1
|
Michálek O, King GF, Pekár S. Prey specificity of predatory venoms. Biol Rev Camb Philos Soc 2024; 99:2253-2273. [PMID: 38991997 DOI: 10.1111/brv.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
2
|
Pei P, Guo W, Qi M, Jiang J, Feng S, Luo SZ, Chen L. Identification of low-abundance proteins in the royal jelly using the Osborne classification method. J Proteomics 2024; 306:105266. [PMID: 39053808 DOI: 10.1016/j.jprot.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Royal jelly (RJ) is recognized as healthy food, with a high content of proteins. These proteins play important roles in honeybee caste and human health, but the proteomic analysis of low-abundance proteins in RJ has long been a challenge. Herein, we used the Osborne classification method to separate the RJ proteins of Xinjiang black bees into various fractions. The globulin, ethanol-soluble protein, and glutelin fractions were further separated by SDS-PAGE, and proteomic analysis was carried out by LC-MS/MS and searched against the UniProt database. A total of 23 secretory proteins were identified by proteomic analysis, in which 7 proteins were identified for the first time in RJ. The Osborne classification method combining one-dimensional gel electrophoresis-based proteomic analysis allows the identification of low-abundance proteins in the RJ and greatly extends the knowledge about the components and functions of RJ proteins. The raw data are available via ProteomeXchange with the identifier PXD023315. SIGNIFICANCE: This study makes an important contribution to the research of the components and functions of low-abundance royal jelly proteins for the following reasons.
Collapse
Affiliation(s)
- Pengfei Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenxu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingxue Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, China.
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shi-Zhong Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Zhao QY, Chen X, Wang RZ, Chen YM, Zang LS. Comparative Analysis of the Venom Proteins from Two Eupelmid Egg Parasitoids Anastatus japonicus and Mesocomys trabalae. BIOLOGY 2023; 12:biology12050700. [PMID: 37237513 DOI: 10.3390/biology12050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xu Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Run-Zhi Wang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong-Ming Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Abbasi F, Shawrang P, Motamedi-Sedeh F, Sadeghi M. Effect of gamma-irradiated honey bee venom on gene expression of inflammatory and anti-inflammatory cytokines in mice. Int Immunopharmacol 2023; 118:110084. [PMID: 36996740 DOI: 10.1016/j.intimp.2023.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
In this study, the effect of gamma-irradiated honey bee venom (doses of 0, 2, 4, 6, and 8 kGy, volume of 0.1 ml and concentration of 0.2 mg/ml) was evaluated on the reduction of allergen compounds and the gene expression of inflammatory and anti-inflammatory cytokines in mice. Hence, edema activity induced by the bee venom irradiated at 4, 6, and 8 kGy was reduced, compared with the control group and that irradiated at 2 kGy. In contrast, the paw edema induced by the bee venom irradiated at 8 kGy increased, compared with 4 and 6 kGy. At all the time periods, there was a significant decrease in the gene expression of interferon gamma (IFN-γ), interleukin 6 (IL-6), and interleukin 10 (IL-10) in the bee venoms irradiated at 4, 6, and 8 kGy, compared with the control group and that irradiated at 2 kGy. In contrast, there was an increase in the gene expression of IFN-γ and IL-6 in the bee venom irradiated at 8 kGy, compared with those irradiated at 4 and 6 kGy. Therefore, gamma irradiation at 4 and 6 kGy reduced the gene expression of cytokines at each time period by decreasing the allergen compounds of honey bee venom.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Parvin Shawrang
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Farahnaz Motamedi-Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, P. O. Box 31485-498, Karaj, Iran.
| | - Maryam Sadeghi
- University of Tehran, College of Agriculture & Natural Resources, Karaj, Iran
| |
Collapse
|
5
|
Mini-αA-Crystallin Stifled Melittin-Induced Haemolysis and Lymphocyte Lysis. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractMelittin, the most potent pharmacological ingredient of honey bee venom, induces haemolysis, lymphocyte lysis, long-term pain, localised inflammation, and hyperalgesia. In this study, efforts were made to subdue the melittin’s ill effects using a chaperone peptide called ‘mini-αA-crystallin’ (MAC) derived from eye lens αA-crystallin. Haemolytic test on human red blood cells, percentage viability, and DNA diffusion assay on Human peripheral blood lymphocytes (HPBLs) were performed with melittin in the presence or absence of MAC. Propidium iodide and Annexin V-FITC dual staining were performed to analyse quantitative levels of necrotic and apoptotic induction by melittin in the presence or absence of MAC on HPBLs using a flow cytometer. A computational study to find out the interactions between MAC and melittin was undertaken by modelling the structure of MAC using a PEP-FOLD server. The result showed that MAC inhibited melittin-induced lysis in nucleated (lymphocytes) and enucleated (RBC) cells. Flow cytometric analysis revealed a substantial increase in the necrotic and late apoptotic cells after treating HPBLs with melittin (4 µg/ml) for 24 h. Treatment with MAC at a 2:1 molar ratio prevented HPBLs from developing melittin-induced necrosis and late apoptosis. In the docking study, hydrogen, van der Waals, π-π stacking, and salt bridges were observed between the MAC and melittin complex, confirming a strong interaction between them. The MAC-melittin complex was stable during molecular dynamics simulation. These findings may be beneficial in developing a medication for treating severe cases of honeybee stings.
Collapse
|
6
|
Ward R, Coffey M, Kavanagh K. Proteomic analysis of summer and winter Apis mellifera workers shows reduced protein abundance in winter samples. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104397. [PMID: 35537525 DOI: 10.1016/j.jinsphys.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Apis mellifera workers display two stages; short lived summer bees that engage in nursing, hive maintenance and foraging, and long lived winter bees (diutinus bees) which remain within the hive and are essential for thermoregulation and rearing the next generation of bees in spring before dying. Label free quantitative proteomic analysis was conducted on A. mellifera workers sampled in June and December to compare the proteomes of summer and winter bees. Proteomic analysis was performed on head, abdominal and venom sac samples and revealed an elevated level of protein abundance in summer bees. Head and abdominal samples displayed an increased abundance in cuticular proteins in summer samples whereas an increase in xenobiotic proteins was observed in winter samples. Several carbohydrate metabolism pathways which have been linked to energy production and longevity in insects were increased in abundance in winter samples in comparison to summer samples. Proteomic analysis of the venom sacs of summer samples showed an increased abundance of bee venom associated proteins in comparison to winter workers. These data provides an insight into the adaptions of A. mellifera workers in summer and winter and may aid in future treatment and disease studies on honeybee colonies. Data are available via ProteomeXchange with identifier PXD030483.
