1
|
Spišská V, Kubištová A, Novotný J, Bendová Z. Impact of Prenatal LPS and Early-life Constant Light Exposure on Circadian Gene Expression Profiles in Various Rat Tissues. Neuroscience 2024; 551:17-30. [PMID: 38777136 DOI: 10.1016/j.neuroscience.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
Collapse
Affiliation(s)
- Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
2
|
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov 2024; 10:199. [PMID: 38678017 PMCID: PMC11055927 DOI: 10.1038/s41420-024-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Circadian rhythms are present in almost all cells and play a crucial role in regulating various biological processes. Maintaining a stable circadian rhythm is essential for overall health. Disruption of this rhythm can alter the expression of clock genes and cancer-related genes, and affect many metabolic pathways and factors, thereby affecting the function of the immune system and contributing to the occurrence and progression of tumors. This paper aims to elucidate the regulatory effects of BMAL1, clock and other clock genes on immune cells, and reveal the molecular mechanism of circadian rhythm's involvement in tumor and its microenvironment regulation. A deeper understanding of circadian rhythms has the potential to provide new strategies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Yuen Zeng
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Zichan Guo
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Mengqi Wu
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China
| | - Fulin Chen
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medical Sciences, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Wood EK, Reid BM, Sheerar DS, Donzella B, Gunnar MR, Coe CL. Lingering Effects of Early Institutional Rearing and Cytomegalovirus Infection on the Natural Killer Cell Repertoire of Adopted Adolescents. Biomolecules 2024; 14:456. [PMID: 38672472 PMCID: PMC11047877 DOI: 10.3390/biom14040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Adversity during infancy can affect neurobehavioral development and perturb the maturation of physiological systems. Dysregulated immune and inflammatory responses contribute to many of the later effects on health. Whether normalization can occur following a transition to more nurturing, benevolent conditions is unclear. To assess the potential for recovery, blood samples were obtained from 45 adolescents adopted by supportive families after impoverished infancies in institutional settings (post-institutionalized, PI). Their immune profiles were compared to 39 age-matched controls raised by their biological parents (non-adopted, NA). Leukocytes were immunophenotyped, and this analysis focuses on natural killer (NK) cell populations in circulation. Cytomegalovirus (CMV) seropositivity was evaluated to determine if early infection contributed to the impact of an atypical rearing. Associations with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), two cytokines released by activated NK cells, were examined. Compared to the NA controls, PI adolescents had a lower percent of CD56bright NK cells in circulation, higher TNF-α levels, and were more likely to be infected with CMV. PI adolescents who were latent carriers of CMV expressed NKG2C and CD57 surface markers on more NK cells, including CD56dim lineages. The NK cell repertoire revealed lingering immune effects of early rearing while still maintaining an overall integrity and resilience.
Collapse
Affiliation(s)
- Elizabeth K. Wood
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brie M. Reid
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02906, USA;
| | - Dagna S. Sheerar
- Wisconsin Institute of Medical Research, University of Wisconsin Comprehensive Carbone Cancer Center, Madison, WI 53706, USA;
| | - Bonny Donzella
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA; (B.D.); (M.R.G.)
| | - Megan R. Gunnar
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA; (B.D.); (M.R.G.)
| | - Christopher L. Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 54706, USA;
| |
Collapse
|
4
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Yu C, Huang Z, Xu Y, Zhang B, Li Y. Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis. Sci Rep 2023; 13:5253. [PMID: 37002260 PMCID: PMC10066325 DOI: 10.1038/s41598-023-32277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Roberts NT, MacDonald CR, Mohammadpour H, Antoch MP, Repasky EA. Circadian Rhythm Disruption Increases Tumor Growth Rate and Accumulation of Myeloid-Derived Suppressor Cells. Adv Biol (Weinh) 2022; 6:e2200031. [PMID: 35652494 PMCID: PMC9474681 DOI: 10.1002/adbi.202200031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Circadian rhythm disruption is implicated in the initiation and progression of many diseases, including cancer. External stimuli, such as sunlight, serve to synchronize physiological processes and cellular functions to a 24-h cycle. The immune system is controlled by circadian rhythms, and perturbation of these rhythms can potentially alter the immune response to infections and tumors. The effect of circadian rhythm disruption on the immune response to tumors remains unclear. Specifically, the effects of circadian disruption (CD) on immunosuppressive cell types within the tumor, such as myeloid-derived suppressor cells (MDSCs), are unknown. In this study, a shifting lighting schedule is used to disrupt the circadian rhythm of mice. After acclimation to lighting schedules, mice are inoculated with 4T1 or B16-F10 tumors. Tumor growth is increased in mice housed under circadian disrupting lighting conditions compared to standard lighting conditions. Analysis of immune populations within the spleen and tumor shows an increased accumulation of MDSCs within these tissues, suggesting that MDSC mediated immunosuppression plays a role in the enhanced tumor growth caused by circadian disruption. This paves the way for future studies of the effects of CD on immunosuppression in cancer.
