1
|
Zhang X, Wang SJ, Wan SC, Li X, Chen G. Ozone: complicated effects in central nervous system diseases. Med Gas Res 2025; 15:44-57. [PMID: 39436168 PMCID: PMC11515058 DOI: 10.4103/mgr.medgasres-d-24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/20/2024] [Accepted: 08/25/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress is closely related to various diseases. Ozone can produce redox reactions through its unique response. As a source of the oxidative stress response, the strong oxidizing nature of ozone can cause severe damage to the body. On the other hand, low ozone concentrations can activate various mechanisms to combat oxidative stress and achieve therapeutic effects. Some animal experiments and clinical studies have revealed the potential medical value of ozone, indicating that ozone is not just a toxic gas. By reviewing the mechanism of ozone and its therapeutic value in treating central nervous system diseases (especially ischemic stroke and Alzheimer's disease) and the toxic effects of ozone, we find that ozone inhalation and a lack of antioxidants or excessive exposure lead to harmful impacts. However, with adequate antioxidants, ozone can transmit oxidative stress signals, reduce inflammation, reduce amyloid β peptide levels, and improve tissue oxygenation. Similar mechanisms to those of possible new drugs for treating ischemic stroke and Alzheimer's disease indicate the potential of ozone. Nevertheless, limited research has restricted the application of ozone. More studies are needed to reveal the exact dose-effect relationship and healing effect of ozone.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Jun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Si-Cen Wan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Xu W, Jia A, Lei Z, Wang J, Jiang H, Wang S, Wang Q. Stimuli-responsive prodrugs with self-immolative linker for improved cancer therapy. Eur J Med Chem 2024; 279:116928. [PMID: 39362023 DOI: 10.1016/j.ejmech.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Self-immolative prodrugs have gained significant attention as an innovative approach for targeted cancer therapy. These prodrugs are engineered to release the active anticancer agents in response to specific triggers within the tumor microenvironment, thereby improving therapeutic precision while reducing systemic toxicity. This review focuses on the molecular architecture and design principles of self-immolative prodrugs, emphasizing the role of stimuli-responsive linkers and activation mechanisms that enable controlled drug release. Recent advancements in this field include the development of prodrugs that incorporate targeting moieties for enhanced site-specificity. Moreover, the review discusses the incorporation of targeting moieties to achieve site-specific drug delivery, thereby improving the selectivity of treatment. By summarizing key research from the past five years, this review highlights the potential of self-immolative prodrugs to revolutionize cancer treatment strategies and pave the way for their integration into clinical practice.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhixian Lei
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Jianing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongfei Jiang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Shuai Wang
- Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong, China.
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China.
| |
Collapse
|
3
|
Park JM, Park JE, Park JS, Leem YH, Kim DY, Hyun JW, Kim HS. Anti-inflammatory and antioxidant mechanisms of coniferaldehyde in lipopolysaccharide-induced neuroinflammation: Involvement of AMPK/Nrf2 and TAK1/MAPK/NF-κB signaling pathways. Eur J Pharmacol 2024; 979:176850. [PMID: 39059571 DOI: 10.1016/j.ejphar.2024.176850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Microglia are primarily involved in inflammatory reactions and oxidative stress in the brain; as such reducing microglial activation has been proposed as a potential therapeutic strategy for neurodegenerative disorders. Herein, we investigated the anti-inflammatory and antioxidant activities of coniferaldehyde (CFA), a naturally occurring cinnamaldehyde derivative, on activated microglia to evaluate its therapeutic potential. CFA inhibited the production of nitric oxide (NO) and proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. CFA also inhibited intracellular reactive oxygen species levels and oxidative stress markers such as 4-HNE and 8-OHdG. Detailed mechanistic studies showed that CFA exerted anti-inflammatory effects by inhibiting TAK1-mediated MAP kinase/NF-κB activation and upregulating AMPK signaling pathways. In addition, CFA exerted antioxidant effects by inhibiting the NADPH oxidase subunits and by increasing the expression of antioxidant enzymes such as HO-1, NQO1, and catalase by upregulating Nrf2 signaling. Finally, we confirmed the effects of CFA on the brains of the LPS-injected mice. CFA inhibited microglial activation and the expression of proinflammatory markers and increased Nrf2-driven antioxidant enzymes. Furthermore, CFA inhibited the production of 4-HNE and 8-OHdG in the brains of LPS-injected mice. As a result, CFA's significant anti-inflammatory and antioxidant properties may have therapeutic applications in neuroinflammatory disorders related with oxidative stress and microglial activation.
Collapse
Affiliation(s)
- Jae-Min Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
4
|
Wang M, Shen Y, Gao Y, Chen H, Duan F, Li S, Wang G. NQO1 polymorphism and susceptibility to ischemic stroke in a Chinese population. BMC Med Genomics 2024; 17:219. [PMID: 39174970 PMCID: PMC11342592 DOI: 10.1186/s12920-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is a major cause of death and disability worldwide. Genetic factors are important risk factors for the development of IS. The quinone oxidoreductase 1 gene (NQO1) has antioxidant, anti-inflammatory, and cytoprotective properties. Thus, in this study, we investigated the relationship between NQO1 gene polymorphism and the risk of IS. METHODS Peripheral blood was collected from 143 patients with IS and 124 the control groups in Yunnan, China, and NQO1 rs2917673, rs689455, and rs1800566 were genotyped. Logistic regression was used to analyze the relationship between the three NQO1 loci and IS susceptibility. The difference in the expression levels of NQO1 between the control groups and IS groups was verified using public databases and enzyme-linked immunosorbent assay. RESULTS The rs2917673 locus increased the risk of IS by 2.375 times in TT genotype carriers under the co-dominance model compared with CC carriers and was statistically associated with the risk of IS (OR = 2.375, 95% CI = 1.017-5.546, P = 0.046). In the recessive model, TT genotype carriers increased IS risk by 2.407 times compared with CC/CT carriers and were statistically associated with the risk of IS (OR = 2.407, 95% CI = 1.073-5.396, P = 0.033). CONCLUSIONS NQO1 rs2917673 polymorphism is significantly associated with IS. Mutant TT carriers are risk factors for IS.
Collapse
Affiliation(s)
- Min Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, PR China
| | - Ying Shen
- The First Hospital of Liangshan, Xichang, Sichuan, 615000, PR China
| | - Yuan Gao
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huaqiu Chen
- Xichang People's Hospital, Xichang, Sichuan, 615000, PR China
| | - Fuhui Duan
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China
| | - Siying Li
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, 671000, PR China.
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, PR China.
| |
Collapse
|
5
|
Wang Q, Fu L, Zhong Y, Xu L, Yi L, He C, Kuang Y, Huang Q, Yang M. Research progress of organic fluorescent probes for lung cancer related biomarker detection and bioimaging application. Talanta 2024; 272:125766. [PMID: 38340392 DOI: 10.1016/j.talanta.2024.125766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
As one of the major public health problems, cancers seriously threaten the human health. Among them, lung cancer is considered to be one of the most life-threatening malignancies. Therefore, developing early diagnosis technology and timely treatment for lung cancer is urgent. Recent research has witnessed that measuring changes of biomarkers expressed in lung cancer has practical significance. Meanwhile, we note that bioimaging with organic fluorescent probes plays an important role for its high sensitivity, real-time analysis and simplicity of operation. In the past years, kinds of organic fluorescent probes targeting lung cancer related biomarker have been developed. Herein, we summarize the research progress of organic fluorescent probes for the detection of lung cancer related biomarkers in this review, along with their design principle, luminescence mechanism and bioimaging application. Additionally, we put forward some challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Li Fu
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yingfang Zhong
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Lijing Xu
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Lin Yi
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Chen He
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Ying Kuang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Qitong Huang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Zhi S, Huang M, Cheng K. Enzyme-responsive design combined with photodynamic therapy for cancer treatment. Drug Discov Today 2024; 29:103965. [PMID: 38552778 DOI: 10.1016/j.drudis.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Photodynamic therapy (PDT) is a noninvasive cancer treatment that has garnered significant attention in recent years. However, its application is still hampered by certain limitations, such as the hydrophobicity and low targeting of photosensitizers (PSs) and the hypoxia of the tumor microenvironment. Nevertheless, the fusion of enzyme-responsive drugs with PDT offers novel solutions to overcome these challenges. Utilizing the attributes of enzyme-responsive drugs, PDT can deliver PSs to the target site and selectively release them, thereby enhancing therapeutic outcomes. In this review, we spotlight recent advances in enzyme-responsive materials for cancer treatment and primarily delineate their application in combination with PDT.