Collapse
Affiliation(s)
- Rachel Ward
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Plant Health Laboratories, Plant Science Division (Bee Health), Department of Agriculture, Celbridge, Co Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
7
|
Nejabat S, Haghshenas MR, Farjadian S. Allergenome profiling of Vespa orientalis venom by serum IgE in patients with anaphylactic reaction to this hornet sting. Toxicon 2022; 214:130-135. [DOI: 10.1016/j.toxicon.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
8
|
Kim YH, Kim BY, Kim JM, Choi YS, Lee MY, Lee KS, Jin BR. Differential Expression of Major Royal Jelly Proteins in the Hypopharyngeal Glands of the Honeybee Apis mellifera upon Bacterial Ingestion. INSECTS 2022; 13:insects13040334. [PMID: 35447776 PMCID: PMC9025693 DOI: 10.3390/insects13040334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Transgenerational immune priming (TGIP) to elicit social immunity in the honeybee Apis mellifera has two axes: the first is the ingested pathogen fragments–vitellogenin (Vg)–queen’s ovary axis for the developing embryo, and the second is the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for the queen and young larvae through royal jelly. However, the dynamics of the expression of the major royal jelly proteins (MRJPs) in the hypopharyngeal glands of A. mellifera nurse bees after bacterial ingestion must be determined to improve our understanding of the second axis of TGIP. In this study, we investigated the expression patterns of MRJPs 1–7 and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees fed with live or heat-killed Paenibacillus larvae over 12 h or 24 h by using northern blot analysis. We found that the expression of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body was significantly induced in nurse bees upon bacterial ingestion, indicating that the differential expression patterns of MRJPs, defensin-1, and Vg were dependent on the bacterial status and timing of bacterial ingestion. We also found that antimicrobial peptide (AMP) genes showed induced expression in young larvae upon bacterial ingestion. In summary, our findings indicate that MRJPs in the hypopharyngeal glands are upregulated along with Vg in the fat body of nurse bees upon bacterial ingestion, providing novel insights into the ingested pathogen fragments–Vg–nurse’s hypopharyngeal gland axis for TGIP. Abstract Honeybee vitellogenin (Vg) transports pathogen fragments from the gut to the hypopharyngeal glands and is also used by nurse bees to synthesize royal jelly (RJ), which serves as a vehicle for transferring pathogen fragments to the queen and young larvae. The proteomic profile of RJ from bacterial-challenged and control colonies was compared using mass spectrometry; however, the expression changes of major royal jelly proteins (MRJPs) in hypopharyngeal glands of the honeybee Apis mellifera in response to bacterial ingestion is not well-characterized. In this study, we investigated the expression patterns of Vg in the fat body and MRJPs 1–7 in the hypopharyngeal glands of nurse bees after feeding them live or heat-killed Paenibacillus larvae. The expression levels of MRJPs and defensin-1 in the hypopharyngeal glands were upregulated along with Vg in the fat body of nurse bees fed with live or heat-killed P. larvae over 12 h or 24 h. We observed that the expression patterns of MRJPs and defensin-1 in the hypopharyngeal glands and Vg in the fat body of nurse bees upon bacterial ingestion were differentially expressed depending on the bacterial status and the time since bacterial ingestion. In addition, the AMP genes had increased expression in young larvae fed heat-killed P. larvae. Thus, our findings indicate that bacterial ingestion upregulates the transcriptional expression of MRJPs in the hypopharyngeal glands as well as Vg in the fat body of A. mellifera nurse bees.
Collapse
Affiliation(s)
- Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Jin-Myung Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea; (Y.-S.C.); (M.-Y.L.)
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea; (Y.-H.K.); (B.-Y.K.); (J.-M.K.)
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|
9
|
Asian Hornet, Vespa velutina Lepeletier 1836 (Hym.: Vespidae), Venom Obtention Based on an Electric Stimulation Protocol. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010138. [PMID: 35011370 PMCID: PMC8746500 DOI: 10.3390/molecules27010138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 02/04/2023]
Abstract
The yellow-legged Asian hornet (Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae)) is naturally distributed in China, Southeast Asia, and India; however, recently it has been detected outside of its native area, confirmed as being established in South Korea, Europe, and Japan. Health risks and deaths caused by the invasive Vespa velutina stings have become a public health concern, being the most common cause of anaphylaxis due to hymenopterans in some European regions. This in turn has led to increased demand from medical practitioners and researchers for Vespa velutina venom for diagnostic and therapeutic purposes. In this study, a straightforward, quick, and inexpensive method for obtaining Vespa velutina venom by electric stimulation is described. The venom extracts were analyzed by nuclear magnetic resonance spectroscopy (1H-NMR). The availability of Vespa velutina venom will lead to improved diagnostic and therapeutic methods, mainly by venom immunotherapy (VIT), in patients allergic to this invasive species.
Collapse
|
10
|
Barber D, Diaz‐Perales A, Escribese MM, Kleine‐Tebbe J, Matricardi PM, Ollert M, Santos AF, Sastre J. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy 2021; 76:3642-3658. [PMID: 34057744 DOI: 10.1111/all.14969] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Progressive knowledge of allergenic structures resulted in a broad availability of allergenic molecules for diagnosis. Component-resolved diagnosis allowed a better understanding of patient sensitization patterns, facilitating allergen immunotherapy decisions. In parallel to the discovery of allergenic molecules, there was a progressive development of a regulation framework that affected both in vitro diagnostics and Allergen Immunotherapy products. With a progressive understanding of underlying mechanisms associated to Allergen immunotherapy and an increasing experience of application of molecular diagnosis in daily life, we focus in analyzing the evidences of the value provided by molecular allergology in daily clinical practice, with a focus on Allergen Immunotherapy decisions.
Collapse
Affiliation(s)
- Domingo Barber
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | - Araceli Diaz‐Perales
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
- Center for Plant Biotechnology and Genomic Universidad Politécnica de Madrid Pozuelo de Alarcon Spain
| | - Maria M. Escribese
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | | | - Paolo M. Matricardi
- Department of Pediatric Pneumology and Immunology Charitè Medical University of Berlin Berlin Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Centre Odense University Hospital Odense Denmark
| | - Alexandra F. Santos
- Department of Women and Children's Health (Pediatric Allergy School of Life Course Sciences Faculty of Life Sciences and Medicine King's College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King's College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Children's Allergy Service Guy's and St Thomas' Hospital London UK
| | - Joaquin Sastre
- Fundación Jiménez Diaz AllergyDepartment Universidad Autonomade Madrid, CIBERES, Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
11
|
Burzyńska M, Piasecka-Kwiatkowska D. A Review of Honeybee Venom Allergens and Allergenicity. Int J Mol Sci 2021; 22:ijms22168371. [PMID: 34445077 PMCID: PMC8395074 DOI: 10.3390/ijms22168371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Honeybee venom is a source of proteins with allergenic properties which can result in in various symptoms, ranging from local reactions through to systematic life-threatening anaphylaxis, or even death. According to the World Allergy Organization (WAO), honeybee venom allergy is one of the most common causes of anaphylaxis. Among the proteins present in honeybee venom, 12 protein fractions were registered by the World Health Organization’s Allergen Nomenclature Sub-Committee (WHO/IUIS) as allergenic. Most of them are highly immunogenic glycoproteins that cross-react with IgE and, as a consequence, may give false positive results in allergy diagnosis. Allergenic fractions are different in terms of molecular weight and biological activity. Eight of these allergenic fractions have also been identified in honey. This explains frequent adverse reactions after consuming honey in people allergic to venom and sheds new light on the causes of allergic symptoms in some individuals after honey consumption. At the same time, it also indicates the possibility of using honey as a natural source of allergen in specific immunotherapy.
Collapse
|
12
|
Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, Doratifera vulnerans. Proc Natl Acad Sci U S A 2021; 118:2023815118. [PMID: 33893140 DOI: 10.1073/pnas.2023815118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.