Collapse
Affiliation(s)
- Nathan T. Roberts
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Cameron R. MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Marina P. Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Palomino-Segura M, Hidalgo A. Circadian immune circuits. J Exp Med 2021; 218:211639. [PMID: 33372990 PMCID: PMC7774593 DOI: 10.1084/jem.20200798] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
Immune responses are gated to protect the host against specific antigens and microbes, a task that is achieved through antigen- and pattern-specific receptors. Less appreciated is that in order to optimize responses and to avoid collateral damage to the host, immune responses must be additionally gated in intensity and time. An evolutionary solution to this challenge is provided by the circadian clock, an ancient time-keeping mechanism that anticipates environmental changes and represents a fundamental property of immunity. Immune responses, however, are not exclusive to immune cells and demand the coordinated action of nonhematopoietic cells interspersed within the architecture of tissues. Here, we review the circadian features of innate immunity as they encompass effector immune cells as well as structural cells that orchestrate their responses in space and time. We finally propose models in which the central clock, structural elements, and immune cells establish multidirectional circadian circuits that may shape the efficacy and strength of immune responses and other physiological processes.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
10
|
Lopes-Júnior LC, Veronez LC. Circadian rhythms disruption in cancer. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1951470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luís Carlos Lopes-Júnior
- Postgraduate Program in Nutrition and Health in Sciences. Health Sciences Center at the Universidade Federal Do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Luciana Chain Veronez
- BSc in Biology., Ph.D. In Immunology. Post-doctoral Fellow at the Department of Childcare and Pediatrics at the Ribeirão PretoMedical School at the University of São Paulo (USP). (FMRP-USP)., Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Jacquelot N, Belz GT, Seillet C. Neuroimmune Interactions and Rhythmic Regulation of Innate Lymphoid Cells. Front Neurosci 2021; 15:657081. [PMID: 33994930 PMCID: PMC8116950 DOI: 10.3389/fnins.2021.657081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
The Earth’s rotation around its axis, is one of the parameters that never changed since life emerged. Therefore, most of the organisms from the cyanobacteria to humans have conserved natural oscillations to regulate their physiology. These daily oscillations define the circadian rhythms that set the biological clock for almost all physiological processes of an organism. They allow the organisms to anticipate and respond behaviorally and physiologically to changes imposed by the day/night cycle. As other physiological systems, the immune system is also regulated by circadian rhythms and while diurnal variation in host immune responses to lethal infection have been observed for many decades, the underlying mechanisms that affect immune function and health have only just started to emerge. These oscillations are generated by the central clock in our brain, but neuroendocrine signals allow the synchronization of the clocks in peripheral tissues. In this review, we discuss how the neuroimmune interactions create a rhythmic activity of the innate lymphoid cells. We highlight how the disruption of these rhythmic regulations of immune cells can disturb homeostasis and lead to the development of chronic inflammation in murine models.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
13
|
Sensing of physiological regulators by innate lymphoid cells. Cell Mol Immunol 2019; 16:442-451. [PMID: 30842626 DOI: 10.1038/s41423-019-0217-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Maintenance of homeostasis and immune protection rely on the coordinated action of different physiological systems. Bidirectional communication between the immune system and physiological systems is required to sense and restore any disruption of equilibrium. Recent transcriptomic analyses of innate lymphoid cells (ILCs) from different tissues have revealed that ILCs express a large array of receptors involved in the recognition of neuropeptides, hormones and metabolic signals. ILCs rapidly secrete effector cytokines that are central in the development and activation of early immune responses, but they also constitutively secrete mediators that are important for tissue homeostasis. To achieve these functions effectively, ILCs integrate intrinsic and extrinsic signals that modulate their constitutive and induced activity. Disruption of the regulation of ILCs by physiological regulators leads to altered immune responses with harmful consequences for the organism. An understanding of these complex interactions between the immune system and physiological mediators is crucial to decipher the events leading to the protective versus pathological effects of these cells.
