1
|
Zheng W, Xu G, Lue Z, Zhou X, Wang N, Ma Y, Yuan W, Yu L, Zhu D, Zhang X. Nervonic acid protects against oligodendrocytes injury following chronic cerebral hypoperfusion in mice. Eur J Pharmacol 2024; 982:176932. [PMID: 39182543 DOI: 10.1016/j.ejphar.2024.176932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) has been acknowledged as a potential contributor to cognitive dysfunction and brain injury, causing progressive demyelination of white matter, oligodendrocytes apoptosis and microglia activation. Nervonic acid (NA), a naturally occurring fatty acid with various pharmacological effects, has been found to alleviate neurodegeneration. Nonetheless, evidence is still lacking on whether NA can protect against neurological dysfunction resulting from CCH. To induce CCH in mice, we employed the right unilateral common carotid artery occlusion (rUCCAO) method, followed by oral administration of NA daily for 28 days after the onset of hypoperfusion. We found that NA ameliorated cognitive function, as evidenced by improved performance of NA-treated mice in both novel object recognition test and Morris water maze test. Moreover, NA mitigated demyelination and loss of oligodendrocytes in the corpus callosum and hippocampus of rUCCAO-treated mice, and prevented oligodendrocyte apoptosis. Furthermore, NA protected primary cultured murine oligodendrocytes against oxygen-glucose deprivation (OGD)-induced cell death in a concentration-dependent manner. These findings indicated that NA promotes oligodendrocyte maturation both in vivo and in vitro. Our findings suggest that NA offers protective effects against cerebral hypoperfusion, highlighting its potential as a promising treatment for CCH and related neurological disorders.
Collapse
Affiliation(s)
- Wanqing Zheng
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Genghua Xu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Xinyu Zhou
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ning Wang
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Yun Ma
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Wenyue Yuan
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Jinhua Institute of Zhejiang University, 321299, Jinhua, China
| | - Danyan Zhu
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Xu LL, Yang S, Zhou LQ, Chu YH, Pang XW, You YF, Zhang H, Zhang LY, Zhu LF, Chen L, Shang K, Xiao J, Wang W, Tian DS, Qin C. Bruton's tyrosine kinase inhibition ameliorated neuroinflammation during chronic white matter ischemia. J Neuroinflammation 2024; 21:195. [PMID: 39097747 PMCID: PMC11297596 DOI: 10.1186/s12974-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic cerebral hypoperfusion (CCH), a disease afflicting numerous individuals worldwide, is a primary cause of cognitive deficits, the pathogenesis of which remains poorly understood. Bruton's tyrosine kinase inhibition (BTKi) is considered a promising strategy to regulate inflammatory responses within the brain, a crucial process that is assumed to drive ischemic demyelination progression. However, the potential role of BTKi in CCH has not been investigated so far. In the present study, we elucidated potential therapeutic roles of BTK in both in vitro hypoxia and in vivo ischemic demyelination model. We found that cerebral hypoperfusion induced white matter injury, cognitive impairments, microglial BTK activation, along with a series of microglia responses associated with inflammation, oxidative stress, mitochondrial dysfunction, and ferroptosis. Tolebrutinib treatment suppressed both the activation of microglia and microglial BTK expression. Meanwhile, microglia-related inflammation and ferroptosis processes were attenuated evidently, contributing to lower levels of disease severity. Taken together, BTKi ameliorated white matter injury and cognitive impairments induced by CCH, possibly via skewing microglia polarization towards anti-inflammatory and homeostatic phenotypes, as well as decreasing microglial oxidative stress damage and ferroptosis, which exhibits promising therapeutic potential in chronic cerebral hypoperfusion-induced demyelination.