Collapse
|
13
|
Tender T, Rahangdale RR, Balireddy S, Nampoothiri M, Sharma KK, Raghu Chandrashekar H. Melittin, a honeybee venom derived peptide for the treatment of chemotherapy-induced peripheral neuropathy. Med Oncol 2021; 38:52. [PMID: 33796975 PMCID: PMC8016801 DOI: 10.1007/s12032-021-01496-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of cancer treatment which involves sensory and motor nerve dysfunction. Severe CIPN has been reported in around 5% of patients treated with single and up to 38% of patients treated with multiple chemotherapeutic agents. Present medications available for CIPN are the use of opioids, nonsteroidal anti-inflammatory agents, and tricyclic antidepressants, which are only marginally effective in treating neuropathic symptoms. In reality, symptom reappears after these drugs are discontinued. The pathogenesis of CIPN has not been sufficiently recognized and methods for the prevention and treatment of CIPN remain vulnerable to therapeutic problems. It has witnessed that the present medicines available for the disease offer only symptomatic relief for the short term and have severe adverse side effects. There is no standard treatment protocol for preventing, reducing, and treating CIPN. Therefore, there is a need to develop curative therapy that can be used to treat this complication. Melittin is the main pharmacological active constituent of honeybee venom and has therapeutic values including in chemotherapeutic-induced peripheral neuropathy. It has been shown that melittin and whole honey bee venom are effective in treating paclitaxel and oxaliplatin-induced peripheral neuropathy. The use of melittin against peripheral neuropathy caused by chemotherapy has been limited despite having strong therapeutic efficacy against the disease. Melittin mediated haemolysis is the key reason to restrict its use. In our study, it is found that α-Crystallin (an eye lens protein) is capable of inhibiting melittin-induced haemolysis which gives hope of using an appropriate combination of melittin and α-Crystallin in the treatment of CIPN. The review summarizes the efforts made by different research groups to address the concern with melittin in the treatment of chemotherapeutic-induced neuropathy. It also focuses on the possible approaches to overcome melittin-induced haemolysis.
Collapse
Affiliation(s)
- Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rakesh Ravishankar Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Krishna Sharma
- Department of Ophthalmology and Biochemistry, University of Missouri - Columbia School of Medicine, Columbia, MO, 65211, USA
| | - Hariharapura Raghu Chandrashekar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
14
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
15
|
Effects of Extraction Buffer on the Solubility and Immunoreactivity of the Pacific Oyster Allergens. Foods 2021; 10:foods10020409. [PMID: 33673192 PMCID: PMC7917601 DOI: 10.3390/foods10020409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent technological advances, novel allergenic protein discovery is limited by their low abundance, often due to specific physical characteristics restricting their recovery during the extraction process from various allergen sources. In this study, eight different extraction buffers were compared for their ability to recover proteins from Pacific oyster (Crassostrea gigas). The protein composition was investigated using high resolution mass spectrometry. The antibody IgE-reactivity of each extract was determined using a pool of serum from five shellfish-allergic patients. Most of the investigated buffers showed good capacity to extract proteins from the Pacific oyster. In general, a higher concentration of proteins was recovered using high salt buffers or high pH buffers, subsequently revealing more IgE-reactive bands on immunoblotting. In contrast, low pH buffers resulted in a poor protein recovery and reduced IgE-reactivity. Discovery of additional IgE-reactive proteins in high salt buffers or high pH buffers was associated with an increase in allergen abundance in the extracts. In conclusion, increasing the ionic strength and pH of the buffer improves the solubility of allergenic proteins during the extraction process for oyster tissue. This strategy could also be applied for other difficult-to-extract allergen sources, thereby yielding an improved allergen panel for increased diagnostic efficiency.
Collapse
|
16
|
Darwish DA, Masoud HMM, Abdel-Monsef MM, Helmy MS, Zidan HA, Ibrahim MA. Phospholipase A2 enzyme from the venom of Egyptian honey bee Apis mellifera lamarckii with anti-platelet aggregation and anti-coagulation activities. J Genet Eng Biotechnol 2021; 19:10. [PMID: 33443641 PMCID: PMC7809086 DOI: 10.1186/s43141-020-00112-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Background Honey bee venom contains various enzymes with wide medical and pharmaceutical applications. Results The phospholipase A2 (PLA2) has been apparently purified from the venom of Egyptian honey bee (Apis mellifera lamarckii) 8.9-fold to a very high specific activity of 6033 U/mg protein using DEAE–cellulose and Sephacryl S-300 columns. The purified bee venom PLA2 is monomeric 16 kDa protein and has isoelectric point (pI) of 5.9. The optimal activity of bee venom PLA2 was attained at pH 8 and 45 °C. Cu2+, Ni2+, Fe2+, Ca2+, and Co2+ exhibited a complete activating effect on it, while Zn2+, Mn2+, NaN3, PMSF, N-Methylmaleimide, and EDTA have inhibitory effect. Conclusions The purified bee venom PLA2 exhibited anti-platelet aggregation and anti-coagulation activities which makes it promising agent for developing novel anti-clot formation drugs in future.
Collapse
Affiliation(s)
- Doaa A Darwish
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hassan M M Masoud
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed M Abdel-Monsef
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed S Helmy
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hind A Zidan
- Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
17
|
Shirai Y, Ohde T, Daimon T. Functional conservation and diversification of yellow-y in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103515. [PMID: 33387638 DOI: 10.1016/j.ibmb.2020.103515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The diverse colors and patterns found in Lepidoptera are important for success of these species. Similar to the wings of adult butterflies, lepidopteran larvae exhibit diverse color variations to adapt to their habitats. Compared with butterfly wings, however, less attention has been paid to larval body colorations and patterns. In the present study, we focus on the yellow-y gene, which participates in the melanin synthesis pathway. We conducted CRISPR/Cas9-mediated targeted mutagenesis of yellow-y in the tobacco cutworm Spodoptera litura. We analyzed the role of S. litura yellow-y in pigmentation by morphological observation and discovered that yellow-y is necessary for normal black pigmentation in S. litura. We also showed species- and tissue-specific requirements of yellow-y in pigmentation in comparison with those of Bombyx mori yellow-y mutants. Furthermore, we found that almost none of the yellow-y mutant embryos hatched unaided. We provide evidence that S. litura yellow-y has a novel important function in egg hatching, in addition to pigmentation. The present study will enable a greater understanding of the functions and diversification of the yellow-y gene in insects.