Collapse
|
14
|
Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev 2018; 286:120-136. [PMID: 30294960 PMCID: PMC6221181 DOI: 10.1111/imr.12707] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
The activities of the immune system in repairing tissue injury and combating pathogens were long thought to be independent of the nervous system. However, a major regulatory role of immunomodulatory molecules released locally or systemically by the neuroendocrine system has recently emerged. A number of observations and discoveries support indeed the notion of the nervous system as an immunoregulatory system involved in immune responses. Innate lymphoid cells (ILCs), including natural killer (NK) cells and tissue-resident ILCs, form a family of effector cells present in organs and mucosal barriers. ILCs are involved in the maintenance of tissue integrity and homeostasis. They can also secrete effector cytokines rapidly, and this ability enables them to play early roles in the immune response. ILCs are activated by multiple pathways including epithelial and myeloid cell-derived cytokines. Their functions are also regulated by mediators produced by the nervous system. In particular, the peripheral nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal and gonadal axis to modulate inflammatory events and maintain homeostasis. We summarize here recent findings concerning the regulation of ILC activities by neuroendocrine mediators in homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Linda Quatrini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Eric Vivier
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
- ImmunologyMarseille ImmunopoleHôpital de la TimoneAssistance Publique des Hôpitaux de MarseilleMarseilleFrance
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
| | - Sophie Ugolini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| |
Collapse
|
15
|
Arias JL, Mayordomo AC, Silva JE, Ragusa JAV, Rabinovich GA, Anzulovich AC, Di Genaro MS. Peripheral Neuroimmunoendocrine Interactions: Contribution of TNFRp55 to the Circadian Synchronization of Progesterone and Cytokine Production in Joints of Mice in Late Pregnancy. Neuroimmunomodulation 2018; 25:153-162. [PMID: 30304732 DOI: 10.1159/000493143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Circadian rhythms are generated by the suprachiasmatic nucleus of the hypothalamus and involve rhythmic expression of clock genes and proteins. This rhythmicity is transferred to peripheral tissues by neural and hormonal signals. Late pregnancy is considered a state of inflammation which impacts on peripheral tissues such as joints. Tumor necrosis factor (TNF) mediates inflammatory and circadian responses through its p55 receptor (TNFRp55). Neuroimmunoendocrine interactions in joints have not been studied completely. The purpose of this study was to analyze these interactions, investigating the circadian rhythms of progesterone (Pg) and pro- and anti-inflammatory cytokines in the joints at the end of pregnancy (gestational day 18). Moreover, the impact of TNFRp55 deficiency on these temporal oscillations was explored. METHODS Wild-type and TNFRp55-deficient (KO) C57BL/6 mice were kept under constant darkness in order to study their endogenous circadian rhythms. The expression of the clock genes Bmal1 and Per1 at circadian time 7 was studied by reverse transcription polymerase chain reaction in the ankle joints of nonpregnant and pregnant (gestational day 18) mice. In late pregnancy, Pg and the cytokines interleukin 17 (IL-17), IL-6, and IL-10 were measured in the joints throughout a 24-h period by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. RESULTS A significant increase in Bmal1 and Per1 mRNA expression was detected in the joints of pregnant KO mice. Furthermore, KO mice displayed a desynchronization of articular Pg and cytokine production. CONCLUSIONS Our results show that TNF, via TNFRp55 signaling, modulates articular Pg and cytokine circadian rhythms in late pregnancy. These findings suggest a temporal neuroimmunoendocrine association in peripheral tissues in late pregnancy.
Collapse
Affiliation(s)
- José L Arias
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea C Mayordomo
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Juan E Silva
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Juan A V Ragusa
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET), San Luis, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana C Anzulovich
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET), San Luis, Argentina
| | - María S Di Genaro
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis,
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis,
| |
Collapse
|
16
|
Abstract
Brain ischemia induces profound systemic immunosuppression, leading to infectious complications. In this issue of Immunity, Liu et al. (2017) demonstrate that distinct neuroendocrine pathways differentially inhibit natural killer (NK) cell responses in the central nervous system and the periphery after cerebral infarction.