Collapse
Affiliation(s)
- Lu-Lu Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang W, Fu W, Zhang Y. Association of Cerebral Hypoperfusion and Poor Collaterals with Cognitive Impairment in Patients with Severe Vertebrobasilar Artery Stenosis. J Alzheimers Dis Rep 2024; 8:999-1007. [PMID: 39114550 PMCID: PMC11305839 DOI: 10.3233/adr-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
Background Effect of stenosis of vertebrobasilar artery (VBA) on cognitive function is elusive. Objective To investigate association of cerebral hypoperfusion and poor collaterals with vascular cognitive impairment (VCI) in severe VBA stenosis patients. Methods We consecutively enrolled patients with severe VBA stenosis confirmed by digital subtraction angiography who underwent computed tomographic perfusion (CTP) and cognitive assessments. Patients were divided into poor or good collaterals groups according to the collateral circulation status, and were grouped into different perfusion groups according to CTP. Cognitive function was measured by Montreal Cognitive Assessment (MoCA), Clock Drawing Test, Stroop Color Word Test, Trail Making Test, Digital Span Test, Auditory Verbal Learning Test, and Boston Naming Test scales. The association of cerebral perfusion and collaterals with VCI were explored. Results Among 88 eligible patients, VCI occurred in 51 (57.9%) patients experienced. Poor collateral was present in 73 (83.0%) patients, and hypoperfusion in 64 (72.7%). Compared with normal perfusion patients, the odds ratio with 95% confidence interval for VCI was 12.5 (3.7-42.4) for overall hypoperfusion, 31.0 (7.1-135.5) for multiple site hypoperfusion, 3.3 (1.0-10.5) for poor collaterals, and 0.1 (0-0.6) for presence of posterior communicating artery (PcoA) compensated for posterior cerebral artery (PCA) and basilar artery (BA). Additionally, decreased scores of cognitive function tests occurred in patients with decompensated perfusion or poor collaterals. Conclusions Hypoperfusion and poor collaterals were positively associated with cognitive impairment in patients with severe VBA. However, PcoA compensated for the PCA and BA had a protective role in cognitive impairment development.
Collapse
Affiliation(s)
- Weiyi Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Fuxing Hospital, The Eighth Clinical Medical College, Capital Medical University, Beijing, China
| | - Weilun Fu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241260100. [PMID: 38853430 PMCID: PMC11574932 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Luo X, Li CSR, Zhang P, Huang J, Tian L, Hong LE, Tan Y. Correlation of Immune-Inflammatory Response System (IRS)/Compensatory Immune-Regulatory Reflex System (CIRS) with White Matter Integrity in First-Episode Patients with Schizophrenia. Mol Neurobiol 2024; 61:2754-2763. [PMID: 37932545 DOI: 10.1007/s12035-023-03694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Several studies have reported compromised white matter integrity, and that some inflammatory mediators may underlie this functional dysconnectivity in the brain of patients with schizophrenia. The immune-inflammatory response system and compensatory immune-regulatory reflex system (IRS/CIRS) are novel biomarkers for exploring the role of immune imbalance in the pathophysiological mechanism of schizophrenia. This study aimed to explore the little-known area regarding the composite score of peripheral cytokines, the IRS/CIRS, and its correlation with white matter integrity and the specific microstructures most affected in schizophrenia. First-episode patients with schizophrenia (FEPS, n = 94) and age- and sex-matched healthy controls (HCs, n = 50) were enrolled in this study. Plasma cytokine levels were measured using enzyme-linked immunosorbent assay (ELISA), and psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). The whole brain white matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging (DTI) using a 3-T Prisma MRI scanner. The IRS/CIRS in FEPS was significantly higher than that in HCs (p = 1.5 × 10-5) and Cohen's d effect size was d = 0.74. FEPS had a significantly lower whole-brain white matter average FA (p = 0.032), which was negatively associated with IRS/CIRS (p = 0.029, adjusting for age, sex, years of education, BMI, and total intracranial volume), but not in the HCs (p > 0.05). Among the white matter microstructures, only the cortico-spinal tract was significantly correlated with IRS/CIRS in FEPS (r = - 0.543, p = 0.0009). Therefore, elevated IRS/CIRS may affect the white matter in FEPS.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Jinghui Tong
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanfang Zhou
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Xie
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Feng
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yanli Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Song Chen
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Baopeng Tian
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shujuan Pan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ping Zhang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Junchao Huang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China.