Collapse
Affiliation(s)
- Siying Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meixin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Grieco A, Boneta S, Gavira JA, Pey AL, Basu S, Orlans J, de Sanctis D, Medina M, Martin‐Garcia JM. Structural dynamics and functional cooperativity of human NQO1 by ambient temperature serial crystallography and simulations. Protein Sci 2024; 33:e4957. [PMID: 38501509 PMCID: PMC10949395 DOI: 10.1002/pro.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.
Collapse
Grants
- P18-RT-2413 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- RTI2018-096246-B-I00 ERDF/Spanish Ministry of Science, Innovation and Universities-State Research Agency
- E35-23R Gobierno de Aragón
- B-BIO-84-UGR20 ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- CNS2022-135713 The European Union NextGenerationEU/PRTR
- 2019-T1/BMD-15552 Comunidad de Madrid
- MCIN/AEI/PID2022-136369NB-I00 MCIN/AEI/10.13039/501100011033/ERDF
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- ERDF/Spanish Ministry of Science, Innovation and Universities‐State Research Agency
- Gobierno de Aragón
- ERDF/Counseling of Economic Transformation, Industry, Knowledge and Universities
- Comunidad de Madrid
- MCIN/AEI/10.13039/501100011033/ERDF
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - José A. Gavira
- Laboratory of Crystallographic StudiesIACT (CSIC‐UGR)ArmillaSpain
| | - Angel L. Pey
- Departamento de Química FísicaUnidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de GranadaGranadaSpain
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenobleFrance
| | | | | | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular e Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de ZaragozaZaragozaSpain
| | - Jose Manuel Martin‐Garcia
- Department of Crystallography and Structural BiologyInstitute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC)MadridSpain
| |
Collapse
|
8
|
Kagan VE, Straub AC, Tyurina YY, Kapralov AA, Hall R, Wenzel SE, Mallampalli RK, Bayir H. Vitamin E/Coenzyme Q-Dependent "Free Radical Reductases": Redox Regulators in Ferroptosis. Antioxid Redox Signal 2024; 40:317-328. [PMID: 37154783 PMCID: PMC10890965 DOI: 10.1089/ars.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
Significance: Lipid peroxidation and its products, oxygenated polyunsaturated lipids, act as essential signals coordinating metabolism and physiology and can be deleterious to membranes when they accumulate in excessive amounts. Recent Advances: There is an emerging understanding that regulation of polyunsaturated fatty acid (PUFA) phospholipid peroxidation, particularly of PUFA-phosphatidylethanolamine, is important in a newly discovered type of regulated cell death, ferroptosis. Among the most recently described regulatory mechanisms is the ferroptosis suppressor protein, which controls the peroxidation process due to its ability to reduce coenzyme Q (CoQ). Critical Issues: In this study, we reviewed the most recent data in the context of the concept of free radical reductases formulated in the 1980-1990s and focused on enzymatic mechanisms of CoQ reduction in different membranes (e.g., mitochondrial, endoplasmic reticulum, and plasma membrane electron transporters) as well as TCA cycle components and cytosolic reductases capable of recycling the high antioxidant efficiency of the CoQ/vitamin E system. Future Directions: We highlight the importance of individual components of the free radical reductase network in regulating the ferroptotic program and defining the sensitivity/tolerance of cells to ferroptotic death. Complete deciphering of the interactive complexity of this system may be important for designing effective antiferroptotic modalities. Antioxid. Redox Signal. 40, 317-328.
Collapse
Affiliation(s)
- Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Radiation Oncology and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert Hall
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E. Wenzel
- Department of Environmental Health and Pharmacology and Chemical Biology and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, Children's Hospital Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
9
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Park JE, Leem YH, Park JS, Kim SE, Kim HS. Astrocytic Nrf2 Mediates the Neuroprotective and Anti-Inflammatory Effects of Nootkatone in an MPTP-Induced Parkinson's Disease Mouse Model. Antioxidants (Basel) 2023; 12:1999. [PMID: 38001852 PMCID: PMC10669233 DOI: 10.3390/antiox12111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to investigate the neuroprotective effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in an MPTP-induced Parkinson's disease (PD) mouse model. NKT restored MPTP-induced motor impairment and dopaminergic neuronal loss and increased the expression of neurotrophic factors like BDNF, GDNF, and PGC-1α. In addition, NKT inhibited microglial and astrocyte activation and the expression of pro-inflammatory markers like iNOS, TNF-α, and IL-1β and oxidative stress markers like 4-HNE and 8-OHdG. NKT increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-driven antioxidant enzymes like HO-1 and NQO-1 in astrocytes, but not in neurons or microglia in MPTP-treated mice. To investigate whether Nrf2 mediates the anti-inflammatory, antioxidant, or neuroprotective effects of NKT, mice were pretreated with Nrf2-specific inhibitor brusatol (BT) prior to NKT treatment. BT attenuated the NKT-mediated inhibition of 4-HNE and 8-OHdG and the number of Nrf2+/HO-1+/NQO1+ cells co-localized with GFAP+ astrocytes in the substantia nigra of MPTP-treated mice. In addition, BT reversed the effects of NKT on dopaminergic neuronal cell death, neurotrophic factors, and pro-/anti-inflammatory cytokines in MPTP-treated mice. Collectively, these data suggest that astrocytic Nrf2 and its downstream antioxidant molecules play pivotal roles in mediating the neuroprotective and anti-inflammatory effects of NKT in an MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Seong-Eun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (S.-E.K.)
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Grieco A, Ruiz-Fresneda MA, Gómez-Mulas A, Pacheco-García JL, Quereda-Moraleda I, Pey AL, Martin-Garcia JM. Structural dynamics at the active site of the cancer-associated flavoenzyme NQO1 probed by chemical modification with PMSF. FEBS Lett 2023; 597:2687-2698. [PMID: 37726177 DOI: 10.1002/1873-3468.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
A large conformational heterogeneity of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with various human diseases, has been observed to occur in the catalytic site of the enzyme. Here, we report the X-ray structure of NQO1 with phenylmethylsulfonyl fluoride (PMSF) at 1.6 Å resolution. Activity assays confirmed that, despite being covalently bound to the Tyr128 residue at the catalytic site, PMSF did not abolish NQO1 activity. This may indicate that the PMSF molecule does not reduce the high flexibility of Tyr128, thus allowing NADH and DCPIP substrates to bind to the enzyme. Our results show that targeting Tyr128, a key residue in NQO1 function, with small covalently bound molecules could possibly not be a good drug discovery strategy to inhibit this enzyme.