Collapse
|
17
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Dubový P, Klusáková I, Kučera L, Osičková J, Chovancová J, Loja T, Mayer J, Doubek M, Joukal M. Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition. Auton Neurosci 2017; 206:19-27. [PMID: 28688831 DOI: 10.1016/j.autneu.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023]
Abstract
Existing experimental studies of the effect of sympathetic nerve fibers on bone marrow cells are based on the systemic administration of neurotoxic 6-hydroxydopamine. The method of global chemical sympathectomy has some serious disadvantages and could lead to questionable results. We describe a new method of local chemical sympathectomy of rat femoral bone marrow using guanethidine (Ismelin) delivery using an osmotic mini pump. Local guanethidine treatment for 14days led to complete elimination of sympathetic fibers in femoral bone marrow in contrast to bone marrow of contralateral or naïve femurs. Ablation of sympathetic fibers was associated with a loss of rat endothelial cell marker (RECA) indicating immunophenotype changes in blood vessel endothelial cells, but no significant effect of guanethidine was found on the survival of endothelial cells and mesenchymal stem cells in vitro. Moreover, local guanethidine treatment also elicited a significant reduction of Nestin+/SDF1+ mesenchymal stem cells and c-Kit+/CD90+ hematopoietic stem cells in femoral bone marrow. Tissue-specific chemical sympathectomy of rat bone marrow by guanethidine overcomes some of the drawbacks of systemic administration of neurotoxic compounds like 6-hydroxydopamine and delivers unequivocal evidence on the effects of sympathetic innervation on the cell content of bone marrow.
Collapse
Affiliation(s)
- P Dubový
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic.
| | - I Klusáková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic
| | - L Kučera
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Czech Republic
| | - J Osičková
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - J Chovancová
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - T Loja
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - J Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - M Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital, Brno, Czech Republic
| | - M Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Czech Republic
| |
Collapse
|
19
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Relevance of Immune-Sympathetic Nervous System Interplay for the Development of Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 884:37-43. [PMID: 26453069 DOI: 10.1007/5584_2015_169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Historically, the sympathetic nervous system (SNS) has been mostly associated with the 'fight or flight' response and the regulation of cardiovascular function. However, evidence over the past 30 years suggests that SNS may also influence the function of immune cells. In this review we describe the basic research being done in the area of SNS regulation of immune function. Further, we show that the SNS-immune interplay during circadian rhythm may modulate the robustness of the inflammatory response, critical for survival during periods of increased activity. Finally, new concepts of a close relationship between these systems in the pathogenesis of hypertension are discussed.
Collapse
|
21
|
Abstract
The immune system is a complex set of physiological mechanisms whose general aim is to defend the organism against non-self-bodies, such as pathogens (bacteria, viruses, parasites), as well as cancer cells. Circadian rhythms are endogenous 24-h variations found in virtually all physiological processes. These circadian rhythms are generated by circadian clocks, located in most cell types, including cells of the immune system. This review presents an overview of the clocks in the immune system and of the circadian regulation of the function of immune cells. Most immune cells express circadian clock genes and present a wide array of genes expressed with a 24-h rhythm. This has profound impacts on cellular functions, including a daily rhythm in the synthesis and release of cytokines, chemokines and cytolytic factors, the daily gating of the response occurring through pattern recognition receptors, circadian rhythms of cellular functions such as phagocytosis, migration to inflamed or infected tissue, cytolytic activity, and proliferative response to antigens. Consequently, alterations of circadian rhythms (e.g., clock gene mutation in mice or environmental disruption similar to shift work) lead to disturbed immune responses. We discuss the implications of these data for human health and the areas that future research should aim to address.