| |
Collapse
|
6
|
Cheng F, Zhang J, Yang P, Chen Z, Fu Y, Mi J, Xie X, Liu S, Sheng Y. Exploring the neuroprotection of the combination of astragaloside A, chlorogenic acid and scutellarin in treating chronic cerebral ischemia via network analysis and experimental validation. Heliyon 2024; 10:e29162. [PMID: 38655299 PMCID: PMC11036006 DOI: 10.1016/j.heliyon.2024.e29162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic cerebral ischemia (CCI) primarily causes cognitive dysfunction and other neurological impairments, yet there remains a lack of ideal therapeutic medications. The preparation combination of Astragalus membranaceus (Fisch.) Bunge and Erigeron breviscapus (Vant.) Hand.-Mazz have been utilized to ameliorate neurological dysfunction following cerebral ischemia, but material basis of its synergy remains unclear. The principal active ingredients and their optimal proportions in this combination have been identified through the oxygen and glucose deprivation (OGD) cell model, including astragaloside A, chlorogenic acid and scutellarin (ACS), and its efficacy in enhancing the survival of OGD PC12 cells surpasses that of the combination preparation. Nevertheless, mechanism of ACS against CCI remains elusive. In this study, 63 potential targets of ACS against CCI injury were obtained by network pharmacology, among which AKT1, CASP3 and TNF are the core targets. Subsequent analysis utilizing KEGG and GO suggested that PI3K/AKT pathway may play a crucial role for ACS in ameliorating CCI injury. Then, a right unilateral common carotid artery occlusion (rUCCAO) mouse model and an OGD PC12 cell model were established to replicate the pathological processes of CCI in vivo and in vitro. These models were utilized to explore the anti-CCI effects of ACS and its regulatory mechanisms, particularly focusing on PI3K/AKT pathway. The results showed that ACS facilitated the restoration of cerebral blood flow in CCI mice, enhanced the function of the central cholinergic nervous system, protected against ischemic nerve cell and mitochondrial damage, and improved cognitive function and other neurological impairments. Additionally, ACS upregulated the expression of p-PI3K, p-AKT, p-GSK3β and Bcl-2, and diminished the expression of Cyto-c, cleaved Caspase-3 and Bax significantly. However, the PI3K inhibitor (LY294002) partially reversed the downregulation of Bax, Cyto-c and cleaved Caspase-3 expression as well as the upregulation of p-AKT/AKT, p-GSK3β/GSK3β, and Bcl-2/Bax ratios. These findings suggest that ACS against neuronal damage in cerebral ischemia may be closely related to the activation of PI3K/AKT pathway. These results declared first time ACS may become an ideal candidate drug against CCI due to its neuroprotective effects, which are mediated by the activated PI3K/AKT pathway mitigates mitochondrial damage and prevents cell apoptosis.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Pan Yang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Zufei Chen
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yinghao Fu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jiajia Mi
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Xingliang Xie
- The Second Class Laboratory of Traditional Chinese Medicine Pharmaceutics, National Administration of Traditional Chinese Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sha Liu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yanmei Sheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, China
- The Second Class Laboratory of Traditional Chinese Medicine Pharmaceutics, National Administration of Traditional Chinese Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| |
Collapse
|
7
|
Zhu Z, Mo S, Wang X, Meng M, Qiao L. Circ-AGTPBP1 promotes white matter injury through miR-140-3p/Pcdh17 axis role of Circ-AGTPBP1 in white matter injury. J Bioenerg Biomembr 2024; 56:1-14. [PMID: 37994971 DOI: 10.1007/s10863-023-09984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023]
Abstract
