1
|
Özdemir Ö, Kasımoğlu G, Bak A, Sütlüoğlu H, Savaşan S. Mast cell activation syndrome: An up-to-date review of literature. World J Clin Pediatr 2024; 13:92813. [PMID: 38948000 PMCID: PMC11212760 DOI: 10.5409/wjcp.v13.i2.92813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Mast cells are a subtype of white blood cells and are involved in the immune system. These cells contain many chemical substances called mediators, which are involved in the allergic response. The fact that mast cells play a role in many events that require urgent intervention, especially anaphylaxis, has led to a more detailed study of these cells. The diseases also caused by dysfunctions of mast cells have been examined in many circumstances. For instance, mast cell activation syndrome is known as an augmented number of cells due to decreased cell death, resulting in clinical symptoms affecting many systems. The main common symptoms include flushing, hypotension, urticaria, angioedema, headache, vomiting and diarrhea. Although the underlying mechanism is not yet clearly known, we aim to review the literature in a broad perspective and bring together the existing knowledge in the light of the literature due to the diversity of its involvement in the body and the fact that it is a little known syndrome.
Collapse
Affiliation(s)
- Öner Özdemir
- Department of Pediatric Allergy and Immunology, Sakarya University, Sakarya, Adapazarı 54100, Türkiye
| | - Gökçe Kasımoğlu
- Department of Pediatrics, Sakarya University, Sakarya, Adapazarı 54100, Türkiye
| | - Ayşegül Bak
- Department of Pediatrics, Sakarya University, Sakarya, Adapazarı 54100, Türkiye
| | - Hüseyin Sütlüoğlu
- Department of Pediatrics, Kocaeli City Hospital, Kocaeli 50123, Türkiye
| | - Süreyya Savaşan
- Department of Pediatrics, Children’s Hospital of Michigan, Hematology/Oncology, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, United States
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 12345, United States
| |
Collapse
|
2
|
von Bubnoff D, Koch D, Stocker H, Ludwig RJ, Wortmann F, von Bubnoff N. The Clinical Features of Hereditary Alpha-Tryptasemia. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:258-264. [PMID: 38260947 PMCID: PMC11381211 DOI: 10.3238/arztebl.m2023.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Hereditary alpha-tryptasemia (HAT) is a genetic predisposition of autosomal dominant inheritance that leads to a high normal (≥ 8-11.4 μg/L) or pathologically elevated (>11.4 μg/L) basal serum tryptase (BST) concentration. Its prevalence in the United Kingdom and France is reportedly 5%-6%; its prevalence in Germany is unknown. Symptomatic persons with HAT suffer from a complex constellation of symptoms. As described in this review, HAT is an important differential diagnosis in interdisciplinary practice. METHODS This review is based on publications about HAT retrieved by a selective search in PubMed, on relevant presentations at scientific meetings, and on our clinical experience. We also collected our own data on the prevalence and clinical manifestations of HAT. RESULTS According to the literature, HAT is very common among patients in medical centers with BST values of 8 μg/L or above (64-74%). HAT is most commonly associated with neuropsychiatric symptoms such as exhaustion (85%), depressive episodes (59%), sleep disturbances (69%), and memory impairment (59%-68%), followed by gastrointestinal symptoms such as irritable bowel (30%-60%), nausea (51%), and reflux (49%-77%). Typical mast cell-mediated symptoms, such as flushing (47%), itch (69%), urticaria (37%), and anaphylaxis (14%-28%), are reported as well. Less commonly reported are cardio vascular manifestations, such as hypotonia, dizziness, and tachycardia (34%), and joint hyper - mobility (28%). HAT is more common among patients with systemic mastocytosis (SM; 12%-21%). It is often associated with severe anaphylaxis induced by insect toxins or unknown triggers. The therapeutic options include treatment with antihistamines, mastcell stabilizers, or IgE antibodies. CONCLUSION A diagnosis of hereditary alphatryptasemia can be strongly suspected on the basis of thorough history-taking and BST measurement and then confirmed by molecular genetic testing.