Collapse
Affiliation(s)
- Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Quebec, Canada, and Departments of Medicine, and Microbiology, Infectiology and Immunology, University of Montreal, Montréal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Departments of Psychiatry, Microbiology & Immunology, Neurology & Neurosurgery, Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 2015; 45:171-9. [PMID: 25433170 PMCID: PMC4386638 DOI: 10.1016/j.bbi.2014.11.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/04/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022] Open
Abstract
The circadian system regulates many physiological functions including inflammatory responses. For example, mortality caused by lipopolysaccharide (LPS) injection varies depending on the time of immunostimulation in mammals. The effects of more subtle challenges on the immune system and cellular mechanisms underlying circadian differences in neuroinflammatory responses are not well understood. Here we show that adult male Sprague-Dawley rats injected with a sub-septic dose of LPS during the light phase displayed elevated sickness behaviors and hippocampal cytokine production compared to rats injected during the dark phase. Microglia are the primary central nervous system (CNS) immune cell type and may mediate diurnal differences in sickness response, thus we explored whether microglia demonstrate temporal variations in inflammatory factors. Hippocampal microglia isolated from adult rats rhythmically expressed inflammatory factors and circadian clock genes. Microglia displayed robust rhythms of TNFα, IL1β and IL6 mRNA, with peak cytokine gene expression occurring during the middle of the light phase. Microglia isolated during the light phase were also more reactive to immune stimulation; such that, ex vivo LPS treatment induced an exaggerated cytokine response in light phase-isolated microglia. Treating microglia with corticosterone ex vivo induced expression of the circadian clock gene Per1. However, microglia isolated from adrenalectomized rats maintained temporal differences in clock and inflammatory gene expression. This suggests circadian clock gene expression in microglia is entrained by, but oscillates in the absence of, glucocorticoids. Taken together, these findings demonstrate that microglia possess a circadian clock that influences inflammatory responses. These results indicate time-of-day is an important factor to consider when planning inflammatory interventions such as surgeries or immunotherapies.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Meagan M Kitt
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Ruth M Barrientos
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
23
|
Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide. J Neuroimmunol 2014; 273:22-30. [DOI: 10.1016/j.jneuroim.2014.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
|
24
|
The effect of the sympathetic nervous system on splenic natural killer cell activity in mice administered the Lactobacillus pentosus strain S-PT84. Neuroreport 2014; 24:988-91. [PMID: 24165047 PMCID: PMC4047316 DOI: 10.1097/wnr.0000000000000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Splenic sympathetic nerve activity (SNA) modulates cellular immune functions such as splenic natural killer cell activity. Lactobacillus pentosus strain S-PT84 enhances splenic natural killer cell activity. Here, we examined whether S-PT84 affects splenic natural killer activity through splenic SNA in BALB/c mice. Splenic SNA was significantly decreased following the administration of S-PT84. This phenomenon was inhibited by pretreatment with thioperamide (histamine H3 receptor antagonist), suggesting that S-PT84 directly affected splenic SNA. Thioperamide also inhibited the increase in splenic natural killer activity by S-PT84. Thus, the change in splenic natural killer activity by S-PT84 may be partially modulated through SNA.
Collapse
|
25
|
Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LAJ. Circadian clock proteins and immunity. Immunity 2014; 40:178-86. [PMID: 24560196 DOI: 10.1016/j.immuni.2014.02.002] [Citation(s) in RCA: 406] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 12/01/2022]
Abstract
Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Anne M Curtis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Marina M Bellet
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
26
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
27
|
De Cata A, D'Agruma L, Tarquini R, Mazzoccoli G. Rheumatoid arthritis and the biological clock. Expert Rev Clin Immunol 2014; 10:687-95. [PMID: 24684672 DOI: 10.1586/1744666x.2014.899904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown cause and a chronic and progressive inflammatory disorder ensuing in genetically predisposed subjects, characterized by synovitis causing joint destruction, as well as inflammation in body organ systems, leading to anatomical alteration and functional disability. Immune competent cells, deregulated synoviocytes and cytokines play a key role in the pathophysiological mechanisms. The immune system function shows time-related variations related to the influence of the neuroendocrine system and driven by the circadian clock circuitry. Immune processes and symptom intensity in RA are characterized by oscillations during the day following a pattern of circadian rhythmicity. A cross-talk between inflammatory and circadian pathways is involved in RA pathogenesis and underlies the mutual actions of disruption of the circadian clock circuitry on immune system function as well as of inflammation on the function of the biological clock. Modulation of molecular processes and humoral factors mediating in RA the interplay between the biological clock and the immune response and underlying the rhythmic fluctuations of pathogenic processes and symptomatology could represent a promising therapeutic strategy in the future.