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | | | | | | | - Isabel Quereda-Moraleda
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Physical Chemistry, Unit of Excellence in Applied Chemistry to Biomedicine and Environment, and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jose M Martin-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Yu J, Zhong B, Zhao L, Hou Y, Ai N, Lu JJ, Ge W, Chen X. Fighting drug-resistant lung cancer by induction of NAD(P)H:quinone oxidoreductase 1 (NQO1)-mediated ferroptosis. Drug Resist Updat 2023; 70:100977. [PMID: 37321064 DOI: 10.1016/j.drup.2023.100977] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Drug resistance is a major challenge in cancer treatment. The substrates of NAD(P)H:quinone oxidoreductase 1 (NQO1) show a promising anticancer effect in clinical trials. We previously identified a natural NQO1 substrate 2-methoxy-6-acetyl-7-methyljuglone (MAM) with a potent anticancer effect. The present study was designed to explore the efficacy of MAM in fighting against drug-resistant non-small cell lung cancer (NSCLC). The anticancer effect of MAM was evaluated in cisplatin-resistant A549 and AZD9291-resistant H1975 cells. The interaction of MAM with NQO1 was measured by cellular thermal shift assay and drug affinity responsive target stability assay. The NQO1 activity and expression were measured using NQO1 recombinant protein, Western blotting, and immunofluorescence staining assay. The roles of NQO1 were examined by NQO1 inhibitor, small interfering RNA (siRNA), and short hairpin RNA (shRNA). The roles of reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation were determined. MAM induced significant cell death in drug-resistant cells with similar potency to that of parental cells, which were completely abolished by NQO1 inhibitor, NQO1 siRNA, and iron chelators. MAM activates and binds to NQO1, which triggers ROS generation, LIP increase, and lipid peroxidation. MAM significantly suppressed tumor growth in the tumor xenograft zebrafish model. These results showed that MAM induced ferroptosis by targeting NQO1 in drug-resistant NSCLC cells. Our findings provided a novel therapeutic strategy for fighting against drug resistance by induction of NQO1-mediated ferroptosis.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Lin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Scien ces, University of Macau, Taipa, Macao Special Administrative Region of China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
13
|
Zhao C, Wang H, Zhan W, Lv X, Ma X. Exploitation of Proximity-Mediated Effects in Drug Discovery: An Update of Recent Research Highlights in Perturbing Pathogenic Proteins and Correlated Issues. J Med Chem 2023; 66:10122-10149. [PMID: 37489834 DOI: 10.1021/acs.jmedchem.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The utilization of proximity-mediated effects to perturb pathogenic proteins of interest (POIs) has emerged as a powerful strategic alternative to conventional drug design approaches based on target occupancy. Over the past three years, the burgeoning field of targeted protein degradation (TPD) has witnessed the expansion of degradable POIs to membrane-associated, extracellular, proteasome-resistant, and even microbial proteins. Beyond TPD, researchers have achieved the proximity-mediated targeted protein stabilization, the recruitment of intracellular immunophilins to disturb undruggable targets, and the nonphysiological post-translational modifications of POIs. All of these strides provide new avenues for innovative drug discovery aimed at battling human malignancies and other major diseases. This perspective presents recent research highlights and discusses correlated issues in developing therapeutic modalities that exploit proximity-mediated effects to modulate pathogenic proteins, thereby guiding future academic and industrial efforts in this field.
Collapse
Affiliation(s)
- Can Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Henian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenhu Zhan
- iCarbonX (Shenzhen) Co., Ltd., Shenzhen, 518000, China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
14
|
Li Y, Feng M, Guo T, Wang Z, Zhao Y. Tailored Beta-Lapachone Nanomedicines for Cancer-Specific Therapy. Adv Healthc Mater 2023; 12:e2300349. [PMID: 36970948 DOI: 10.1002/adhm.202300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone-containing compound, beta-lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP-mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton-like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer-specific LAP therapy and speed up its clinical translation.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Meiyu Feng
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Zhu S, Zhang T, Gao H, Jin G, Yang J, He X, Guo H, Xu F. Combination Therapy of Lox Inhibitor and Stimuli-Responsive Drug for Mechanochemically Synergistic Breast Cancer Treatment. Adv Healthc Mater 2023; 12:e2300103. [PMID: 37099721 DOI: 10.1002/adhm.202300103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Chemotherapy based on small molecule drugs, hormones, cycline kinase inhibitors, and monoclonal antibodies has been widely used for breast cancer treatment in the clinic but with limited efficacy, due to the poor specificity and tumor microenvironment (TME)-caused diffusion barrier. Although monotherapies targeting biochemical cues or physical cues in the TME have been developed, none of them can cope with the complex TME, while mechanochemical combination therapy remains largely to be explored. Herein, a combination therapy strategy based on an extracellular matrix (ECM) modulator and TME-responsive drug for the first attempt of mechanochemically synergistic treatment of breast cancer is developed. Specifically, based on overexpressed NAD(P)H quinone oxidoreductase 1 (NQO1) in breast cancer, a TME-responsive drug (NQO1-SN38) is designed and it is combined with the inhibitor (i.e., β-Aminopropionitrile, BAPN) for Lysyl oxidases (Lox) that contributes to the tumor stiffness, for mechanochemical therapy. It is demonstrated that NQO1 can trigger the degradation of NQO1-SN38 and release SN38, showing nearly twice tumor inhibition efficiency compared with SN38 treatment in vitro. Lox inhibition with BAPN significantly reduces collagen deposition and enhances drug penetration in tumor heterospheroids in vitro. It is further demonstrated that the mechanochemical therapy showed outstanding therapeutic efficacy in vivo, providing a promising approach for breast cancer therapy.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tian Zhang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huan Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
16
|
Shen L, Jiang S, Yang Y, Yang H, Fang Y, Tang M, Zhu R, Xu J, Jiang H. Pan-cancer and single-cell analysis reveal the prognostic value and immune response of NQO1. Front Cell Dev Biol 2023; 11:1174535. [PMID: 37583897 PMCID: PMC10424457 DOI: 10.3389/fcell.2023.1174535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Overexpression of the NAD(P)H: Quinone Oxidoreductase 1 (NQOI) gene has been linked with tumor progression, aggressiveness, drug resistance, and poor patient prognosis. Most research has described the biological function of the NQO1 in certain types and limited samples, but a comprehensive understanding of the NQO1's function and clinical importance at the pan-cancer level is scarce. More research is needed to understand the role of NQO1 in tumor infiltration, and immune checkpoint inhibitors in various cancers are needed. Methods: The NQO1 expression data for 33 types of pan-cancer and their association with the prognosis, pathologic stage, gender, immune cell infiltration, the tumor mutation burden, microsatellite instability, immune checkpoints, enrichment pathways, and the half-maximal inhibitory concentration (IC50) were downloaded from public databases. Results: Our findings indicate that the NQO1 gene was significantly upregulated in most cancer types. The Cox regression analysis showed that overexpression of the NQO1 gene was related to poor OS in Glioma, uveal melanoma, head and neck squamous cell carcinoma, kidney renal papillary cell carcinoma, and adrenocortical carcinoma. NQO1 mRNA expression positively correlated with infiltrating immune cells and checkpoint molecule levels. The single-cell analysis revealed a potential relationship between the NQO1 mRNA expression levels and the infiltration of immune cells and stromal cells in bladder urothelial carcinoma, invasive breast carcinoma, and colorectal cancer. Conversely, a negative association was noted between various drugs (17-AAG, Lapatinib, Trametinib, PD-0325901) and the NQO1 mRNA expression levels. Conclusion: NQO1 expression was significantly associated with prognosis, immune infiltrates, and drug resistance in multiple cancer types. The inhibition of the NQO1-dependent signaling pathways may provide a promising strategy for developing new cancer-targeted therapies.
Collapse
Affiliation(s)
- Liping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Shan Jiang
- Department of Radiology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Yu Yang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Hongli Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanchun Fang
- Department of Ultrasonography, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Meng Tang
- Department of Ultrasonography, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Rangteng Zhu
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| | - Hantao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical, Taizhou, Zhejiang, China
| |
Collapse
|
17
|
Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. LAB ON A CHIP 2023; 23:3016-3033. [PMID: 37294576 PMCID: PMC10503405 DOI: 10.1039/d3lc00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Roberto C Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jay-How Yang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jackson Carrion
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Katherine Morin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gihan K Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel Angel Ruiz-Fresneda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Christopher J Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Robert E Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| |
Collapse
|
18
|
Gutkin S, Tannous R, Jaber Q, Fridman M, Shabat D. Chemiluminescent duplex analysis using phenoxy-1,2-dioxetane luminophores with color modulation. Chem Sci 2023; 14:6953-6962. [PMID: 37389255 PMCID: PMC10306105 DOI: 10.1039/d3sc02386a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Multiplex technology is an important emerging field, in diagnostic sciences, that enables the simultaneous detection of several analytes in a single sample. The light-emission spectrum of a chemiluminescent phenoxy-dioxetane luminophore can be accurately predicted by determining the fluorescence-emission spectrum of its corresponding benzoate species, which is generated during the chemiexcitation process. Based on this observation, we designed a library of chemiluminescent dioxetane luminophores with multicolor emission wavelengths. Two dioxetane luminophores that have different emission spectra, but similar quantum yield properties, were selected from the synthesized library for a duplex analysis. The selected dioxetane luminophores were equipped with two different enzymatic substrates to generate turn-ON chemiluminescent probes. This pair of probes exhibited a promising ability to act as a chemiluminescent duplex system for the simultaneous detection of two different enzymatic activities in a physiological solution. In addition, the pair of probes were also able to simultaneously detect the activities of the two enzymes in a bacterial assay, using a blue filter slit for one enzyme and a red filter slit for the other enzyme. As far as we know, this is the first successful demonstration of a chemiluminescent duplex system composed of two-color phenoxy-1,2-dioxetane luminophores. We believe that the library of dioxetanes presented here will be beneficial for developing chemiluminescence luminophores for multiplex analysis of enzymes and bioanalytes.