Collapse
Affiliation(s)
- Dagmar von Bubnoff
- Department of Dermatology, Allergology, and Venereology, University Hospital Schleswig-Holstein, Campus Lübeck, European Competence Network Mastocytosis (ECNM) Excellence Center for Mast Cell Diseases; Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) and University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck
| | | | | | | | | | | |
Collapse
|
3
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
4
|
Cañas CA, Tobón GJ, Bonilla-Abadía F, Posso-Osorio I. Relapsing-Remitting Form of Arthropathy Occurs in Patients With Mast Cell Activation Syndrome. J Clin Rheumatol 2024; 30:32-35. [PMID: 37496120 DOI: 10.1097/rhu.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Affiliation(s)
| | - Gabriel J Tobón
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, IL
| | | | | |
Collapse
|
5
|
Weinstock LB, Nelson RM, Blitshteyn S. Neuropsychiatric Manifestations of Mast Cell Activation Syndrome and Response to Mast-Cell-Directed Treatment: A Case Series. J Pers Med 2023; 13:1562. [PMID: 38003876 PMCID: PMC10672129 DOI: 10.3390/jpm13111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Mast cell activation syndrome (MCAS) is an immune disease with an estimated prevalence of 17%. Mast cell chemical mediators lead to heterogeneous multisystemic inflammatory and allergic manifestations. This syndrome is associated with various neurologic and psychiatric disorders, including headache, dysautonomia, depression, generalized anxiety disorder, and many others. Although MCAS is common, it is rarely recognized, and thus, patients can suffer for decades. The syndrome is caused by aberrant mast cell reactivity due to the mutation of the controller gene. A case series is presented herein including eight patients with significant neuropsychiatric disorders that were often refractory to standard medical therapeutics. Five patients had depression, five had generalized anxiety disorder, and four had panic disorder. Other psychiatric disorders included attention-deficit hyperactivity disorder, obsessive compulsive disorder, phobias, and bipolar disorder. All eight patients were subsequently diagnosed with mast cell activation syndrome; six had comorbid autonomic disorders, the most common being postural orthostatic tachycardia syndrome; and four had hypermobile Ehlers-Danlos syndrome. All patients experienced significant improvements regarding neuropsychiatric and multisystemic symptoms after mast-cell-directed therapy. In neuropsychiatric patients who have systemic symptoms and syndromes, it is important to consider the presence of an underlying or comorbid MCAS.
Collapse
Affiliation(s)
- Leonard B. Weinstock
- Independent Researcher, Specialists in Gastroenterology, St. Louis, MO 63141, USA
| | - Renee M. Nelson
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (R.M.N.); (S.B.)
| | - Svetlana Blitshteyn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (R.M.N.); (S.B.)
- Dysautonomia Clinic, Williamsville, NY 14221, USA
| |
Collapse
|
6
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
7
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
8
|
Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab 2023; 34:321-344. [PMID: 37080828 PMCID: PMC10113134 DOI: 10.1016/j.tem.2023.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.