White matter injury (WMI) resulting from intracerebral hemorrhage (ICH) is closely associated with adverse prognoses in ICH patients. Although Circ-AGTPBP1 has been reported to exhibit high expression in the serum of premature infants with WMI, its effects and mechanisms in ICH-induced WMI remain unclear. This study aimed to investigate the role of circ-AGTPBP1 in white matter injury after intracerebral hemorrhage. An intracerebral hemorrhage rat model was established by injecting autologous blood into rat left ventricles and circ-AGTPBP1 was knocked down at the ICH site using recombinant adeno-associated virus, AAV2/9. Magnetic resonance imaging (MRI) and gait analysis were conducted to assess long-term neurobehavioral effects. Primary oligodendrocyte progenitor cells (OPCs) were isolated from rats and overexpressed with circ-AGTPBP1. Downstream targets of circ-AGTPBP1 in OPCs were investigated using CircInteractome, qPCR, FISH analysis, and miRDB network. Luciferase gene assay was utilized to explore the relationship between miR-140-3p and Pcdh17 in OPCs and HEK-293T cells. Finally, CCK-8 assay, EdU staining, and flow cytometry were employed to evaluate the effects of mi-RNA-140-3p inhibitor or silencing of sh-pcd17 on the viability, proliferation, and apoptosis of OPCs. Low expression of circ-AGTPBP1 alleviates white matter injury and improves neurological functions in rats after intracerebral hemorrhage. Conversely, overexpression of circ-AGTPBP1 reduces the proliferative and migrative potential of oligodendrocyte progenitor cells and promotes apoptosis. CircInteractome web tool and qPCR confirmed that circ-AGTPBP1 binds with miR-140-3p in OPCs. Additionally, miRDB network predicted Pcdh17 as a downstream target of miR-140-3p. Moreover, pcdh17 expression was increased in the brain tissue of rats with intracerebral-induced white matter injury. Furthermore, inhibiting miR-140-3p suppressed the proliferation and migration of OPCs and facilitated apoptosis through Pcdh17. Circ-AGTPBP1 promotes white matter injury through modulating the miR-140-3p/Pcdh17 axis. The study provides a new direction for developing therapeutic strategies for white matter injury.
Collapse
Affiliation(s)
- Zhaokui Zhu
- Department of Pediatrics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
| | - Sisi Mo
- Department of Pediatrics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
| | - Xinyu Wang
- School of Medicine, The Hospital of Yangzhou University, Yangzhou, 210033, Jiangsu, China
| | - Meng Meng
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lixing Qiao
- Department of Pediatrics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Zhang X, Wang X, Xu Z, Sun F, Jia Y, Tian Y. Siglec-E Ligand Downregulation on Hippocampus Neurons Induced Inflammation in Sevoflurane-Associated Perioperative Neurocognitive Disorders in Aged Mice. Inflammation 2024; 47:30-44. [PMID: 37603227 DOI: 10.1007/s10753-023-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Activated microglia-induced inflammation in the hippocampus plays an important role in perioperative neurocognitive disorders. Previous studies have shown that sialic acid-binding immunoglobulin-like lectin 3 (hSiglec-3, ortholog of mouse Siglec-E) engagement in microglia and its glycan ligands on neurons contributes to inflammatory homeostasis through an endogenous negative regulation pathway. This study aimed to explore whether the glycan ligand alteration on neurons plays a role in sevoflurane-induced perioperative neurocognitive disorders. This study's data has shown that a slight Siglec-E ligands' expression decrease does not induce inflammation homeostasis disruption. We also demonstrated that the ligand level on neurons was decreased with age, and the reduced Siglec-E ligand expression on neurons caused via sevoflurane was induced by neuraminidase 1. Furthermore, this study has shown that the Siglec-E ligand expression decline caused by age and sevoflurane treatment could decrease the ligands' level, thus leading to inflammatory homeostasis disruption. This research provided a novel mechanism for perioperative neurocognitive disorder susceptibility in the elderly.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Fengwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
9
|
Zhou YT, An DD, Xu YX, Zhou Y, Li QQ, Dai HB, Zhang XN, Wang Y, Lou M, Chen Z, Hu WW. Activation of glutamatergic neurons in the somatosensory cortex promotes remyelination in ischemic vascular dementia. FUNDAMENTAL RESEARCH 2024; 4:188-198. [PMID: 38933843 PMCID: PMC11197523 DOI: 10.1016/j.fmre.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.