Collapse
Affiliation(s)
- Sara Gutkin
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Rozan Tannous
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Qais Jaber
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Micha Fridman
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| | - Doron Shabat
- Department of Organic Chemistry, School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University Tel Aviv 69978 Israel +972 3 640 8340
| |
Collapse
|
19
|
Xie D, Deng T, Zhai Z, Qin T, Song C, Xu Y, Sun T. Moschus exerted protective activity against H 2O 2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways. Biomed Pharmacother 2023; 159:114290. [PMID: 36708701 DOI: 10.1016/j.biopha.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting Deng
- Jintang Second People' s Hospital, Chengdu 610404, China.
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Phenotypic Modulation of Cancer-Associated Antioxidant NQO1 Activity by Post-Translational Modifications and the Natural Diversity of the Human Genome. Antioxidants (Basel) 2023; 12:antiox12020379. [PMID: 36829939 PMCID: PMC9952366 DOI: 10.3390/antiox12020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is a multifunctional and antioxidant stress protein whose expression is controlled by the Nrf2 signaling pathway. hNQO1 dysregulation is associated with cancer and neurological disorders. Recent works have shown that its activity is also modulated by different post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, and these may synergize with naturally-occurring and inactivating polymorphisms and mutations. Herein, I describe recent advances in the study of the effect of PTMs and genetic variations on the structure and function of hNQO1 and their relationship with disease development in different genetic backgrounds, as well as the physiological roles of these modifications. I pay particular attention to the long-range allosteric effects exerted by PTMs and natural variation on the multiple functions of hNQO1.
Collapse
|
21
|
Pacheco-Garcia JL, Cagiada M, Tienne-Matos K, Salido E, Lindorff-Larsen K, L. Pey A. Effect of naturally-occurring mutations on the stability and function of cancer-associated NQO1: Comparison of experiments and computation. Front Mol Biosci 2022; 9:1063620. [PMID: 36504709 PMCID: PMC9730889 DOI: 10.3389/fmolb.2022.1063620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in DNA sequencing technologies are revealing a large individual variability of the human genome. Our capacity to establish genotype-phenotype correlations in such large-scale is, however, limited. This task is particularly challenging due to the multifunctional nature of many proteins. Here we describe an extensive analysis of the stability and function of naturally-occurring variants (found in the COSMIC and gnomAD databases) of the cancer-associated human NAD(P)H:quinone oxidoreductase 1 (NQO1). First, we performed in silico saturation mutagenesis studies (>5,000 substitutions) aimed to identify regions in NQO1 important for stability and function. We then experimentally characterized twenty-two naturally-occurring variants in terms of protein levels during bacterial expression, solubility, thermal stability, and coenzyme binding. These studies showed a good overall correlation between experimental analysis and computational predictions; also the magnitude of the effects of the substitutions are similarly distributed in variants from the COSMIC and gnomAD databases. Outliers in these experimental-computational genotype-phenotype correlations remain, and we discuss these on the grounds and limitations of our approaches. Our work represents a further step to characterize the mutational landscape of NQO1 in the human genome and may help to improve high-throughput in silico tools for genotype-phenotype correlations in this multifunctional protein associated with disease.
Collapse
Affiliation(s)
| | - Matteo Cagiada
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, La Laguna, TenerifeTenerife, Spain
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Granada, Spain,*Correspondence: Angel L. Pey,
| |
Collapse
|
22
|
Pacheco-Garcia JL, Anoz-Carbonell E, Loginov DS, Vankova P, Salido E, Man P, Medina M, Palomino-Morales R, Pey AL. Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations. Arch Biochem Biophys 2022; 729:109392. [PMID: 36096178 DOI: 10.1016/j.abb.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Cellular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Rogelio Palomino-Morales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences and Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
23
|
Pacheco-Garcia JL, Loginov DS, Anoz-Carbonell E, Vankova P, Palomino-Morales R, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants (Basel) 2022; 11:antiox11061110. [PMID: 35740007 PMCID: PMC9219786 DOI: 10.3390/antiox11061110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural–functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| | - Dmitry S. Loginov
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Pavla Vankova
- Institute of Biotechnology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Rogelio Palomino-Morales
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, 18016 Granada, Spain;
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320 Tenerife, Spain;
| | - Petr Man
- Institute of Microbiology—BioCeV, Academy of Sciences of the Czech Republic, Prumyslova 595, 252 50 Vestec, Czech Republic; (D.S.L.); (P.M.)
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50009 Zaragoza, Spain; (E.A.-C.); (M.M.)
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
- Correspondence: (J.L.P.-G.); (A.L.P.); Tel.: +34-958243173 (A.L.P.)
| |
Collapse
|
24
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
25
|
Preethi S, Arthiga K, Patil AB, Spandana A, Jain V. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Mol Biol Rep 2022; 49:8907-8924. [PMID: 35347544 DOI: 10.1007/s11033-022-07369-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
NQO1 is an enzyme present in humans which is encoded by NQO1 gene. It is a protective antioxidant agent, versatile cytoprotective agent and regulates the oxidative stresses of chromatin binding proteins for DNA damage in cancer cells. The oxidization of cellular pyridine nucleotides causes structural alterations to NQO1 and changes in its capacity to binding of proteins. A strategy based on NQO1 to have protective effect against cancer was developed by organic components to enhance NQO1 expression. The quinone derivative compounds like mitomycin C, RH1, E09 (Apaziquone) and β-lapachone causes cell death by NQO1 reduction of two electrons. It was also known to be overexpressed in various tumor cells of breast, lung, cervix, pancreas and colon when it was compared with normal cells in humans. The mechanism of NQO1 by the reduction of FAD by NADPH to form FADH2 is by two ways to inhibit cancer cell development such as suppression of carcinogenic metabolic activation and prevention of carcinogen formation. The NQO1 exhibit suppression of chemical-mediated carcinogenesis by various properties of NQO1 which includes, detoxification of quinone scavenger of superoxide anion radical, antioxidant enzyme, protein stabilizer. This review outlines the NQO1 structure, mechanism of action to inhibit the cancer cell, functions of NQO1 against oxidative stress, drugs acting on NQO1 pathways, clinical significance.
Collapse
Affiliation(s)
- S Preethi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - K Arthiga
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
26
|
王 大, 牛 颖, 王 昕, 金 贞. Expression and role of anti-oxidative damage factors in the placenta of preterm infants with premature rupture of membranes. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:71-77. [PMID: 35177179 PMCID: PMC8802395 DOI: 10.7499/j.issn.1008-8830.2108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the association of the anti-oxidative damage factors nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) with preterm premature rupture of membranes (PPROM). METHODS A prospective study was conducted. The neonates who were hospitalized in Yanbian Hospital from 2019 to 2020 were enrolled as subjects, among whom there were 30 infants with PPROM, 32 infants with term premature rupture of membranes (TPROM), and 35 full-term infants without premature rupture of membranes (PROM). Hematoxylin and eosin staining was used to observe the inflammatory changes of placental tissue. Immunohistochemical staining was used to measure the expression of Nrf2, HO-1, and NQO1 in placental tissue. Western blot was used to measure the protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue. RESULTS Compared with the PPROM group, the TPROM group and the non-PROM full-term group had significantly higher positive expression rates and relative protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue (P<0.05). There were no significant differences in the positive expression rates and relative protein expression levels of Nrf2, HO-1, and NQO1 in placental tissue between the TPROM and non-PROM full-term groups (P>0.05). CONCLUSIONS The low expression levels of Nrf2, HO-1, and NQO1 in placental tissue may be associated with PPROM, suggesting that anti-oxidative damage is one of the directions to prevent PPROM.