Collapse
Affiliation(s)
- Simone Turner
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - M Asad Khan
- North West Lung Centre, Manchester University Hospitals, Manchester, M23 9LT, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley Woodcock
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Manchester Academic Health Science Centre, CityLabs, Manchester, M13 9NQ, UK
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorvet, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
9
|
Häder T, Molderings GJ, Klawonn F, Conrad R, Mücke M, Sellin J. Cluster-Analytic Identification of Clinically Meaningful Subtypes in MCAS: The Relevance of Heat and Cold. Dig Dis Sci 2023:10.1007/s10620-023-07921-5. [PMID: 37029308 PMCID: PMC10352424 DOI: 10.1007/s10620-023-07921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Mast cell activation syndrome (MCAS) is a clinically heterogeneous disease with allergy-like symptoms and abdominal complaints. Its etiology is only partially understood and it is often overlooked. AIMS The aim of this study was to identify subgroups of MCAS patients to facilitate diagnosis and allow a personalized therapy. METHODS Based on data from 250 MCAS patients, hierarchical and two-step cluster analyses as well as association analyses were performed. The data used included data from a MCAS checklist asking about symptoms and triggers and a set of diagnostically relevant laboratory parameters. RESULTS Using a two-step cluster analysis, MCAS patients could be divided into three clusters. Physical trigger factors were particularly decisive for the classification as they showed remarkable differences between the three clusters. Cluster 1, labeled high responders, showed high values for the triggers heat and cold, whereas cluster 2, labeled intermediate responders, presented with high values for the trigger heat and low values for cold. The third cluster, labeled low responders, did not react to thermal triggers. The first two clusters showed more divers clinical symptoms especially with regard to dermatological and cardiological complaints. Subsequent association analyses revealed relationships between triggers and clinical complaints: Abdominal discomfort is mainly triggered by histamine consumption, dermatological discomfort by exercise, and neurological symptoms are related to physical exertion and periods of starvation. The reasons for the occurrence of cardiological complaints are manifold and triggers for respiratory complaints still need better identification. CONCLUSION Our study identified three distinct clusters on the basis of physical triggers, which also differ significantly in their clinical symptoms. A trigger-related classification can be helpful in clinical practice for diagnosis and therapy. Longitudinal studies should be conducted to further understand the relationship between triggers and symptoms.
Collapse
Affiliation(s)
- Tinus Häder
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | | | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbuettel, Germany
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Martin Mücke
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Sellin
- Institute for Digitalization and General Medicine, University Hospital RWTH Aachen, Aachen, Germany.
- Center for Rare Diseases Aachen (ZSEA), University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
10
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
11
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
12
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
13
|
Elfil M, Selby L, Van Schooneveld TC, Fadul N. Acute psychosis associated with recent SARS-CoV-2 infection: A case report. IDCases 2021; 24:e01140. [PMID: 33936950 PMCID: PMC8076759 DOI: 10.1016/j.idcr.2021.e01140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has created overwhelming circumstances not only in the medical field, but in other walks of life. SARS-CoV-2, the causative virus of COVID-19 [1], primarily affects the respiratory system leading to respiratory illnesses of varying severity ranging from mild flu-like symptoms to acute respiratory distress syndrome [2]. However, the clinical manifestations of COVID-19 are not limited to the respiratory system [3]. There is a growing body of literature showing the incidence of a varying clinical spectrum of neuropsychiatric manifestations in a significant proportion of COVID-19 patients [4]. With the variability in neuropsychiatric presentation of COVID- 19, multiple mechanisms have been proposed to explain the pathophysiology of these presentations [5]. In this case report, we present a 20-year-old female with no significant respiratory symptoms or previous history of psychotic episodes who manifested with acute psychosis as a significant complication of COVID-19.