Collapse
Affiliation(s)
- Yu Shirai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takahiro Ohde
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
18
|
Blank S, Grosch J, Ollert M, Bilò MB. Precision Medicine in Hymenoptera Venom Allergy: Diagnostics, Biomarkers, and Therapy of Different Endotypes and Phenotypes. Front Immunol 2020; 11:579409. [PMID: 33193378 PMCID: PMC7643016 DOI: 10.3389/fimmu.2020.579409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic reactions to stings of Hymenoptera species may be severe and are potentially fatal deviations of the immunological response observed in healthy individuals. However, venom-specific immunotherapy (VIT) is an immunomodulatory approach able to cure venom allergy in the majority of affected patients. An appropriate therapeutic intervention and the efficacy of VIT not only depend on a conclusive diagnosis, but might also be influenced by the patient-specific manifestation of the disease. As with other diseases, it should be borne in mind that there are different endotypes and phenotypes of venom allergy, each of which require a patient-tailored disease management and treatment scheme. Reviewed here are different endotypes of sting reactions such as IgE-mediated allergy, asymptomatic sensitization or a simultaneous presence of venom allergy and mast cell disorders including particular considerations for diagnosis and therapy. Additionally, phenotypical manifestations of venom allergy, as e.g. differences in age of onset and disease severity, multiple sensitization or patients unsusceptible to therapy, are described. Moreover, biomarkers and diagnostic strategies that might reflect the immunological status of the patient and their value for therapeutic guidance are discussed. Taken together, the increasing knowledge of different disease manifestations in venom hypersensitivity and the growing availability of diagnostic tools open new options for the classification of venom allergy and, hence, for personalized medical approaches and precision medicine in Hymenoptera venom allergy.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Maria Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.,Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Ancona, Italy
| |
Collapse
|
19
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
20
|
Jakob T, Rauber MM, Perez-Riverol A, Spillner E, Blank S. The Honeybee Venom Major Allergen Api m 10 (Icarapin) and Its Role in Diagnostics and Treatment of Hymenoptera Venom Allergy. Curr Allergy Asthma Rep 2020; 20:48. [PMID: 32548726 PMCID: PMC7297703 DOI: 10.1007/s11882-020-00943-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In Hymenoptera venom allergy, the research focus has moved from whole venoms to individual allergenic molecules. Api m 10 (icarapin) has been described as a major allergen of honeybee venom (HBV) with potentially high relevance for diagnostics and therapy of venom allergy. Here, we review recent studies on Api m 10 characteristics as well as its role in component-resolved diagnostics and potential implications for venom-specific immunotherapy (VIT). RECENT FINDINGS Api m 10 is a major allergen of low abundance in HBV. It is an obviously unstable protein of unknown function that exhibits homologs in other insect species. Despite its low abundance in HBV, 35 to 72% of HBV-allergic patients show relevant sensitization to this allergen. Api m 10 is a marker allergen for HBV sensitization, which in many cases can help to identify primary sensitization to HBV and, hence, to discriminate between genuine sensitization and cross-reactivity. Moreover, Api m 10 might support personalized risk stratification in VIT, as dominant sensitization to Api m 10 has been identified as risk factor for treatment failure. This might be of particular importance since Api m 10 is strongly underrepresented in some therapeutic preparations commonly used for VIT. Although the role of Api m 10 in HBV allergy and tolerance induction during VIT is not fully understood, it certainly is a useful tool to unravel primary sensitization and individual sensitization profiles in component-resolved diagnostics (CRD). Moreover, a potential of Api m 10 to contribute to personalized treatment strategies in HBV allergy is emerging.
Collapse
Affiliation(s)
- Thilo Jakob
- Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, Justus-Liebig-University Gießen, Gießen, Germany.
| | - Michèle Myriam Rauber
- Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, Justus-Liebig-University Gießen, Gießen, Germany
| | - Amilcar Perez-Riverol
- Department of Dermatology and Allergology, Experimental Dermatology and Allergy Research Group, Justus-Liebig-University Gießen, Gießen, Germany
| | - Edzard Spillner
- Department of Engineering Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
21
|
Studies of royal jelly and associated cross-reactive allergens in atopic dermatitis patients. PLoS One 2020; 15:e0233707. [PMID: 32484810 PMCID: PMC7266330 DOI: 10.1371/journal.pone.0233707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
Royal jelly (RJ), a creamy substance secreted by honeybees, is the exclusive diet for queen bee differentiation and life maintenance. RJ has been used in cosmetics, beverages, medicines, and supplements worldwide. However, allergy is a concerning issue for RJ, especially in atopic dermatitis (AD) and asthma patients. In some cases, allergic reactions are seen after the first intake of RJ, suggesting the existence of allergens cross-reactive with RJ. Information about the cross-reactive allergens is very important for the safe application of RJ; however, study of this cross-reactivity is quite limited. In this study, we attempted to identify allergens cross-reactive with RJ by using serum samples from 30 AD patients who had never been exposed to RJ. In an enzyme-linked immunosorbent assay (ELISA) experiment, RJ-binding IgE antibodies were detected in the serum of 10 out of 30 patients, and their antibody titers ranged from 4- to 2,048-fold dilution ratios. Additionally, 3 AD patients were determined to be positive in a skin-prick test (SPT) with an RJ solution. Significant correlations were observed between the anti-RJ antibody titer and nonspecific IgE and between the anti-RJ antibody titer and the Eczema Area and Severity Index score. We further examined the cross-reactivity between RJ and 14 typical allergens by using an ELISA-inhibition assay and demonstrated that the following 6 allergens showed cross-reactivity with RJ: the European house dust mite (HDM) (Dermatophagoides pteronyssinus), American HDM (Dermatophagoides farinae), snow crab (Chionocetes spp.), edible crab (Cancer pagurus), German cockroach (Blatella germanica), and honeybee venom (Apis mellifera). In conclusion, people with a history of allergic diseases, including AD, asthma, and allergic rhinitis, should be cautioned against consuming RJ products because of the potential for cross-reactive responses to ensure the safe and successful use of RJ supplements.
Collapse
|
22
|
Shedding Light on the Venom Proteomes of the Allergy-Relevant Hymenoptera Polistes dominula (European Paper Wasp) and Vespula spp. (Yellow Jacket). Toxins (Basel) 2020; 12:toxins12050323. [PMID: 32422898 PMCID: PMC7291082 DOI: 10.3390/toxins12050323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/25/2023] Open
Abstract
Allergic reactions to stings of Hymenoptera species can have serious or even fatal consequences. If the identification of the culprit insect is possible, venom-specific immunotherapy effectively cures Hymenoptera venom allergies. Although component-resolved diagnostics has strongly evolved in recent years, the differentiation between allergies to closely related species such as Polistes dominula and Vespula spp. is still challenging. In order to generate the basis for new diagnostic and therapeutic strategies, this study aims at resolving the venom proteomes (venomes) of these species. The venoms of P. dominula and Vespula spp. (V. germanica, V. vulgaris) were analyzed by liquid chromatography-mass spectrometry. Resulting proteins were characterized regarding their function, localization and biochemical properties. The analyses yielded 157 proteins in Vespula spp. and 100 in P. dominula venom; 48 proteins, including annotated allergens, were found in both samples. In addition to a variety of venom trace molecules, new allergen candidates such as icarapin-like protein and phospholipase A2 were identified. This study elucidates the venomes of closely related allergy-eliciting Hymenoptera species. The data indicates that relying on marker allergens to differentiate between P. dominula and Vespula spp. venom allergy is probably insufficient and that strategies using cross-reactive major allergens could be more promising.
Collapse
|
23
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
24
|
Jaimes-Becerra A, Gacesa R, Doonan LB, Hartigan A, Marques AC, Okamura B, Long PF. "Beyond Primary Sequence"-Proteomic Data Reveal Complex Toxins in Cnidarian Venoms. Integr Comp Biol 2020; 59:777-785. [PMID: 31225595 DOI: 10.1093/icb/icz106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Venomous animals can deploy toxins for both predation and defense. These dual functions of toxins might be expected to promote the evolution of new venoms and alteration of their composition. Cnidarians are the most ancient venomous animals but our present understanding of their venom diversity is compromised by poor taxon sampling. New proteomic data were therefore generated to characterize toxins in venoms of a staurozoan, a hydrozoan, and an anthozoan. We then used a novel clustering approach to compare venom diversity in cnidarians to other venomous animals. Comparison of the presence or absence of 32 toxin protein families indicated venom composition did not vary widely among the 11 cnidarian species studied. Unsupervised clustering of toxin peptide sequences suggested that toxin composition of cnidarian venoms is just as complex as that in many venomous bilaterians, including marine snakes. The adaptive significance of maintaining a complex and relatively invariant venom remains unclear. Future study of cnidarian venom diversity, venom variation with nematocyst types and in different body regions are required to better understand venom evolution.
