathophysiological hypotheses.
Collapse
Affiliation(s)
- Franklin Ducatez
- Department of Metabolic Biochemistry, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France; (F.D.); (C.P.); (R.A.); (S.B.)
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France;
| | - Wladimir Mauhin
- Department of Internal Medicine, Groupe Hospitalier Diaconesses Croix Saint Simon, Site Avron & UMRS 974, 75013 Paris, France; (W.M.); (O.L.)
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, 80054 Amiens, France;
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, 80054 Amiens, France
| | - Carine Pilon
- Department of Metabolic Biochemistry, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France; (F.D.); (C.P.); (R.A.); (S.B.)
| | - Tony Pereira
- CHU Rouen, Institut de Biologie Clinique, 76000 Rouen, France;
| | - Raphaël Aubert
- Department of Metabolic Biochemistry, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France; (F.D.); (C.P.); (R.A.); (S.B.)
| | - Olivier Benveniste
- Department of Internal Medicine, Hôpital Pitié-Salpêtrière & INSERM U 974, 75013 Paris, France;
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France;
| | - Olivier Lidove
- Department of Internal Medicine, Groupe Hospitalier Diaconesses Croix Saint Simon, Site Avron & UMRS 974, 75013 Paris, France; (W.M.); (O.L.)
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France; (F.D.); (C.P.); (R.A.); (S.B.)
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, 76000 Rouen, France; (F.D.); (C.P.); (R.A.); (S.B.)
- Correspondence:
| |
Collapse
|