Collapse
Affiliation(s)
- Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Laura Selby
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Trevor C Van Schooneveld
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nada Fadul
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: Luteolin to the rescue. Biofactors 2021; 47:232-241. [PMID: 33847020 PMCID: PMC8250989 DOI: 10.1002/biof.1726] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 leads to severe respiratory problems, but also to long-COVID syndrome associated primarily with cognitive dysfunction and fatigue. Long-COVID syndrome symptoms, especially brain fog, are similar to those experienced by patients undertaking or following chemotherapy for cancer (chemofog or chemobrain), as well in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome (MCAS). The pathogenesis of brain fog in these illnesses is presently unknown but may involve neuroinflammation via mast cells stimulated by pathogenic and stress stimuli to release mediators that activate microglia and lead to inflammation in the hypothalamus. These processes could be mitigated by phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUSA
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUSA
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- Department of PsychiatryTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUSA
- BrainGateThessalonikiGreece
| | | | | | - Antonios Politis
- First Department of PsychiatryEginition Hospital, National and Kapodistrian UniversityAthensGreece
| |
Collapse
|
15
|
Afrin LB, Weinstock LB, Molderings GJ. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis 2020; 100:327-332. [PMID: 32920235 PMCID: PMC7529115 DOI: 10.1016/j.ijid.2020.09.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES One-fifth of Covid-19 patients suffer a severe course of Covid-19 infection; however, the specific causes remain unclear. Mast cells (MCs) are activated by SARS-CoV-2. Although only recently recognized, MC activation syndrome (MCAS), usually due to acquired MC clonality, is a chronic multisystem disorder with inflammatory and allergic themes, and an estimated prevalence of 17%. This paper describes a novel conjecture explaining how MCAS might cause a propensity for severe acute Covid-19 infection and chronic post-Covid-19 illnesses. METHODS Observations of Covid-19 illness in patients with/without MCAS were compared with extensive clinical experience with MCAS. RESULTS The prevalence of MCAS is similar to that of severe cases within the Covid-19-infected population. Much of Covid-19's hyperinflammation is concordant with manners of inflammation which MC activation can drive. Drugs with activity against MCs or their mediators have preliminarily been observed to be helpful in Covid-19 patients. None of the authors' treated MCAS patients with Covid-19 suffered severe infection, let alone mortality. CONCLUSIONS Hyperinflammatory cytokine storms in many severely symptomatic Covid-19 patients may be rooted in an atypical response to SARS-CoV-2 by the dysfunctional MCs of MCAS rather than a normal response by normal MCs. If proven, this theory has significant therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Lawrence B Afrin
- Department of Mast Cell Studies, AIM Center for Personalized Medicine, Purchase, New York, USA.
| | | | | |
Collapse
|
16
|
Dorff SR, Afrin LB. Mast cell activation syndrome in pregnancy, delivery, postpartum and lactation: a narrative review. J OBSTET GYNAECOL 2020; 40:889-901. [PMID: 32148151 DOI: 10.1080/01443615.2019.1674259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mast cell activation syndrome (MCAS) is a chronic multisystem disease of aberrant constitutive and reactive mast cell mediator release causing generally inflammatory, allergic, and dystrophic issues. The pathobiology of MCAS drives extraordinary clinical complexity and heterogeneity, which led to only recent recognition despite increasingly apparent substantial prevalence, perhaps as high as 17%. It also has a strong female predilection. Thus, MCAS inescapably impacts pregnancy and the post-partum period in many women. No specific research in the pregnant or post-partum MCAS population has been performed yet. However, its prevalence and potential for driving substantial morbidity merit obstetric providers' acquaintance with this illness and its potential impacts on their patients during pregnancy, delivery, the post-partum period, and lactation. Extensive literature review across all medical specialities, plus direct experience in the authors' practices, provides guidance in recognising MCAS in pregnancy and diagnosing and effectively managing it. Described herein are manners in which MCAS, a protean multisystem disease, adversely affects all stages of pregnancy and post-partum. In order to reduce risks of MCAS causing complications before, during and after pregnancy, identifying and controlling the syndrome prior to pregnancy is best, but, even if the disease is not recognised until late, there may still be opportunities to mitigate its effects. There is precedent for improved outcomes if comorbid MCAS is recognised and controlled. This review provides the first comprehensive guide for obstetric providers regarding this emerging major comorbidity.