Collapse
Affiliation(s)
- Adrian Jaimes-Becerra
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, São Paulo 05508-090, Brazil
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Postbus 30.001, Groningen 9700 RB, The Netherlands
| | - Liam B Doonan
- Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, São Paulo 05508-090, Brazil
| | - Beth Okamura
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul F Long
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Matão, Trav. 14, 101, São Paulo 05508-090, Brazil.,Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.,¶Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, São Paulo 05508-000, Brazil
| |
Collapse
|
25
|
Yang L, Yang Y, Liu MM, Yan ZC, Qiu LM, Fang Q, Wang F, Werren JH, Ye GY. Identification and Comparative Analysis of Venom Proteins in a Pupal Ectoparasitoid, Pachycrepoideus vindemmiae. Front Physiol 2020; 11:9. [PMID: 32038312 PMCID: PMC6993573 DOI: 10.3389/fphys.2020.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Parasitoid wasps inject venom containing complex bioactive compounds to regulate the immune response and development of host arthropods and sometime paralyze host arthropods. Although extensive studies have been conducted on the identification of venom proteins in larval parasitoids, relatively few studies have examined the pupal parasitoids. In our current study, a combination of transcriptomic and proteomic methods was used to identify 64 putative venom proteins from Pachycrepoideus vindemmiae, an ectoparasitoid of Drosophila. Expression analysis revealed that 20 tested venom proteins have 419-fold higher mean expression in the venom apparatus than in other wasp tissues, indicating their specialization to venom. Comparisons of venom proteins from P. vindemmiae and other five species spanning three parasitoid families detected a core set of "ancient" orthologs in Pteromalidae. Thirty-five venom proteins of P. vindemmiae were assigned to the orthologous groups by reciprocal best matches with venoms of other pteromalids, while the remaining 29 were not. Of the 35 categories, twenty-seven have orthologous relationships with Nasonia vitripennis venom proteins and 25 with venoms of Pteromalus puparum. More distant relationships detected that five and two venom proteins of P. vindemmiae are orthologous with venoms of two Figitidae parasitoids and a Braconidae representative, respectively. Moreover, twenty-two venoms unique to P. vindemmiae were also detected, indicating considerable interspecific variation of venom proteins in parasitoids. Phylogenetic reconstruction based on a set of single-copy genes clustered P. vindemmiae with P. puparum, N. vitripennis, and other members of the family Pteromalidae. These findings provide strong evidence that P. vindemmiae venom proteins are well positioned for future functional and evolutionary studies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Chao Yan
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Development of an LC-MS multivariate nontargeted methodology for differential analysis of the peptide profile of Asian hornet venom (Vespa velutina nigrithorax): application to the investigation of the impact of collection period variation. Anal Bioanal Chem 2020; 412:1419-1430. [PMID: 31940089 DOI: 10.1007/s00216-019-02372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Insect venom is a highly complex mixture of bioactive compounds, containing proteins, peptides, and small molecules. Environmental factors can alter the venom composition and lead to intraspecific variation in its bioactivity properties. The investigation of discriminating compounds caused by variation impacts can be a key to manage sampling and explore the bioactive compounds. The present study reports the development of a peptidomic methodology based on UHPLC-ESI-QTOF-HRMS analysis followed by a nontargeted multivariate analysis to reveal the profile variance of Vespa velutina venom collected in different conditions. The reliability of the approach was enhanced by optimizing certain XCMS data processing parameters and determining the sample peak threshold to eliminate the interfering features. This approach demonstrated a good repeatability and a criterion coefficient of variation (CV) > 30% was set for deleting nonrepeatable features from the matrix. The methodology was then applied to investigate the impact of collection period variation. PCA and PLS-DA models were used and validated by cross-validation and permutation tests. A slight discrimination was found between winter and summer hornet venom in two successive years with 10 common discriminating compounds. Graphical abstract.
Collapse
|
27
|
LE TN, Da Silva D, Colas C, Darrouzet E, Baril P, Leseurre L, Maunit B. Asian hornet Vespa velutina nigrithorax venom: Evaluation and identification of the bioactive compound responsible for human keratinocyte protection against oxidative stress. Toxicon 2020; 176:1-9. [PMID: 31935389 DOI: 10.1016/j.toxicon.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
The present study aimed to explore the potential antioxidant molecules of the Asian hornet venom (Vespa velutina nigrithorax) responsible for radical scavenging activity and human keratinocyte protection against oxidative stress. We developed a first technical platform that combined a DPPH radical scavenging chemical assay and cytotoxicity and ROS (reactive oxygen species) production in HaCaT keratinocyte cells exposed to UVB to evaluate the antioxidant property of V. velutina venom. We further employed Thin Layer Chromatography (TLC) combined with the DPPH assay as a targeted separation approach to isolate the antioxidant compounds responsible for the free radical scavenging property of V. velutina venom. In parallel, the latter was fractionated by a HPLC-DAD non-targeted separation approach. From this experiment, nine fractions were generated which were again evaluated separately for their antioxidant properties using DPPH assays. Results showed that only one fraction exhibited significant antioxidant activity in which serotonin was identified as the major compound by a UHPLC-ESI-QTOF HRMS/MS approach. We finally demonstrated, using purified serotonin molecule that this bioactive structure is mostly responsible for the free radical scavenging property of the crude venom as evidenced by DPPH and ROS assays in HaCaT cells exposed to UVB.
Collapse
Affiliation(s)
- Thao Nhi LE
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - David Da Silva
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France.
| | - Cyril Colas
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; CNRS, CBM, UPR 4301, University of Orléans, F-45071, Orléans, France.
| | - Eric Darrouzet
- IRBI, UMR CNRS 7261, University of Tours, Faculty of Sciences, Parc de Grandmont, 37200, Tours, France.
| | - Patrick Baril
- CNRS, CBM, UPR 4301, University of Orléans, F-45071, Orléans, France.
| | - Lucie Leseurre
- CHIMEX (groupe L'Oréal), 16 Rue Maurice Berteaux, 95500, Le Thillay, France.
| | - Benoît Maunit
- University of Orléans, CNRS, ICOA, UMR 7311, F-45067, Orléans, France; University of Clermont Auvergne, INSERM, IMost, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
28
|
Extending Metabolomic Studies of Apis mellifera Venom: LC-MS-Based Targeted Analysis of Organic Acids. Toxins (Basel) 2019; 12:toxins12010014. [PMID: 31905643 PMCID: PMC7020594 DOI: 10.3390/toxins12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023] Open
Abstract
Organic acids are important active small molecules present in venoms and toxins, which have not been fully explored yet. The aim of the study was the determination of organic acids in honeybee venom (HBV) samples by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two protocols for sample preparation were employed. A solid-phase extraction was used for the determination of malonic acid, fumaric acid, glutaric acid, and kynurenic acid. A dilute-and-shoot method was optimal for: citric acid, malic acid, and succinic acid. Chromatographic separation was performed using a Synergi Hydro-RP column. Detection was performed on a triple-quadrupole mass spectrometer operating in multiple reaction monitoring mode. Among the analytes, glutaric acid and kynurenic acid were present in HBV samples in the lowest concentrations, whereas citric acid was the most abundant acid in each sample, and accounted for an average of 86 mg/g (8.6%) of the venom dry weight. Organic acids were discussed in terms of function. This is the first study in the available literature that provides specific data on the content of organic acids in HBV using a validated quantitative method.