Collapse
Affiliation(s)
- Angelo De Cata
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | |
Collapse
|
28
|
Vinciguerra M, Mazzoccoli G, Piccoli C, Tataranni T, Andriulli A, Pazienza V. Exploitation of host clock gene machinery by hepatitis viruses B and C. World J Gastroenterol 2013; 19:8902-8909. [PMID: 24379614 PMCID: PMC3870542 DOI: 10.3748/wjg.v19.i47.8902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/30/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Many aspects of cellular physiology display circadian (approximately 24-h) rhythms. Dysfunction of the circadian clock molecular circuitry is associated with human health derangements, including neurodegeneration, increased risk of cancer, cardiovascular diseases and the metabolic syndrome. Viruses triggering hepatitis depend tightly on the host cell synthesis machinery for their own replication, survival and spreading. Recent evidences support a link between the circadian clock circuitry and viruses’ biological cycle within host cells. Currently, in vitro models for chronobiological studies of cells infected with viruses need to be implemented. The establishment of such in vitro models would be helpful to better understand the link between the clock gene machinery and viral replication/viral persistence in order to develop specifically targeted therapeutic regimens. Here we review the recent literature dealing with the interplay between hepatitis B and C viruses and clock genes.
Collapse
|
29
|
Poli A, Kmiecik J, Domingues O, Hentges F, Bléry M, Chekenya M, Boucraut J, Zimmer J. NK cells in central nervous system disorders. THE JOURNAL OF IMMUNOLOGY 2013; 190:5355-62. [PMID: 23687193 DOI: 10.4049/jimmunol.1203401] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are important players in immunity against pathogens and neoplasms. As a component of the innate immune system, they are one of the first effectors on sites of inflammation. Through their cytokine production capacities, NK cells participate in the development of a potent adaptive immune response. Furthermore, NK cells were found to have regulatory functions to limit and prevent autoimmunity via killing of autologous immune cells. These paradoxical functions of NK cells are reflected in CNS disorders. In this review, we discuss the phenotypes and functional features of peripheral and brain NK cells in brain tumors and infections, neurodegenerative diseases, acute vascular and traumatic damage, as well as mental disorders. We also discuss the implication of NK cells in neurotoxicity and neuroprotection following CNS pathology, as well as the crosstalk between NK cells and brain-resident immune cells.
Collapse
Affiliation(s)
- Aurélie Poli
- Laboratory of Immunogenetics and Allergology, Public Research Center for Health, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Logan RW, Wynne O, Levitt D, Price D, Sarkar DK. Altered circadian expression of cytokines and cytolytic factors in splenic natural killer cells of Per1(-/-) mutant mice. J Interferon Cytokine Res 2013; 33:108-14. [PMID: 23402528 PMCID: PMC3595954 DOI: 10.1089/jir.2012.0092] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 12/26/2022] Open
Abstract
Circadian systems regulate the immune system by various molecular and physiological pathways. Disruption to the circadian temporality of these pathways is associated with disease formation and progression. Circadian clock genes have been shown to regulate pathways involved in cellular proliferation, apoptosis, and DNA damage response, as aberrant rhythms in these genes are associated with various diseases. However, there is growing evidence that specific circadian genes differentially regulate functional pathways of immunocompetent cells. To extend our previous findings of the role of Period 2 in regulating splenocyte rhythms, we report that mice carrying a mutation in the Period 1 gene (Per1(-/-) mice), involved in the negative limb of the molecular clock, display significantly altered rhythms of cytokine (eg, interferon-γ) and cytolytic factors (eg, perforin and granzyme B) in splenic natural killer (NK) cells. Altered rhythms of NK cell immune factors were accompanied by changes in circadian expression of circadian clock genes, Bmal1 and Per2. In addition, Per1(-/-) circadian running-wheel activity rhythms remained rhythmic during constant darkness, although with a shortened free-running circadian period, suggesting primary involvement of peripheral molecular clocks. These findings indicate that the Per1 gene through NK cellular clocks modulates immune pathways.