Collapse
|
17
|
Weinstock LB, Walters AS, Brook JB, Kaleem Z, Afrin LB, Molderings GJ. Restless legs syndrome is associated with mast cell activation syndrome. J Clin Sleep Med 2020; 16:401-408. [PMID: 31994488 DOI: 10.5664/jcsm.8216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STUDY OBJECTIVES Mast cell activation syndrome (MCAS) is an inflammatory and allergic disorder. We determined the prevalence of restless legs syndrome (RLS) in MCAS because each common syndrome may be inflammatory in nature and associated with dysautonomia. METHODS Individuals with MCAS were evaluated for RLS by two standard questionnaires. Prevalence comparisons included spouse control patients and two prevalence publications. MCAS diagnosis required mast cell (MC) symptoms in ≥ 2 organs plus ≥ 1 elevated MC mediators, improvement with MC therapy, and/or increased intestinal MC density. Clinical variables were studied. RESULTS There were 174 patients with MCAS (146 female, 28 male, mean age 44.8 years) and 85 spouse control patients (12 female, 73 male, mean age 50.9 years). Patients with MCAS as a whole had a higher prevalence of RLS (40.8%) than spouse control (12.9%) (P < .0001) Male patients with MCAS had a higher prevalence of RLS (32.1%) than male controls (12.3%, odds ratio [OR] 3.4, confidence interval [CI] 1.2-9.7, P = .025), American men (8.4%, OR 5.2, CI 2.2-12.0, P < .001), and French men (5.8%, OR 7.7, CI 3.4-17.1, P < .001). Female patients with MCAS also had a higher prevalence of RLS (42.5%) than female controls (16.7%) but this did not reach statistical significance perhaps because of the sample size of the female controls. However, female patients with MCAS had a statistically higher prevalence of RLS than American women (10.0%, OR 6.7, CI 4.5-9.7, P < .0001) and French women (10.8%, OR 6.1, CI 4.4-8.6, P < .0001). CONCLUSIONS RLS appears to be associated with MCAS. Effects of mast cell mediators, inflammation, immune mechanisms, dysautonomia, or hypoxia may theoretically activate RLS in MCAS.
Collapse
Affiliation(s)
- Leonard B Weinstock
- Washington University School of Medicine, Specialists in Gastroenterology, LLC, St. Louis, Missouri
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Zahid Kaleem
- Specialists in Gastroenterology, LLC, St. Louis, Missouri
| | | | | |
Collapse
|
18
|
Butterfield JH. Survey of Mast Cell Mediator Levels from Patients Presenting with Symptoms of Mast Cell Activation. Int Arch Allergy Immunol 2019; 181:43-50. [PMID: 31722348 DOI: 10.1159/000503964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Although 4 mast cell mediators can be routinely measured, the results of initial testing to evaluate symptoms of mast cell activation have not been widely reported. OBJECTIVE We examined the results of mast cell mediator tests used to assess patients with mast cell activation symptoms during a 5-year time span. METHODS After excluding patients with alternative diagnoses, records of 108 patients were reviewed for initial mediator test results. Mediators included serum tryptase plus urinary N-methyl histamine (N-MH), leukotriene (LT)E4, and 11β-prostaglandin (PG) F2α or 2,3-dinor-11β-PGF2α (BPG). RESULTS Most commonly, either a single measured elevation of 1 mediator (48.1%) or elevations of 2 (33.3%) mediators was found at baseline, during symptoms or at both time points. Elevated levels of a single mediator in order of frequency were: BPG > tryptase > LTE4 > N-MH, and for two mediators: BPG + tryptase (n = 16 cases) > BPG + LTE4 (n = 9) > BPG + N-MH (n = 6). Elevations in 3 mediators (n = 8) or 4 mediators (n = 2) were much less frequent. Monoclonal mast cell activation syndrome (n = 6), and systemic and cutaneous mastocytosis (n = 4) were also infrequent. Baseline plus symptom-associated tryptase values were obtained in only 7 patients. CONCLUSIONS This survey suggests that elevations of 1 or 2 mediators are the most common (total 81.4% of cases) findings from initial tests for mast cell activation. Elevated levels of BPG were most commonly found both singly and in combination with other mediators, followed by the finding of elevated levels of tryptase. Baseline plus symptom-associated tryptase levels were measured in only a minority of patients.