Collapse
|
27
|
Pacheco-Garcia JL, Loginov D, Rizzuti B, Vankova P, Neira JL, Kavan D, Mesa-Torres N, Guzzi R, Man P, Pey AL. A single evolutionarily divergent mutation determines the different FAD-binding affinities of human and rat NQO1 due to site-specific phosphorylation. FEBS Lett 2022; 596:29-41. [PMID: 34817874 DOI: 10.1002/1873-3468.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
The phosphomimetic mutation S82D in the cancer-associated, FAD-dependent human NADP(H):quinone oxidoreductase 1 (hNQO1) causes a decrease in flavin-adenine dinucleotide-binding affinity and intracellular stability. We test in this work whether the evolutionarily recent neutral mutation R80H in the vicinity of S82 may alter the strong functional effects of S82 phosphorylation through electrostatic interactions. We show using biophysical and bioinformatic analyses that the reverse mutation H80R prevents the effects of S82D phosphorylation on hNQO1 by modulating the local stability. Consistently, in rat NQO1 (rNQO1) which contains R80, the effects of phosphorylation were milder, resembling the behaviour found in hNQO1 when this residue was humanized in rNQO1 (by the R80H mutation). Thus, apparently neutral and evolutionarily divergent mutations may determine the functional response of mammalian orthologues towards phosphorylation.
Collapse
Affiliation(s)
| | - Dmitry Loginov
- Institute of Microbiology of the Czech Academy of Sciences, BioCeV, Praha, Czech Republic
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Rende, Italy
- Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), Zaragoza, Spain
| | - Pavla Vankova
- Institute of Biotechnology of the Czech Academy of Sciences, BioCeV, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jose L Neira
- Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), Zaragoza, Spain
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, BioCeV, Praha, Czech Republic
| | - Noel Mesa-Torres
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Spain
| | - Rita Guzzi
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Rende, Italy
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, BioCeV, Praha, Czech Republic
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Spain
| |
Collapse
|
28
|
Lu Q, Zhang Y, Zhao C, Zhang H, Pu Y, Yin L. Copper induces oxidative stress and apoptosis of hippocampal neuron via pCREB/BDNF/ and Nrf2/HO-1/NQO1 pathway. J Appl Toxicol 2021; 42:694-705. [PMID: 34676557 DOI: 10.1002/jat.4252] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/17/2023]
Abstract
Disordered copper metabolism has been suggested to occur to several neurological conditions, including Alzheimer's disease and Parkinson's disease. However, the underlying mechanism was still unclear. This might link to copper-induced hippocampal neuronal apoptosis and decrease in neurons viability. Our vitro experiment showed copper exposure induced oxidative stress and promoted apoptosis of HT22 murine hippocampal neuronal cell. Mechanistically, we found copper, on the one hand, prevented phosphorylation of cAMP response element binding protein (CREB) to decrease expression its downstream target protein Brain-derived neurotrophic factor (BDNF), and to decrease mitochondrial membrane potential and Bcl-2/Bax ratio; on the other hand, copper-induced reactive oxygen species (ROS), promoted lipid peroxidation, reduced antioxidant enzyme activity of GSH-Px. Copper-induced oxidative damage further decreased the phosphorylation of CREB, decreased expression of Bcl-2, enhanced expression of Bax, and accelerated the dissociation of keap1-Nrf2 complex, promoted the nuclear translocation of Nrf2, stimulate the expression of antioxidant molecules HO-1 and NQO1. In conclusion, we found copper inhibited pCREB/BDNF signaling pathway by prevent CREB from phosphorylation, further found that oxidative damage not only inhibited neuroprotective signaling pathways and induced apoptosis, but activated antioxidant protection signals Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Pacheco-Garcia JL, Anoz-Carbonell E, Vankova P, Kannan A, Palomino-Morales R, Mesa-Torres N, Salido E, Man P, Medina M, Naganathan AN, Pey AL. Structural basis of the pleiotropic and specific phenotypic consequences of missense mutations in the multifunctional NAD(P)H:quinone oxidoreductase 1 and their pharmacological rescue. Redox Biol 2021; 46:102112. [PMID: 34537677 PMCID: PMC8455868 DOI: 10.1016/j.redox.2021.102112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 10/31/2022] Open
Abstract
The multifunctional nature of human flavoproteins is critically linked to their ability to populate multiple conformational states. Ligand binding, post-translational modifications and disease-associated mutations can reshape this functional landscape, although the structure-function relationships of these effects are not well understood. Herein, we characterized the structural and functional consequences of two mutations (the cancer-associated P187S and the phosphomimetic S82D) on different ligation states which are relevant to flavin binding, intracellular stability and catalysis of the disease-associated NQO1 flavoprotein. We found that these mutations affected the stability locally and their effects propagated differently through the protein structure depending both on the nature of the mutation and the ligand bound, showing directional preference from the mutated site and leading to specific phenotypic manifestations in different functional traits (FAD binding, catalysis and inhibition, intracellular stability and pharmacological response to ligands). Our study thus supports that pleitropic effects of disease-causing mutations and phosphorylation events on human flavoproteins may be caused by long-range structural propagation of stability effects to different functional sites that depend on the ligation-state and site-specific perturbations. Our approach can be of general application to investigate these pleiotropic effects at the flavoproteome scale in the absence of high-resolution structural models.
Collapse
Affiliation(s)
- Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 2, 128 43, Czech Republic
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Rogelio Palomino-Morales
- Departmento de Bioquímica y Biología Molecular I, Facultad de Ciencias y Centro de Investigaciones Biomédicas (CIBM), Universidad de Granada, Granada, Spain
| | - Noel Mesa-Torres
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, 38320, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and Joint Unit), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
30
|
Krishnamoorthy G, Kaiser P, Constant P, Abu Abed U, Schmid M, Frese CK, Brinkmann V, Daffé M, Kaufmann SHE. Role of Premycofactocin Synthase in Growth, Microaerophilic Adaptation, and Metabolism of Mycobacterium tuberculosis. mBio 2021; 12:e0166521. [PMID: 34311585 PMCID: PMC8406134 DOI: 10.1128/mbio.01665-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/25/2021] [Indexed: 01/14/2023] Open
Abstract
Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.
Collapse
Affiliation(s)
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Patricia Constant
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ulrike Abu Abed
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monika Schmid
- Core Facility Proteomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Volker Brinkmann
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, USA
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
31
|
Dobre M, Boscencu R, Neagoe IV, Surcel M, Milanesi E, Manda G. Insight into the Web of Stress Responses Triggered at Gene Expression Level by Porphyrin-PDT in HT29 Human Colon Carcinoma Cells. Pharmaceutics 2021; 13:pharmaceutics13071032. [PMID: 34371724 PMCID: PMC8309054 DOI: 10.3390/pharmaceutics13071032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 01/21/2023] Open
Abstract
Photodynamic therapy (PDT), a highly targeted therapy with acceptable side effects, has emerged as a promising therapeutic option in oncologic pathology. One of the issues that needs to be addressed is related to the complex network of cellular responses developed by tumor cells in response to PDT. In this context, this study aims to characterize in vitro the stressors and the corresponding cellular responses triggered by PDT in the human colon carcinoma HT29 cell line, using a new asymmetric porphyrin derivative (P2.2) as a photosensitizer. Besides investigating the ability of P2.2-PDT to reduce the number of viable tumor cells at various P2.2 concentrations and fluences of the activating light, we assessed, using qRT-PCR, the expression levels of 84 genes critically involved in the stress response of PDT-treated cells. Results showed a fluence-dependent decrease of viable tumor cells at 24 h post-PDT, with few cells that seem to escape from PDT. We highlighted following P2.2-PDT the concomitant activation of particular cellular responses to oxidative stress, hypoxia, DNA damage and unfolded protein responses and inflammation. A web of inter-connected stressors was induced by P2.2-PDT, which underlies cell death but also elicits protective mechanisms that may delay tumor cell death or even defend these cells against the deleterious effects of PDT.