Collapse
Affiliation(s)
- Ryan W Logan
- Endocrine Program, Department of Animal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Circadian rhythms, which have long been known to play crucial roles in physiology, are emerging as important regulators of specific immune functions. Circadian oscillations of immune mediators coincide with the activity of the immune system, possibly allowing the host to anticipate and handle microbial threats more efficiently. These oscillations may also help to promote tissue recovery and the clearance of potentially harmful cellular elements from the circulation. This Review summarizes the current knowledge of circadian rhythms in the immune system and provides an outlook on potential future implications.
Collapse
|
33
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Arjona A, Silver AC, Walker WE, Fikrig E. Immunity's fourth dimension: approaching the circadian-immune connection. Trends Immunol 2012; 33:607-12. [PMID: 23000010 PMCID: PMC3712756 DOI: 10.1016/j.it.2012.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
Abstract
The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro Arjona
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Thomson Reuters IP & Science, London, UK
| | - Adam C. Silver
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wendy E. Walker
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD
- To whom correspondence should be addressed: Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, P.O Box 208022, New Haven, Connecticut 06520-8022, USA. Phone: (203) 785-4140; Fax: (203) 785-3864;
| |
Collapse
|
35
|
Haas S, Straub RH. Disruption of rhythms of molecular clocks in primary synovial fibroblasts of patients with osteoarthritis and rheumatoid arthritis, role of IL-1β/TNF. Arthritis Res Ther 2012; 14:R122. [PMID: 22621205 PMCID: PMC3446503 DOI: 10.1186/ar3852] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/20/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022] Open
Abstract
Introduction Circadian rhythms play an important role in the body and in single cells. Rhythms of molecular clocks have not been investigated in synovial fibroblasts (SF) of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). The study was initiated to fill this gap and to study effects of interleukin (IL)-1β/tumor necrosis factor (TNF) on rhythmicity in synovial fibroblasts of RA and OA patients. Methods The presence of BMAL-1, CLOCK, Period 1 and Period 2 proteins in synovial tissue was investigated by immunofluorescence. The presence of mRNA of molecular clocks was studied during 72 h by qPCR. Characteristics of rhythms were studied with time series analysis. Results BMAL-1, CLOCK, Period 1 and Period 2 proteins were abundantly present in synovial tissue of OA, RA and controls. Receiving synovial tissue at different operation time points during the day (8:00 am to 4:00 pm) did not reveal a rhythm of BMAL-1 or Period 1 protein. In OASF and RASF, no typical rhythm curve of molecular clock mRNA was observed. Time series analysis identified a first peak between 2 and 18 hours after synchronization but a period was not detectable due to loss of rhythm. TNF inhibited mRNA of CLOCK, Period 1 and Period 2 in OASF, while IL-1β and TNF increased these factors in RASF. This was supported by dose-dependently increased levels in MH7A RA fibroblasts. In RASF, IL-1β and TNF shifted the first peak of BMAL-1 mRNA to later time points (8 h to 14 h). Conclusion Rhythmicity is not present in primary OASF and RASF, which is unexpected because fibroblasts usually demonstrate perfect rhythms during several days. This might lead to uncoupling of important cellular pathways.
Collapse
Affiliation(s)
- Stefanie Haas
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital, F, J, Strauss-Allee 11, Regensburg, 93053, Germany
| | | |
Collapse
|
36
|
Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2583-91. [PMID: 22308312 PMCID: PMC3294088 DOI: 10.4049/jimmunol.1102715] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prolonged subjection to unstable work or lighting schedules, particularly in rotating shift-workers, is associated with an increased risk of immune-related diseases, including several cancers. Consequences of chronic circadian disruption may also extend to the innate immune system to promote cancer growth, as NK cell function is modulated by circadian mechanisms and plays a key role in lysis of tumor cells. To determine if NK cell function is disrupted by a model of human shift-work and jet-lag, Fischer (344) rats were exposed to either a standard 12:12 light-dark cycle or a chronic shift-lag paradigm consisting of 10 repeated 6-h photic advances occurring every 2 d, followed by 5-7 d of constant darkness. This model resulted in considerable circadian disruption, as assessed by circadian running-wheel activity. NK cells were enriched from control and shifted animals, and gene, protein, and cytolytic activity assays were performed. Chronic shift-lag altered the circadian expression of clock genes, Per2 and Bmal1, and cytolytic factors, perforin and granzyme B, as well as the cytokine, IFN-γ. These alterations were correlated with suppressed circadian expression of NK cytolytic activity. Further, chronic shift-lag attenuated NK cell cytolytic activity under stimulated in vivo conditions, and promoted lung tumor growth following i.v. injection of MADB106 tumor cells. Together, these findings suggest chronic circadian disruption promotes tumor growth by altering the circadian rhythms of NK cell function.