Collapse
Affiliation(s)
- Yi-Ting Zhou
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pharmacy, Sir Run Run Shaw Hospital, Hangzhou 310012, China
| | - Da-Dao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Xin Xu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Qing-Qing Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Hai-Bin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang-Nan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310003, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Wei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
10
|
Zhang Y, Ya D, Yang J, Jiang Y, Li X, Wang J, Tian N, Deng J, Yang B, Li Q, Liao R. EAAT3 impedes oligodendrocyte remyelination in chronic cerebral hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14487. [PMID: 37803915 PMCID: PMC10805396 DOI: 10.1111/cns.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion-induced demyelination causes progressive white matter injury, although the pathogenic pathways are unknown. METHODS The Single Cell Portal and PanglaoDB databases were used to analyze single-cell RNA sequencing experiments to determine the pattern of EAAT3 expression in CNS cells. Immunofluorescence (IF) was used to detect EAAT3 expression in oligodendrocytes and oligodendrocyte progenitor cells (OPCs). EAAT3 levels in mouse brains were measured using a western blot at various phases of development, as well as in traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) mouse models. The mouse bilateral carotid artery stenosis (BCAS) model was used to create white matter injury. IF, Luxol Fast Blue staining, and electron microscopy were used to investigate the effect of remyelination. 5-Ethynyl-2-Deoxy Uridine staining, transwell chamber assays, and IF were used to examine the effects of OPCs' proliferation, migration, and differentiation in vivo and in vitro. The novel object recognition test, the Y-maze test, the rotarod test, and the grid walking test were used to examine the impact of behavioral modifications. RESULTS A considerable amount of EAAT3 was expressed in OPCs and mature oligodendrocytes, according to single-cell RNA sequencing data. During multiple critical phases of mouse brain development, there were no substantial changes in EAAT3 levels in the hippocampus, cerebral cortex, or white matter. Furthermore, neither the TBI nor ICH models significantly affected the levels of EAAT3 in the aforementioned brain areas. The chronic white matter injury caused by BCAS, on the other hand, resulted in a strikingly high level of EAAT3 expression in the oligodendroglia and white matter. Correspondingly, blocking EAAT3 assisted in the recovery of cognitive and motor impairment as well as the restoration of cerebral blood flow following BCAS. Furthermore, EAAT3 suppression was connected to improved OPCs' survival and proliferation in vivo as well as faster OPCs' proliferation, migration, and differentiation in vitro. Furthermore, this study revealed that the mTOR pathway is implicated in EAAT3-mediated remyelination. CONCLUSIONS Our findings provide the first evidence that abnormally high levels of oligodendroglial EAAT3 in chronic cerebral hypoperfusion impair OPCs' pro-remyelination actions, hence impeding white matter repair and functional recovery. EAAT3 inhibitors could be useful in the treatment of ischemia demyelination.
Collapse
Affiliation(s)
- Yingmei Zhang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Dongshan Ya
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiaxin Yang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Yanlin Jiang
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Xiaoxia Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiawen Wang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Ning Tian
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jungang Deng
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Qinghua Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Rujia Liao
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| |
Collapse
|
11
|
Gou M, Chen W, Li Y, Chen S, Feng W, Pan S, Luo X, Tan S, Tian B, Li W, Tong J, Zhou Y, Li H, Yu T, Wang Z, Zhang P, Huang J, Kochunov P, Tian L, Li CSR, Hong LE, Tan Y. Immune-Inflammatory Response And Compensatory Immune-Regulatory Reflex Systems And White Matter Integrity in Schizophrenia. Schizophr Bull 2024; 50:199-209. [PMID: 37540273 PMCID: PMC10754202 DOI: 10.1093/schbul/sbad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Low-grade neural and peripheral inflammation are among the proposed pathophysiological mechanisms of schizophrenia. White matter impairment is one of the more consistent findings in schizophrenia but the underlying mechanism remains obscure. Many cerebral white matter components are sensitive to neuroinflammatory