Collapse
Affiliation(s)
- Joseph H Butterfield
- Division of Allergic Diseases and Program for Mast Cell and Eosinophil Disorders, Mayo Clinic, Rochester, Minnesota, USA,
| |
Collapse
|
19
|
Weiler CR, Austen KF, Akin C, Barkoff MS, Bernstein JA, Bonadonna P, Butterfield JH, Carter M, Fox CC, Maitland A, Pongdee T, Mustafa SS, Ravi A, Tobin MC, Vliagoftis H, Schwartz LB. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J Allergy Clin Immunol 2019; 144:883-896. [DOI: 10.1016/j.jaci.2019.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
|
20
|
Russek LN, Stott P, Simmonds J. Recognizing and Effectively Managing Hypermobility-Related Conditions. Phys Ther 2019; 99:1189-1200. [PMID: 31158283 DOI: 10.1093/ptj/pzz078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/09/2019] [Indexed: 01/12/2023]
Abstract
Hypermobility spectrum disorder (HSD) and hypermobile Ehlers-Danlos syndrome (hEDS) can cause widespread or chronic pain, fatigue, and proprioceptive and coordination deficits resulting in functional restrictions. These conditions are common and often unrecognized, and patients are likely to present in physical therapy for musculoskeletal injuries, pain, or coordination deficits. Although physical therapy is considered central to managing these conditions, many patients report pain and iatrogenic injuries due to inappropriate interventions. The diagnostic classification for these conditions was revised in 2017 to supersede previous diagnostic categories of Joint Hypermobility Syndrome and Ehlers-Danlos Syndrome-hypermobility type/type III. It is now known that these conditions affect multiple body systems and not just joints and that patients require a holistic approach. This Perspective article will describe the 2017 diagnostic classification system, clinical presentation, examination, evaluation, and management of patients with HSD/hEDS. Both adult and pediatric cases are presented to illustrate the patient management concepts discussed. This knowledge can lead to more effective management of this patient population.
Collapse
Affiliation(s)
- Leslie N Russek
- Physical Therapy Department, Clarkson University, Potsdam, NY 13699 (USA)
| | | | - Jane Simmonds
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
21
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
22
|
Roubalová R, Procházková P, Papežová H, Smitka K, Bilej M, Tlaskalová-Hogenová H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clin Nutr 2019; 39:676-684. [PMID: 30952533 DOI: 10.1016/j.clnu.2019.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa is a psychiatric disorder defined by an extremely low body weight, a devastating fear of weight gain, and body image disturbance, however the etiopathogenesis remains unclear. The objective of the article is to provide a comprehensive review on the potential role of gut microbiota in pathogenesis of anorexia nervosa. Recent advances in sequencing techniques used for microbial detection revealed that this disease is associated with disruption of the composition of normal gut microbiota (dysbiosis), manifested by low microbial diversity and taxonomic differences as compared to healthy individuals. Microorganisms present in the gut represent a part of the so called "microbiota-gut-brain" axis that affect the central nervous system and thus human behavior via the production of various neuroactive compounds. In addition, cells of the immune system are equipped with receptors for these neuroactive substances. Microbiota of the intestinal system also represent a very important antigenic source. These antigens can mimic some host neuropeptides and neurohormones and thus trigger the production of autoantibodies which cross-react with these compounds. The levels and affinities of these antibodies are thought to be associated with neuropsychiatric conditions including anxiety, depression, and eating and sleep disorders. The study of microbiota function in diseases could bring new insights to the pathogenetic mechanisms.