Collapse
Affiliation(s)
- Ryan W. Logan
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Changqing Zhang
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Sengottuvelan Murugan
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Stephanie O’Connell
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Dale Levitt
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | | | - Dipak K. Sarkar
- Endocrine Program, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
37
|
Logan RW, Sarkar DK. Circadian nature of immune function. Mol Cell Endocrinol 2012; 349:82-90. [PMID: 21784128 DOI: 10.1016/j.mce.2011.06.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/16/2022]
Abstract
The primary physiological role of the circadian system is to synchronize and coordinate organ systems, particularly in response to dynamics in the environment. The immune system is under direct circadian control by systemic cues and molecular clocks within immune cells. The master circadian pacemaker called the suprachiasmatic nucleus (SCN) conveys timing information to the immune system through endocrine and autonomic pathways. These signals promote phase coherence of peripheral clocks in the immune system, and also govern daily variations in immune function. The coordination of immune response may compose an anticipatory state for optimal immune response. Interactions between circadian and immune systems are bidirectional, in that immune factors can modulate phasing of circadian clocks. Circadian disruption, such as environmental desynchronization and/or anomalous molecular clock functions, may lead to lack of system coordination, and particular vulnerabilities to infection and disease may develop.
Collapse
Affiliation(s)
- Ryan W Logan
- Endocrinology Program and Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
38
|
Jones HP. Immune cells listen to what stress is saying: neuroendocrine receptors orchestrate immune function. Methods Mol Biol 2012; 934:77-87. [PMID: 22933141 DOI: 10.1007/978-1-62703-071-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past three decades, the field of psychoneuroimmunology research has blossomed into a major field of study, gaining interests of researchers across all traditionally accepted disciplines of scientific research. This chapter provides an overview of our current understanding in defining neuroimmune interactions with a primary focus of discussing the neuroendocrine receptor activity by immune cells. This chapter highlights the necessity of neuroimmune responses as it relates to a better understanding of the pathophysiological mechanisms of health and disease.
Collapse
Affiliation(s)
- Harlan P Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
39
|
Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One 2011; 6:e29801. [PMID: 22216357 PMCID: PMC3247291 DOI: 10.1371/journal.pone.0029801] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.
Collapse
Affiliation(s)
- Thomas Bollinger
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yadav SK, Haldar C, Singh SS. Variation in melatonin receptors (Mel(1a) and Mel(1b)) and androgen receptor (AR) expression in the spleen of a seasonally breeding bird, Perdicula asiatica. J Reprod Immunol 2011; 92:54-61. [PMID: 21963392 DOI: 10.1016/j.jri.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/20/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
Abstract
Daily variation in the peripheral level of melatonin plays a major role in integrating reproduction and environmental information for seasonally breeding birds. However, the variation in immunity and reproduction has never been assessed in any avian species on a 24 h time scale. Therefore, to understand the relationship between immune function and reproductive phases in a seasonally breeding bird, Perdicula asiatica, the Indian jungle bush quail, we studied the daily variation of melatonin and testosterone levels along with expression of their receptors Mel(1a), Mel(1b), and androgen receptor in the spleen during the reproductively active phase. Immunocytochemistry for the melatonin receptors Mel(1a) and Mel(1b) presented a differential distribution pattern. Western blot of splenic protein suggested a daily rhythm of melatonin receptors, while acrophases for the two melatonin receptors Mel(1a) and Mel(1b) differed by 4 h, suggesting that the expression of the receptors may peak at different times, causing more of either Mel(1a) or Mel(1b) to be available at a particular time to mediate function. The circulatory melatonin level correlated with percentage stimulation ratio of splenocytes and plasma interleukin-2 level, but did not correlate with testosterone or androgen receptor, suggesting that melatonin could be a major hormone imparting a time-of-day effect on the modulation of immune function in a seasonally breeding bird during the reproductively active phase.
Collapse
Affiliation(s)
- S K Yadav
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|