Collapse
|
29
|
Michálek O, Kuhn-Nentwig L, Pekár S. High Specific Efficiency of Venom of Two Prey-Specialized Spiders. Toxins (Basel) 2019; 11:E687. [PMID: 31771158 PMCID: PMC6950493 DOI: 10.3390/toxins11120687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
The venom of predators should be under strong selection pressure because it is a costly substance and prey may potentially become resistant. Particularly in prey-specialized predators, venom should be selected for its high efficiency against the focal prey. Very effective venom paralysis has been observed in specialized predators, such as spiders preying on dangerous prey. Here, we compared the toxicity of the venoms of two prey-specialized species, araneophagous Palpimanus sp. and myrmecophagous Zodarion nitidum, and their related generalist species. We injected different venom concentrations into two prey types-the prey preferred by a specialist and an alternative prey-and observed the mortality and the paralysis of the prey within 24 h. We found that the venoms of specialists were far more potent towards the preferred prey than alternative prey. The venoms of generalists were similarly potent towards both prey types. In addition, we tested the efficacy of two venom fractions (smaller and larger than 10 kDa) in araneophagous Palpimanus sp. Compounds larger than 10 kDa paralyzed both prey types, but smaller compounds (<10 kDa) were effective only on preferred prey, suggesting the presence of prey-specific compounds in the latter fraction. Our results confirm that prey-specialized spiders possess highly specific venom that allows them to subdue dangerous prey.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland;
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
30
|
Schendel V, Rash LD, Jenner RA, Undheim EAB. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins (Basel) 2019; 11:E666. [PMID: 31739590 PMCID: PMC6891279 DOI: 10.3390/toxins11110666] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lachlan D. Rash
- School of Biomedical Sciences, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
31
|
Zaworra M, Nauen R. New approaches to old problems: Removal of phospholipase A 2 results in highly active microsomal membranes from the honey bee, Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:68-76. [PMID: 31685199 DOI: 10.1016/j.pestbp.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Over the last 50 years numerous studies were published by insect toxicologists using native microsomal membrane preparations in order to investigate in vitro cytochrome P450-(P450) mediated oxidative metabolism of xenobiotics, including insecticides. Whereas the preparation of active microsomal membranes from many pest insect species is straightforward, their isolation from honey bees, Apis mellifera (Hymenoptera: Apidae) remained difficult, if not impossible, due to the presence of a yet unidentified endogenous inhibitory factor released during abdominal gut membrane isolation. Thus hampering in vitro toxicological studies on microsomal oxidative phase 1 metabolism of xenobiotics, including compounds of ecotoxicological concern. The use of microsomal membranes rather than individually expressed P450s offers advantages and allows to develop a better understanding of phase 1 driven metabolic fate of foreign compounds. Here we biochemically investigated the problems associated with the isolation of active honey bee microsomes and developed a method resulting in highly active native microsomal preparations from adult female worker abdomens. This was achieved by removal of the abdominal venom gland sting complex prior to microsomal membrane preparation. Molecular sieve chromatography of the venom sac content leads to the identification of phospholipase A2 as the enzyme responsible for the immediate inhibition of cytochrome P450 activity in microsomal preparations. The substrate specificity of functional honey bee microsomes was investigated with different fluorogenic substrates, and revealed a strong preference for coumarin over resorufin derivatives. Furthermore we were able to demonstrate the metabolism of insecticides by honey bee microsomes using an approach coupled to LC-MS/MS analysis of hydroxylated metabolites. Our work provides access to a new and simple in vitro tool to study honey bee phase 1 metabolism of xenobiotics utilising the entire range of microsomal cytochrome P450s.
Collapse
Affiliation(s)
- Marion Zaworra
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany; University of Bonn, INRES, Molecular Phytomedicine, Karlrobert-Kreiten-Str. 13, D-53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, D-40789 Monheim, Germany.
| |
Collapse
|
32
|
Pucca MB, Cerni FA, Oliveira IS, Jenkins TP, Argemí L, Sørensen CV, Ahmadi S, Barbosa JE, Laustsen AH. Bee Updated: Current Knowledge on Bee Venom and Bee Envenoming Therapy. Front Immunol 2019; 10:2090. [PMID: 31552038 PMCID: PMC6743376 DOI: 10.3389/fimmu.2019.02090] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Honey bees can be found all around the world and fulfill key pollination roles within their natural ecosystems, as well as in agriculture. Most species are typically docile, and most interactions between humans and bees are unproblematic, despite their ability to inject a complex venom into their victims as a defensive mechanism. Nevertheless, incidences of bee stings have been on the rise since the accidental release of Africanized bees to Brazil in 1956 and their subsequent spread across the Americas. These bee hybrids are more aggressive and are prone to attack, presenting a significant healthcare burden to the countries they have colonized. To date, treatment of such stings typically focuses on controlling potential allergic reactions, as no specific antivenoms against bee venom currently exist. Researchers have investigated the possibility of developing bee antivenoms, but this has been complicated by the very low immunogenicity of the key bee toxins, which fail to induce a strong antibody response in the immunized animals. However, with current cutting-edge technologies, such as phage display, alongside the rise of monoclonal antibody therapeutics, the development of a recombinant bee antivenom is achievable, and promising results towards this goal have been reported in recent years. Here, current knowledge on the venom biology of Africanized bees and current treatment options against bee envenoming are reviewed. Additionally, recent developments within next-generation bee antivenoms are presented and discussed.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S. Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lídia Argemí
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Department of Biotechnology and Biosafety, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - José E. Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Altaye SZ, Meng L, Lu Y, Li J. The Emerging Proteomic Research Facilitates in-Depth Understanding of the Biology of Honeybees. Int J Mol Sci 2019; 20:ijms20174252. [PMID: 31480282 PMCID: PMC6747239 DOI: 10.3390/ijms20174252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Advances in instrumentation and computational analysis in proteomics have opened new doors for honeybee biological research at the molecular and biochemical levels. Proteomics has greatly expanded the understanding of honeybee biology since its introduction in 2005, through which key signaling pathways and proteins that drive honeybee development and behavioral physiology have been identified. This is critical for downstream mechanistic investigation by knocking a gene down/out or overexpressing it and being able to attribute a specific phenotype/biochemical change to that gene. Here, we review how emerging proteome research has contributed to the new understanding of honeybee biology. A systematic and comprehensive analysis of global scientific progress in honeybee proteome research is essential for a better understanding of research topics and trends, and is potentially useful for future research directions.