Collapse
Affiliation(s)
- Radka Roubalová
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic.
| | - Petra Procházková
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Hana Papežová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, Prague 2, Czech Republic
| | - Kvido Smitka
- The Institute of Physiology, First Faculty of Medicine, Charles University, Albertov 5, Prague 2, Czech Republic
| | - Martin Bilej
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | | |
Collapse
|
23
|
Rastogi V, Singh D, Mazza JJ, Parajuli D, Yale SH. Flushing Disorders Associated with Gastrointestinal Symptoms: Part 1, Neuroendocrine Tumors, Mast Cell Disorders and Hyperbasophila. Clin Med Res 2018; 16:16-28. [PMID: 29650525 PMCID: PMC6108509 DOI: 10.3121/cmr.2017.1379a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 02/08/2023]
Abstract
Flushing is the subjective sensation of warmth accompanied by visible cutaneous erythema occurring throughout the body with a predilection for the face, neck, pinnae, and upper trunk where the skin is thinnest and cutaneous vessels are superficially located and in greatest numbers. Flushing can be present in either a wet or dry form depending upon whether neural-mediated mechanisms are involved. Activation of the sympathetic nervous system results in wet flushing, accompanied by diaphoresis, due to concomitant stimulation of eccrine sweat glands. Wet flushing is caused by certain medications, panic disorder and paroxysmal extreme pain disorder (PEPD). Vasodilator mediated flushing due to the formation and release of a variety of biogenic amines, neuropeptides and phospholipid mediators such as histamine, serotonin and prostaglandins, respectively, typically presents as dry flushing where sweating is characteristically absent. Flushing occurring with neuroendocrine tumors accompanied by gastrointestinal symptoms is generally of the dry flushing variant, which may be an important clinical clue to the differential diagnosis. A number of primary diseases of the gastrointestinal tract cause flushing, and conversely extra-intestinal conditions are associated with flushing and gastrointestinal symptoms. Gastrointestinal findings vary and include one or more of the following non-specific symptoms such as abdominal pain, nausea, vomiting, diarrhea or constipation. The purpose of this review is to provide a focused comprehensive discussion on the presentation, pathophysiology, diagnostic evaluation and management of those diseases that arise from the gastrointestinal tract or other site that may cause gastrointestinal symptoms secondarily accompanied by flushing. This review is divided into two parts given the scope of conditions that cause flushing and affect the gastrointestinal tract: Part 1 covers neuroendocrine tumors (carcinoid, pheochromocytomas, vasoactive intestinal polypeptide, medullary carcinoma of the thyroid), polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes (POEMS), and conditions involving mast cells and basophils; while Part 2 covers dumping syndrome, mesenteric traction syndrome, rosacea, hyperthyroidism and thyroid storm, anaphylaxis, panic disorders, paroxysmal extreme pain disorder, and food, alcohol and medications.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- University of Central Florida College of Medicine/HCA Consortium Graduate Medical Education, North Florida Regional Medical Center, 6500 W Newberry Rd, Gainesville, FL 32605
- University of Central Florida College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827
| | - Devina Singh
- Feinstein Institute for Medical Research, 350 Community Dr. Manhasset, NY 11030
| | - Joseph J Mazza
- Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI 54449
| | - Dipendra Parajuli
- University of Louisville, Department of Medicine, Gastroenterology, Hepatology and Nutrition. Director, Fellowship Training Program, Director, Medical Procedure Unit Louisville VAMC 401 East Chestnut Street, Louisville, KY 40202
| | - Steven H Yale
- University of Central Florida College of Medicine/HCA Consortium Graduate Medical Education, North Florida Regional Medical Center, 6500 W Newberry Rd, Gainesville, FL 32605.