Collapse
Affiliation(s)
- Maria Dobre
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mihaela Surcel
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Gina Manda
- Radiobiology Department, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| |
Collapse
|
32
|
Walia HK, Singh N, Sharma S. Association of NQO1Pro187Ser polymorphism with clinical outcomes and survival of lung cancer patients treated with platinum chemotherapy. Per Med 2021; 18:333-346. [PMID: 33973803 DOI: 10.2217/pme-2020-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: The study was carried out to evaluate the association of NQO1 P187S polymorphism in North Indian lung cancer (LC) patients. We determined the effect of this polymorphic variant on the survival of LC patients. Patients & methods/results: This case-control study comprised a total of 1100 subjects. The genotyping was carried out using PCR-RFLP and statistical analysis was carried out. The variant TT genotype exhibited 3.5-fold higher odds in subjects with stage III (p = 0.0006), fivefold higher odds of lymph-node invasion (p = 0.007) and an odd of <1 in case of metastasis (p = 0.0028). Patients possessing TT genotype and administered with paclitaxel, exhibited a poor survival (3.57 vs 12.20 months; hazard ratio = 7.95; p = 0.0098). Conclusion: These results suggest that NQO1 variant genotype was not found to modulate risk toward LC. However, the variant genotype was found to be strongly correlated with stage III LC, lymph node invasion and was found to be positively correlating with metastasis.
Collapse
Affiliation(s)
- Harleen Kaur Walia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
33
|
Wu Z, Wang Q, Yang H, Wang J, Li W, Liu G, Yang Y, Zhao Y, Tang Y. Discovery of Natural Products Targeting NQO1 via an Approach Combining Network-Based Inference and Identification of Privileged Substructures. J Chem Inf Model 2021; 61:2486-2498. [PMID: 33955748 DOI: 10.1021/acs.jcim.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) has been shown to be a potential therapeutic target for various human diseases, such as cancer and neurodegenerative disorders. Recent advances in computational methods, especially network-based methods, have made it possible to identify novel compounds for a target with high efficiency and low cost. In this study, we designed a workflow combining network-based methods and identification of privileged substructures to discover new compounds targeting NQO1 from a natural product library. According to the prediction results, we purchased 56 compounds for experimental validation. Without the assistance of privileged substructures, 31 compounds (31/56 = 55.4%) showed IC50 < 100 μM, and 11 compounds (11/56 = 19.6%) showed IC50 < 10 μM. With the assistance of privileged substructures, the two success rates were increased to 61.8 and 26.5%, respectively. Seven natural products further showed inhibitory activity on NQO1 at the cellular level, which may serve as lead compounds for further development. Moreover, network analysis revealed that osthole may exert anticancer effects against multiple cancer types by inhibiting not only carbonic anhydrases IX and XII but also NQO1. Our workflow and computational methods can be easily applied in other targets and become useful tools in drug discovery and development.
Collapse
Affiliation(s)
- Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiaohui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiye Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuzheng Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
34
|
Gong G, Zheng Y. The anti-UV properties of Saussurea involucrate Matsum. & Koidz. Via regulating PI3K/Akt pathway in B16F10 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113694. [PMID: 33321189 DOI: 10.1016/j.jep.2020.113694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ultra Violet (UV) radiation is the major reason for reactive oxygen species (ROS) forming, skin cell damage, melanin production, and could horribly cause skin cancer. Saussureae Involucratae Herba (SIH) is the aerial part of Saussurea involucrata Matsum. & Koidz. This Material Medica is popular with both in Uyghur and Chinese medicines filed. SIH is one of the famous species of the Asteraceae family and which prescribed for skin protection from UV-induced damage according to China Pharmacopeia (2020). However, the detailed working mechanism involved is still not elucidated. AIM OF THE STUDY We would like to probe the potential transduction pathway of SIH against UV-induced skin cell damages in cultured B16F10 cells. METHODS Western blot, luciferase assay, laser confocal, RT-PCR and flow cytometer were employed here to verify the protective pharmaceutical value of SIH in cultured B16F10 cells after UV pre-treatment. RESULTS Our result revealed that SIH attenuates ROS formation after UV-induced damage in B16F10 cells in a dose-dependent manner. Moreover, the transcriptional and translational anti-oxidative encoding genes were up-regulated under the presence of SIH. Further studies showed that SIH activated transcriptional activity of anti-oxidant response element (ARE). Moreover, we found that SIH dramatically stimulates PI3K/Akt phosphorylation in cultured B16F10 cells, this result was further verified by its specific inhibitors, LY294002 and Tocris. CONCLUSION Our findings concluded that SIH protect melanoma cells from UV damages via activating PI3K/Akt signaling and which could provide scientific evidence for anti-UV pharmaceutical values of this herbal extract.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong, 519041, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, 521041, China.
| |
Collapse
|
35
|
Zhong B, Yu J, Hou Y, Ai N, Ge W, Lu JJ, Chen X. A novel strategy for glioblastoma treatment by induction of noptosis, an NQO1-dependent necrosis. Free Radic Biol Med 2021; 166:104-115. [PMID: 33600944 DOI: 10.1016/j.freeradbiomed.2021.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is one of the most prevalent malignant primary tumors in the human brain. Temozolomide (TMZ), the chemotherapeutic drug for GBM treatment, induces apoptosis. Unfortunately, apoptosis-resistance to TMZ results in treatment failure. GBM shows enhanced expression of NAD(P)H: quinone oxidoreductase 1 (NQO1). Recently, noptosis, a type of NQO1-dependent necrosis, was proposed. Here, we identified that tanshindiol B (TSB) inhibits GBM growth by induction of noptosis. TSB triggered significant cell death, which did not fit the criteria of apoptosis but oxidative stress-induced necrosis. Molecular docking, cellular thermal shift assay, and NQO1 activity assay revealed that TSB bind to and promptly activated NQO1 enzyme activity. As the substrate of NQO1, TSB induced oxidative stress, which resulted in dramatic DNA damage, poly (ADP-ribose) polymerase 1 (PARP1) hyperactivation, and NAD+ depletion, leading to necrotic cell death. These effects of TSB were completely abolished by specific NQO1 inhibitor dicoumarol (DIC). Furthermore, the c-Jun N-terminal kinase 1/2 (JNK1/2) plays an essential role in mediating TSB-induced cell death. Besides, TSB significantly suppressed tumor growth in a zebrafish xenograft model mediated by NQO1. In conclusion, these results showed that TSB was an NQO1 substrate and triggered noptosis of GBM. TSB exhibited anti-tumor potentials in GBM both in vitro and in vivo. This study provides a novel strategy for fighting GBM through the induction of noptosis.
Collapse
Affiliation(s)
- Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
36
|
Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel) 2021; 10:antiox10030416. [PMID: 33803289 PMCID: PMC7998206 DOI: 10.3390/antiox10030416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Dimethyl fumarate (DMF), an antioxidant/anti-inflammatory drug approved for the treatment of multiple sclerosis, induces antioxidant enzymes, in part through transcriptional upregulation. We hypothesized that DMF administration to simian immunodeficiency virus (SIV)-infected rhesus macaques would induce antioxidant enzyme expression and reduce oxidative injury and inflammation throughout the brain. Nine SIV-infected, CD8+-T-lymphocyte-depleted rhesus macaques were studied. Five received oral DMF prior to the SIV infection and through to the necropsy day. Protein expression was analyzed in 11 brain regions, as well as the thymus, liver, and spleen, using Western blot and immunohistochemistry for antioxidant, inflammatory, and neuronal proteins. Additionally, oxidative stress was determined in brain sections using immunohistochemistry (8-OHdG, 3NT) and optical redox imaging of oxidized flavoproteins containing flavin adenine dinucleotide (Fp) and reduced nicotinamide adenine dinucleotide (NADH). The DMF treatment was associated with no changes in virus replication; higher expressions of the antioxidant enzymes NQO1, GPX1, and HO-1 in the brain and PRDX1 and HO-2 in the spleen; lower levels of 8-OHdG and 3NT; a lower optical redox ratio. The DMF treatment was also associated with increased expressions of cell-adhesion molecules (VCAM-1, ICAM-1) and no changes in HLA-DR, CD68, GFAP, NFL, or synaptic proteins. The concordantly increased brain antioxidant enzyme expressions and reduced oxidative stress in DMF-treated SIV-infected macaques suggest that DMF could limit oxidative stress throughout the brain through effective induction of the endogenous antioxidant response. We propose that DMF could potentially induce neuroprotective brain responses in persons living with HIV.