Collapse
Affiliation(s)
- Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Lu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
34
|
Dobritzsch D, Aumer D, Fuszard M, Erler S, Buttstedt A. The rise and fall of major royal jelly proteins during a honeybee ( Apis mellifera) workers' life. Ecol Evol 2019; 9:8771-8782. [PMID: 31410279 PMCID: PMC6686338 DOI: 10.1002/ece3.5429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
The genome of the western honeybee (Apis mellifera) harbors nine transcribed major royal jelly protein genes (mrjp1-9) which originate from a single-copy precursor via gene duplication. The first MRJP was identified in royal jelly, a secretion of the bees' hypopharyngeal glands that is used by young worker bees, called nurses, to feed developing larvae. Thus, MRJPs are frequently assumed to mainly have functions for developing bee larvae and to be expressed in the food glands of nurse bees. In-depth knowledge on caste- and age-specific role and abundance of MRJPs is missing. We here show, using combined quantitative real-time PCR with quantitative mass spectrometry, that expression and protein amount of mrjp1-5 and mrjp7 show an age-dependent pattern in worker's hypopharyngeal glands as well as in brains, albeit lower relative abundance in brains than in glands. Expression increases after hatching until the nurse bee period and is followed by a decrease in older workers that forage for plant products. Mrjp6 expression deviates considerably from the expression profiles of the other mrjps, does not significantly vary in the brain, and shows its highest expression in the hypopharyngeal glands during the forager period. Furthermore, it is the only mrjp of which transcript abundance does not correlate with protein amount. Mrjp8 and mrjp9 show, compared to the other mrjps, a very low expression in both tissues. Albeit mrjp8 mRNA was detected via qPCR, the protein was not quantified in any of the tissues. Due to the occurrence of MRJP8 and MRJP9 in other body parts of the bees, for example, the venom gland, they might not have a hypopharyngeal gland- or brain-specific function but rather functions in other tissues. Thus, mrjp1-7 but not mrjp8 and mrjp9 might be involved in the regulation of phenotypic plasticity and age polyethism in worker honeybees.
Collapse
Affiliation(s)
- Dirk Dobritzsch
- Institut für Biochemie und Biotechnologie, PflanzenbiochemieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Denise Aumer
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Matthew Fuszard
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Silvio Erler
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Anja Buttstedt
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
35
|
pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins. Sci Rep 2019; 9:9014. [PMID: 31227768 PMCID: PMC6588556 DOI: 10.1038/s41598-019-45460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/07/2019] [Indexed: 01/04/2023] Open
Abstract
Honey bee larval food jelly is a secretion of the hypopharyngeal and mandibular glands of young worker bees that take care of the growing brood in the hive. Food jelly is fed to all larvae (workers, drones and queens) and as royal jelly to the queen bee for her entire life. Up to 18% of the food jelly account for proteins the majority of which belongs to the major royal jelly protein (MRJP) family. These proteins are produced in the hypopharyngeal glands at a pH value of 7.0. Before being fed to the larvae, they are mixed with the fatty acids secreted by the mandibular glands of the worker bees resulting at a pH of 4.0 in the food jelly. Thus, MRJPs are exposed to a broad pH range from their site of synthesis to the actual secreted larval food. We therefore determined the pH-dependent stability of MRJP1, MRJP2 and MRJP3 purified from royal jelly using differential scanning fluorimetry. All MRJPs were much more stable at acidic pH values compared to neutral ones with all proteins showing highest stability at pH 4.0 or 4.5, the native pH of royal jelly.
Collapse
|
36
|
Perez-Riverol A, Lasa AM, Dos Santos-Pinto JRA, Palma MS. Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:10-24. [PMID: 30582958 DOI: 10.1016/j.ibmb.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil.
| |
Collapse
|
37
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
38
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
39
|
Abstract
Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.
Collapse
|
40
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
41
|
Russkamp D, Van Vaerenbergh M, Etzold S, Eberlein B, Darsow U, Schiener M, De Smet L, Absmaier M, Biedermann T, Spillner E, Ollert M, Jakob T, Schmidt-Weber CB, de Graaf DC, Blank S. Characterization of the honeybee venom proteins C1q-like protein and PVF1 and their allergenic potential. Toxicon 2018; 150:198-206. [PMID: 29842867 DOI: 10.1016/j.toxicon.2018.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
Abstract
Honeybee (Apis mellifera) venom (HBV) represents an ideal model to study the role of particular venom components in allergic reactions in sensitized individuals as well as in the eusociality of Hymenoptera species. The aim of this study was to further characterize the HBV components C1q-like protein (C1q) and PDGF/VEGF-like factor 1 (PVF1). C1q and PVF1 were produced as recombinant proteins in insect cells. Their allergenic properties were examined by determining the level of specific IgE antibodies in the sera of HBV-allergic patients (n = 26) as well as by their capacity to activate patients' basophils (n = 11). Moreover, the transcript heterogeneity of PVF1 was analyzed. It could be demonstrated that at least three PVF1 variants are present in the venom gland, which all result from alternative splicing of one transcript. Additionally, recombinant C1q and PVF1 from Spodoptera frugiperda insect cells exhibited specific IgE reactivity with approximately 38.5% of sera of HBV-allergic patients. Interestingly, both proteins were unable to activate basophils of the patients, questioning their role in the context of clinically relevant sensitization. Recombinant C1q and PVF1 can build the basis for a deeper understanding of the molecular mechanisms of Hymenoptera venoms. Moreover, the conflicting results between IgE sensitization and lack of basophil activation, might in the future contribute to the identification of factors that determine the allergenic potential of proteins.
Collapse
Affiliation(s)
- Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Matthias Van Vaerenbergh
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
| | - Stefanie Etzold
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Am Biederstein 29, 80802 Munich, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Am Biederstein 29, 80802 Munich, Germany
| | - Maximilian Schiener
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
| | - Magdalena Absmaier
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Am Biederstein 29, 80802 Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Am Biederstein 29, 80802 Munich, Germany
| | - Edzard Spillner
- Immunological Engineering, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 9000 Aarhus C, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, Rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center Gießen-Marburg, Justus Liebig University Gießen, Gaffkystraße 14, 35395 Gießen, Germany; Allergy Research Group, Department of Dermatology, University Freiburg Medical Center, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Munich, Germany
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Munich, Germany.
| |
Collapse
|
42
|
Antolín-Amérigo D, Ruiz-León B, Boni E, Alfaya-Arias T, Álvarez-Mon M, Barbarroja-Escudero J, González-de-Olano D, Moreno-Aguilar C, Rodríguez-Rodríguez M, Sánchez-González MJ, Sánchez-Morillas L, Vega-Castro A. Component-resolved diagnosis in hymenoptera allergy. Allergol Immunopathol (Madr) 2018; 46:253-262. [PMID: 28739022 DOI: 10.1016/j.aller.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Component-resolved diagnosis based on the use of well-defined, properly characterised and purified natural and recombinant allergens constitutes a new approach in the diagnosis of venom allergy. Prospective readers may benefit from an up-to-date review on the allergens. The best characterised venom is that of Apis mellifera, whose main allergens are phospholipase A2 (Api m1), hyaluronidase (Api m2) and melittin (Api m4). Additionally, in recent years, new allergens of Vespula vulgaris have been identified and include phospholipase A1 (Ves v1), hyaluronidase (Ves v2) and antigen 5 (Ves v5). Polistes species are becoming an increasing cause of allergy in Europe, although only few allergens have been identified in this venom. In this review, we evaluate the current knowledge about molecular diagnosis in hymenoptera venom allergy.
Collapse
Affiliation(s)
- D Antolín-Amérigo
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Principe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| | - B Ruiz-León
- Servicio de Alergología, Hospital Universitario Reina Sofía, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - E Boni
- S.S. Allergologia, ASL Alessandria, Hospital Santo Spirito, Casale Monferrato (AL), Italy
| | - T Alfaya-Arias
- Servicio de Alergología, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - M Álvarez-Mon
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - J Barbarroja-Escudero
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - D González-de-Olano
- Servicio de Alergología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - C Moreno-Aguilar
- Servicio de Alergología, Hospital Universitario Reina Sofía, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - M Rodríguez-Rodríguez
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | - M J Sánchez-González
- Servicio de Enfermedades del Sistema Inmune-Alergia, Hospital Universitario Príncipe de Asturias, Departamento de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | - A Vega-Castro
- Servicio de Alergología, Hospital Universitario de Guadalajara, Guadalajara, Spain
| |
Collapse
|
43
|
Hora ZA, Altaye SZ, Wubie AJ, Li J. Proteomics Improves the New Understanding of Honeybee Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3605-3615. [PMID: 29558123 DOI: 10.1021/acs.jafc.8b00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.