- University of Central Florida College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827
| |
Collapse
|
24
|
A case of neuropathic pain in monoclonal mast cell activation syndrome. Ann Allergy Asthma Immunol 2018; 120:543-544. [PMID: 29481890 DOI: 10.1016/j.anai.2018.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022]
|
25
|
Abstract
INTRODUCTION Tryptase is one of the main serine-proteinases located in the secretory granules of mast cells, and is released through degranulation, which is involved in the pathogenesis of allergic inflammatory disease, cardiovascular diseases, lung fibrosis and tumor. Therefore, inhibitors targeting tryptase may represent a new direction for the treatment of allergic inflammatory disease and other diseases. Areas covered: In this article, we discussed the history and development of tryptase inhibitors and described a variety of tryptase inhibitors via their structures and biological importance in clinical studies and drug development for tryptase-related diseases. Expert opinion: Initial tryptase inhibitors based on indole structure as the hydrophobic substituent on a benzylamine-piperidine template have low specificity and poor bioavailability. Therefore, designing new and specific inhibitors targeting tryptase should be involved in future clinical studies. Modifications toward indoles with varying N-substitution, introducing an amide bond, and growing the chain length contribute to an increase in the specific selectivity and potency of tryptase inhibitors. Tryptase has become the research hotspot to explore many related diseases. Therefore, there has been growing appreciation for the potential importance of the tryptase inhibitors as a target for treating these diseases.
Collapse
Affiliation(s)
- Wei-Wei Ni
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Meng-Da Cao
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Wen Huang
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ling Meng
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ji-Fu Wei
- a Research Division of Clinical Pharmacology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| |
Collapse
|
26
|
Afrin LB. A new era for an old cell: heightened appreciation of mast cell disease emerges. Transl Res 2016; 174:1-4. [PMID: 27016701 DOI: 10.1016/j.trsl.2016.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Lawrence B Afrin
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
27
|
Mast cell activation disease and the modern epidemic of chronic inflammatory disease. Transl Res 2016; 174:33-59. [PMID: 26850903 DOI: 10.1016/j.trsl.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome-suspected to be of greatly heterogeneous, complex acquired clonality in many cases-is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.
Collapse
|
28
|
Molderings GJ, Haenisch B, Brettner S, Homann J, Menzen M, Dumoulin FL, Panse J, Butterfield J, Afrin LB. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:671-94. [PMID: 27132234 PMCID: PMC4903110 DOI: 10.1007/s00210-016-1247-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Mast cell activation disease (MCAD) is a term referring to a heterogeneous group of disorders characterized by aberrant release of variable subsets of mast cell (MC) mediators together with accumulation of either morphologically altered and immunohistochemically identifiable mutated MCs due to MC proliferation (systemic mastocytosis [SM] and MC leukemia [MCL]) or morphologically ordinary MCs due to decreased apoptosis (MC activation syndrome [MCAS] and well-differentiated SM). Clinical signs and symptoms in MCAD vary depending on disease subtype and result from excessive mediator release by MCs and, in aggressive forms, from organ failure related to MC infiltration. In most cases, treatment of MCAD is directed primarily at controlling the symptoms associated with MC mediator release. In advanced forms, such as aggressive SM and MCL, agents targeting MC proliferation such as kinase inhibitors may be provided. Targeted therapies aimed at blocking mutant protein variants and/or downstream signaling pathways are currently being developed. Other targets, such as specific surface antigens expressed on neoplastic MCs, might be considered for the development of future therapies. Since clinicians are often underprepared to evaluate, diagnose, and effectively treat this clinically heterogeneous disease, we seek to familiarize clinicians with MCAD and review current and future treatment approaches.
Collapse
Affiliation(s)
- Gerhard J Molderings
- Institute of Human Genetics, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Brettner
- Department of Oncology, Hematology and Palliative Care, Kreiskrankenhaus Waldbröl, Waldbröl, Germany
| | - Jürgen Homann
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Markus Menzen
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Franz Ludwig Dumoulin
- Allgemeine Innere Medizin, Gastroenterologie und Diabetologie, Gemeinschaftskrankenhaus, Bonn, Germany
| | - Jens Panse
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph Butterfield
- Program for the Study of Mast Cell and Eosinophil Disorders, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lawrence B Afrin
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
29
|
Histamine and Immune Biomarkers in CNS Disorders. Mediators Inflamm 2016; 2016:1924603. [PMID: 27190492 PMCID: PMC4846752 DOI: 10.1155/2016/1924603] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death.
Collapse
|