Collapse
|
37
|
Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting degradation of HBx. J Hepatol 2021; 74:522-534. [PMID: 32987030 DOI: 10.1016/j.jhep.2020.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Current antiviral therapies help keep HBV under control, but they are not curative, as they are unable to eliminate the intracellular viral replication intermediate termed covalently closed circular DNA (cccDNA). Therefore, there remains an urgent need to develop strategies to cure CHB. Functional silencing of cccDNA is a crucial curative strategy that may be achieved by targeting the viral protein HBx. METHODS We screened 2,000 small-molecule compounds for their ability to inhibit HiBiT-tagged HBx (HiBiT-HBx) expression by using a HiBiT lytic detection system. The antiviral activity of a candidate compound and underlying mechanism of its effect on cccDNA transcription were evaluated in HBV-infected cells and a humanised liver mouse model. RESULTS Dicoumarol, an inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), significantly reduced HBx expression. Moreover, dicoumarol showed potent antiviral activity against HBV RNAs, HBV DNA, HBsAg and HBc protein in HBV-infected cells and a humanised liver mouse model. Mechanistic studies demonstrated that endogenous NQO1 binds to and protects HBx protein from 20S proteasome-mediated degradation. NQO1 knockdown or dicoumarol treatment significantly reduced the recruitment of HBx to cccDNA and inhibited the transcriptional activity of cccDNA, which was associated with the establishment of a repressive chromatin state. The absence of HBx markedly blocked the antiviral effect induced by NQO1 knockdown or dicoumarol treatment in HBV-infected cells. CONCLUSIONS Herein, we report on a novel small molecule that targets HBx to combat chronic HBV infection; we also reveal that NQO1 has a role in HBV replication through the regulation of HBx protein stability. LAY SUMMARY Current antiviral therapies for hepatitis B are not curative because of their inability to eliminate covalently closed circular DNA (cccDNA), which persists in the nuclei of infected cells. HBV X (HBx) protein has an important role in regulating cccDNA transcription. Thus, targeting HBx to silence cccDNA transcription could be an important curative strategy. We identified that the small molecule dicoumarol could block cccDNA transcription by promoting HBx degradation; this is a promising therapeutic strategy for the treatment of chronic hepatitis B.
Collapse
|
38
|
Lucifora J, Baumert TF. Silencing of the HBV episome through degradation of HBx protein: Towards functional cure? J Hepatol 2021; 74:497-499. [PMID: 33187693 DOI: 10.1016/j.jhep.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Julie Lucifora
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France.
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques, UMR_S1110, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France; Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
39
|
Park JE, Park JS, Leem YH, Kim DY, Kim HS. NQO1 mediates the anti-inflammatory effects of nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK signaling pathway. Free Radic Biol Med 2021; 164:354-368. [PMID: 33460769 DOI: 10.1016/j.freeradbiomed.2021.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023]
Abstract
Neuroinflammation and oxidative stress play key roles in the progression of neurodegenerative diseases. Thus, the use of potent anti-inflammatory/antioxidant agents has been suggested as a promising therapeutic strategy for neurodegenerative diseases. In the present study, we investigated the anti-inflammatory and antioxidant effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in in vitro and in vivo models of neuroinflammation. In lipopolysaccharide (LPS)-stimulated BV2 microglial cells, NKT inhibited the expression of iNOS, COX-2, and pro-inflammatory cytokines, and increased the expression of the anti-inflammatory cytokine, IL-10. In addition, NKT inhibited reactive oxygen species (ROS) production and upregulated the expression of antioxidant enzymes, such as NQO1 and HO-1. Molecular mechanistic studies showed that NKT inhibited Akt, p38 MAPK, and NF-κB activities, while increasing AMPK, PKA/CREB, and Nrf2/ARE signaling in LPS-stimulated BV2 cells. Since NKT dramatically increased NQO1 expression, we investigated the role of this enzyme using pharmacological inhibition or knockdown experiments. Treatment of BV2 cells with the NQO1-specific inhibitor, dicoumarol, or with NQO1 siRNA significantly blocked NKT-mediated inhibition of NO, ROS, TNF-α, IL-1β, and upregulation of IL-10. Furthermore, NQO1 inhibition reversed the effects of NKT on pro- and anti-inflammatory signaling molecules. Intriguingly, we found that the AMPK inhibitor, compound C, mimicked the effects of dicoumarol, suggesting the presence of a crosstalk between NQO1 and AMPK. Finally, we demonstrated that NKT inhibited microglial activation, lipid peroxidation, and the expression of pro-inflammatory markers in the brains of LPS-injected mice, which was also reversed by dicoumarol. These data collectively suggest that NQO1 plays a critical role in mediating the anti-inflammatory and antioxidant effects of NKT in LPS-induced neuroinflammation by modulating AMPK and its downstream signaling pathways.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Sun Park
- Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and the Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
40
|
Ryu YK, Park HY, Go J, Lee IB, Choi YK, Lee CH, Kim KS. β‑Lapachone ameliorates L‑DOPA‑induced dyskinesia in a 6‑OHDA‑induced mouse model of Parkinson's disease. Mol Med Rep 2021; 23:217. [PMID: 33495840 PMCID: PMC7845622 DOI: 10.3892/mmr.2021.11856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
The dopamine precursor 3,4-dihydroxyphenyl- l-alanine (L-DOPA) is the most widely used symptomatic treatment for Parkinson's disease (PD); however, its prolonged use is associated with L-DOPA-induced dyskinesia in more than half of patients after 10 years of treatment. The present study investigated whether co-treatment with β-Lapachone, a natural compound, and L-DOPA has protective effects in a 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. Unilateral 6-OHDA-lesioned mice were treated with vehicle or β-Lapachone (10 mg/kg/day) and L-DOPA for 11 days. Abnormal involuntary movements (AIMs) were scored on days 5 and 10. β-Lapachone (10 mg/kg) co-treatment with L-DOPA decreased the AIMs score on both days 5 and 10. β-Lapachone was demonstrated to have a beneficial effect on the axial and limb AIMs scores on day 10. There was no significant suppression in dopamine D1 receptor-related and ERK1/2 signaling in the DA-denervated striatum by β-Lapachone-cotreatment with L-DOPA. Notably, β-Lapachone-cotreatment with L-DOPA increased phosphorylation at the Ser9 site of glycogen synthase kinase 3β (GSK-3β), indicating suppression of GSK-3β activity in both the unlesioned and 6-OHDA-lesioned striata. In addition, astrocyte activation was markedly suppressed by β-Lapachone-cotreatment with L-DOPA in the striatum and substantia nigra of the unilateral 6-OHDA model. These findings suggest that β-Lapachone cotreatment with L-DOPA therapy may have therapeutic potential for the suppression or management of the development of L-DOPA-induced dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
41
|
Yang YP, Qi FJ, Qian YP, Bao XZ, Zhang HC, Ma B, Dai F, Zhang SX, Zhou B. Developing Push–Pull Hydroxylphenylpolyenylpyridinium Chromophores as Ratiometric Two-Photon Fluorescent Probes for Cellular and Intravital Imaging of Mitochondrial NQO1. Anal Chem 2021; 93:2385-2393. [DOI: 10.1021/acs.analchem.0c04279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong-Peng Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fu-Jian Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yi-Ping Qian
- School of Chemical Science and Technology, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xia-Zhen Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Han-Chen Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bin Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sheng-Xiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
42
|
Liu D, Xu G, Bai C, Gu Y, Wang D, Li B. Differential effects of arsenic species on Nrf2 and Bach1 nuclear localization in cultured hepatocytes. Toxicol Appl Pharmacol 2021; 413:115404. [PMID: 33434570 DOI: 10.1016/j.taap.2021.115404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Arsenic is a ubiquitous metalloid element present in both inorganic and organic forms in the environment. The liver is considered to be a primary organ of arsenic biotransformation and methylation, as well as the main target of arsenic toxicity. Studies have confirmed that Chang human hepatocytes have an efficient arsenic methylating capacity. Our previous studies have proven that arsenite activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in hepatocytes. This study aimed to explore the activation of the Nrf2 pathway upon treatment of arsenic in various forms, including inorganic and organic arsenic. Our results showed that inorganic arsenic-both As2O3 and Na2HAsO4 significantly induced the expression of Nrf2 protein and mRNA, enhanced the transcription activity of Nrf2, and induced the expression of downstream target genes. These results confirmed the inorganic arsenic-induced Nrf2 pathway activation in hepatocytes. Although all arsenic chemicals used in the study induced Nrf2 protein accumulation, the organic arsenic C2H7AsO2 did not affect the expression of Nrf2 downstream genes which were elevated by inorganic arsenic exposures. Through qRT-PCR and Nrf2 luciferase reporter assays, we further confirmed that C2H7AsO2 neither increased Nrf2 mRNA level nor activated the Nrf2 transcription activity. Mechanistically, our results confirmed inorganic arsenic-induced both the nuclear import of Nrf2 and export of Bach1 (BTB and CNC homology 1), which is an Nrf2 transcriptional repressor, while organic arsenic only induced Nrf2 translocation. The unique pattern of Nrf2 regulation by organic arsenic underlines the critical role of Nrf2 and Bach1 in the arsenic toxicology.