Collapse
Affiliation(s)
- Zewdu Ararso Hora
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Solomon Zewdu Altaye
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Abebe Jemberie Wubie
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
44
|
Blank S, Bilò MB, Ollert M. Component-resolved diagnostics to direct in venom immunotherapy: Important steps towards precision medicine. Clin Exp Allergy 2018; 48:354-364. [PMID: 29331065 DOI: 10.1111/cea.13090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stings of Hymenoptera can induce IgE-mediated systemic and even fatal allergic reactions. Venom-specific immunotherapy (VIT) is the only disease-modifying and curative treatment of venom allergy. However, choosing the correct venom for VIT represents a necessary prerequisite for efficient protection against further anaphylactic sting reactions after VIT. In the past, therapeutic decisions based on the measurement of specific IgE (sIgE) levels to whole venom extracts were not always straightforward, especially when the patient was not able to identify the culprit insect. In the last years, the increasing knowledge about the molecular structure and relevance of important venom allergens and their availability as recombinant allergens, devoid of cross-reactive carbohydrate determinants, resulted in the development of an advanced component-resolved diagnostics (CRD) approach in venom allergy. Already to date, CRD has increased the sensitivity of sIgE detection and enabled the discrimination between primary sensitization and cross-reactivity, particularly in patients with sensitization to both honeybee and vespid venom. Hence, CRD in many patients improves the selection of the appropriate immunotherapeutic intervention. Moreover, the detailed knowledge about sensitization profiles on a molecular level might open new options to identify patients who are at increased risk of side-effects or not to respond to immunotherapy. Therefore, increasing potential of CRD becomes evident, to direct therapeutic decisions in a personalized and patient-tailored manner. Reviewed here are the state of the art options, recent developments and future perspectives of CRD of Hymenoptera venom allergy.
Collapse
Affiliation(s)
- S Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Ancona, Italy
| | - M Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Schiener M, Graessel A, Ollert M, Schmidt-Weber CB, Blank S. Allergen-specific immunotherapy of Hymenoptera venom allergy - also a matter of diagnosis. Hum Vaccin Immunother 2017; 13:2467-2481. [PMID: 28604163 PMCID: PMC5647953 DOI: 10.1080/21645515.2017.1334745] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 12/16/2022] Open
Abstract
Stings of hymenoptera can induce IgE-mediated hypersensitivity reactions in venom-allergic patients, ranging from local up to severe systemic reactions and even fatal anaphylaxis. Allergic patients' quality of life can be mainly improved by altering their immune response to tolerate the venoms by injecting increasing venom doses over years. This venom-specific immunotherapy is highly effective and well tolerated. However, component-resolved information about the venoms has increased in the last years. This knowledge is not only able to improve diagnostics as basis for an accurate therapy, but was additionally used to create tools which enable the analysis of therapeutic venom extracts on a molecular level. Therefore, during the last decade the detailed knowledge of the allergen composition of hymenoptera venoms has substantially improved diagnosis and therapy of venom allergy. This review focuses on state of the art diagnostic and therapeutic options as well as on novel directions trying to improve therapy.
Collapse
Affiliation(s)
- Maximilian Schiener
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Anke Graessel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
46
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|
47
|
Perez-Riverol A, Dos Santos-Pinto JRA, Lasa AM, Palma MS, Brochetto-Braga MR. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J Proteomics 2017; 161:88-103. [PMID: 28435107 DOI: 10.1016/j.jprot.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | | | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana 10600, Cuba.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|
48
|
Pineda Guerra Y, Betancur Echeverri J, Pedroza-Díaz J, Delgado-Trejos E, Röthlisberger S. Análisis proteómico del veneno de la abeja africanizada: comparación de métodos de extracción. ACTA BIOLÓGICA COLOMBIANA 2016. [DOI: 10.15446/abc.v21n3.54046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La abeja africanizada es la más común en la apicultura colombiana y a su veneno (apitoxina) se le han atribuido propiedades terapéuticas para diferentes enfermedades, sin mayor soporte científico. Al revisar en la literatura los reportes publicados sobre el análisis proteómico de la apitoxina, se encontraron cuatro métodos distintos para la extracción de proteínas de la apitoxina. El primer método consiste en resuspender la apitoxina en Urea 7 M, precipitar con acetona y finalmente resuspender en Urea 7 M y CHAPS 4 %. Para el segundo método se resuspende la apitoxina en buffer de lisis, se precipita con ácido tricloroacético, y luego se resuspende en Urea 7 M y CHAPS 4 %. El tercer método es igual al anterior, excepto que la precipitación se realiza con acetona en vez de ácido tricloroacético. Finalmente, el cuarto método consiste en resuspender la apitoxina en agua destilada, precipitar con acetona y resuspender en Urea 7 M y CHAPS 4 %. Este trabajo se enfocó en comparar el desempeño de estos cuatro métodos de extracción y determinar el método con el mejor resultado en cuanto a la concentración e integridad obtenida de las proteínas. De los distintos métodos evaluados, se encontró que los mejores resultados en cuanto a concentración de proteínas se obtuvieron con la resuspensión de apitoxina en buffer de lisis y precipitación con acetona (método 3) y con el método de resuspensión de apitoxina en agua destilada y precipitación con acetona (método 4). De estos, el mejor método de extracción en cuanto a integridad de las proteínas y perfil proteómico fue el de resuspensión de apitoxina en buffer de lisis seguido de precipitación con acetona (método 3).
Collapse
|
49
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
50
|
A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge. Sci Rep 2016; 6:24082. [PMID: 27068683 PMCID: PMC4828634 DOI: 10.1038/srep24082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/15/2016] [Indexed: 12/14/2022] Open
Abstract
Extracellular Cu/Zn superoxide dismutases (SODs) are critical for balancing the level of reactive oxygen species in the extracellular matrix of eukaryotes. In the present study we have detected constitutive SOD activity in the haemolymph and defensive secretions of different leaf beetle species. Exemplarily, we have chosen the mustard leaf beetle, Phaedon cochleariae, as representative model organism to investigate the role of extracellular SODs in antimicrobial defence. Qualitative and quantitative proteome analyses resulted in the identification of two extracellular Cu/Zn SODs in the haemolymph and one in the defensive secretions of juvenile P. cochleariae. Furthermore, quantitative expression studies indicated fat body tissue and defensive glands as the main synthesis sites of these SODs. Silencing of the two SODs revealed one of them, PcSOD3.1, as the only relevant enzyme facilitating SOD activity in haemolymph and defensive secretions in vivo. Upon challenge with the entomopathogenic fungus, Metarhizium anisopliae, PcSOD3.1-deficient larvae exhibited a significantly higher mortality compared to other SOD-silenced groups. Hence, our results serve as a basis for further research on SOD regulated host-pathogen interactions. In defensive secretions PcSOD3.1-silencing affected neither deterrent production nor activity against fungal growth. Instead, we propose another antifungal mechanism based on MRJP/yellow proteins in the defensive exudates.
Collapse
|