Collapse
Affiliation(s)
- Dan Liu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Guowei Xu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Caijun Bai
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuqin Gu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Da Wang
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
43
|
Wang BY, Wang JY, Chang WW, Chu CC. A dendrimer-functionalized turn-on fluorescence probe based on enzyme-activated debonding feature of azobenzene linkage. NEW J CHEM 2021. [DOI: 10.1039/d1nj03943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoxic feature of tumors has led to researchers developing hypoxia-activated prodrugs and probes that leverage oxidoreductases overexpressed in tumor tissues.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua City 50006, Taiwan
- School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- College of Medicine, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Jia-Yi Wang
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Science, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
44
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Misevičienė L, Marozienė A, Jonušienė V, Lesanavičius M, Čėnas N. Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1). Int J Mol Sci 2020; 21:ijms21228754. [PMID: 33228195 PMCID: PMC7699506 DOI: 10.3390/ijms21228754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Jonas Šarlauskas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Violeta Jonušienė
- Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Mindaugas Lesanavičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
45
|
Pacheco-García JL, Cano-Muñoz M, Sánchez-Ramos I, Salido E, Pey AL. Naturally-Occurring Rare Mutations Cause Mild to Catastrophic Effects in the Multifunctional and Cancer-Associated NQO1 Protein. J Pers Med 2020; 10:E207. [PMID: 33153185 PMCID: PMC7711955 DOI: 10.3390/jpm10040207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The functional and pathological implications of the enormous genetic diversity of the human genome are mostly unknown, primarily due to our unability to predict pathogenicity in a high-throughput manner. In this work, we characterized the phenotypic consequences of eight naturally-occurring missense variants on the multifunctional and disease-associated NQO1 protein using biophysical and structural analyses on several protein traits. Mutations found in both exome-sequencing initiatives and in cancer cell lines cause mild to catastrophic effects on NQO1 stability and function. Importantly, some mutations perturb functional features located structurally far from the mutated site. These effects are well rationalized by considering the nature of the mutation, its location in protein structure and the local stability of its environment. Using a set of 22 experimentally characterized mutations in NQO1, we generated experimental scores for pathogenicity that correlate reasonably well with bioinformatic scores derived from a set of commonly used algorithms, although the latter fail to semiquantitatively predict the phenotypic alterations caused by a significant fraction of mutations individually. These results provide insight into the propagation of mutational effects on multifunctional proteins, the implementation of in silico approaches for establishing genotype-phenotype correlations and the molecular determinants underlying loss-of-function in genetic diseases.
Collapse
Affiliation(s)
- Juan Luis Pacheco-García
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Mario Cano-Muñoz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Isabel Sánchez-Ramos
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.P.-G.); (M.C.-M.); (I.S.-R.)
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, 38320 Tenerife, Spain;
| | - Angel L. Pey
- Departamento de Química Física y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
46
|
Clausen L, Stein A, Grønbæk-Thygesen M, Nygaard L, Søltoft CL, Nielsen SV, Lisby M, Ravid T, Lindorff-Larsen K, Hartmann-Petersen R. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 2020; 16:e1009187. [PMID: 33137092 PMCID: PMC7660926 DOI: 10.1371/journal.pgen.1009187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/12/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Nygaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie L. Søltoft
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V. Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Cveticanin J, Mondal T, Meiering EM, Sharon M, Horovitz A. Insight into the Autosomal-Dominant Inheritance Pattern of SOD1-Associated ALS from Native Mass Spectrometry. J Mol Biol 2020; 432:5995-6002. [PMID: 33058881 DOI: 10.1016/j.jmb.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023]
Abstract
About 20% of all familial amyotrophic lateral sclerosis (ALS) cases are associated with mutations in superoxide dismutase (SOD1), a homodimeric protein. The disease has an autosomal-dominant inheritance pattern. It is, therefore, important to determine whether wild-type and mutant SOD1 subunits self-associate randomly or preferentially. A measure for the extent of bias in subunit association is the coupling constant determined in a double-mutant cycle type analysis. Here, cell lysates containing co-expressed wild-type and mutant SOD1 subunits were analyzed by native mass spectrometry to determine these coupling constants. Strikingly, we find a linear positive correlation between the coupling constant and the reported average duration of the disease. Our results indicate that inter-subunit communication and a preference for heterodimerization greatly increase the disease severity.
Collapse
Affiliation(s)
- Jelena Cveticanin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
48
|
Han J, Cheng L, Zhu Y, Xu X, Ge C. Covalent-Assembly Based Fluorescent Probes for Detection of hNQO1 and Imaging in Living Cells. Front Chem 2020; 8:756. [PMID: 33005608 PMCID: PMC7479225 DOI: 10.3389/fchem.2020.00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Human NAD(P)H: quinone oxidoreductase (hNQO1) is an important biomarker for human malignant tumors. Detection of NQO1 accurately is of great significance to improve the early diagnosis of cancer and prognosis of cancer patients. In this study, based on the covalent assembly strategy, hNQO1-activated fluorescent probes 1 and 2 are constructed by introducing coumarin precursor 2-cyano-3-(4-(diethylamino)-2-hydroxyphenyl) acrylic acid and self-immolative linkers. Under reaction with hNQO1 and NADH, turn-on fluorescence appears due to in-situ formation of the organic fluorescent compound 7-diethylamino-3-cyanocoumarin, and fluorescent intensity changes significantly. Probe 1 and 2 for detection of hNQO1 are not interfered by other substances and have low toxicity in cells. In addition to quantitative detection of hNQO1 in vitro, they have also been successfully applied to fluorescent imaging in living cells.
Collapse
Affiliation(s)
| | - Longhao Cheng
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaowei Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chaoliang Ge
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020; 9:E772. [PMID: 32825392 PMCID: PMC7554937 DOI: 10.3390/antiox9090772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Human NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders, a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis at the two active sites. Our work will improve our understanding of the effects of cancer-associated single amino acid variants and post-translational modifications in this protein of high relevance in cancer progression and treatment.
Collapse
Affiliation(s)
- Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
50
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|