conditions that can result in demyelination, altered oligodendrocyte differentiation, and other changes. We tested the hypothesis that altered immune-inflammatory response system (IRS) and compensatory immune-regulatory reflex system (IRS/CIRS) dynamics are associated with reduced white matter integrity in patients with schizophrenia. STUDY DESIGN Patients with schizophrenia (SCZ, 70M/50F, age = 40.76 ± 13.10) and healthy controls (HCs, 38M/27F, age = 37.48 ± 12.31) underwent neuroimaging and plasma collection. A panel of cytokines were assessed using enzyme-linked immunosorbent assay. White matter integrity was measured by fractional anisotropy (FA) from diffusion tensor imaging using a 3-T Prisma MRI scanner. The cytokines were used to generate 3 composite scores: IRS, CIRS, and IRS/CIRS ratio. STUDY RESULTS The IRS/CIRS ratio in SCZ was significantly higher than that in HCs (P = .009). SCZ had a significantly lower whole-brain white matter average FA (P < .001), and genu of corpus callosum (GCC) was the most affected white matter tract and its FA was significantly associated with IRS/CIRS (r = 0.29, P = .002). FA of GCC was negatively associated with negative symptom scores in SCZ (r = -0.23, P = .016). There was no mediation effect taking FA of GCC as mediator, for that IRS/CIRS was not associated with negative symptom score significantly (P = .217) in SCZ. CONCLUSIONS Elevated IRS/CIRS might partly account for the severity of negative symptoms through targeting the integrity of GCC.
Collapse
Affiliation(s)
- Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
12
|
Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol 2023; 11:1221890. [PMID: 37564376 PMCID: PMC10410458 DOI: 10.3389/fcell.2023.1221890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
This article reviews the role of neuronal activity in myelin regeneration and the related neural signaling pathways. The article points out that neuronal activity can stimulate the formation and regeneration of myelin, significantly improve its conduction speed and neural signal processing ability, maintain axonal integrity, and support axonal nutrition. However, myelin damage is common in various clinical diseases such as multiple sclerosis, stroke, dementia, and schizophrenia. Although myelin regeneration exists in these diseases, it is often incomplete and cannot promote functional recovery. Therefore, seeking other ways to improve myelin regeneration in clinical trials in recent years is of great significance. Research has shown that controlling neuronal excitability may become a new intervention method for the clinical treatment of demyelinating diseases. The article discusses the latest research progress of neuronal activity on myelin regeneration, including direct or indirect stimulation methods, and the related neural signaling pathways, including glutamatergic, GABAergic, cholinergic, histaminergic, purinergic and voltage-gated ion channel signaling pathways, revealing that seeking treatment strategies to promote myelin regeneration through precise regulation of neuronal activity has broad prospects.
Collapse
Affiliation(s)
| | - Jing Zhang
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Ma J, Chen T, Wang R. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway. Neurochem Int 2023; 167:105535. [PMID: 37209830 DOI: 10.1016/j.neuint.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2023]
Abstract
Subcortical ischemic vascular dementia (SIVD), which is caused by chronic cerebral hypoperfusion, is a common subtype of vascular dementia, accompanied by white matter damage and cognitive impairment. Currently, there are no effective treatments for this condition. Oxidative stress is a key factor in the pathogenesis of white matter damage. Astragaloside IV (AS-IV), one of the main active components of astragaloside, has antioxidant properties and promotes cognitive improvement; however, its effect on SIVD and its potential mechanism remain unknown. We aimed to clarify whether AS-IV had a protective effect against SIVD injury caused by right unilateral common carotid artery occlusion and the underlying mechanism. The results showed that AS-IV treatment improved cognitive function and white matter damage, inhibited oxidative stress and glial cells activation, and promoted the survival of mature oligodendrocytes after chronic cerebral hypoperfusion. Moreover, the protein expression levels of NQO1, HO-1, SIRT1 and Nrf2 were increased by AS-IV treatment. However, pre-treatment with EX-527, a SIRT1-specific inhibitor, eliminated the beneficial effects of AS-IV. These results demonstrate that AS-IV plays a neuroprotective role in SIVD by suppressing oxidative stress and increasing the number of mature oligodendrocytes via the modulation of SIRT1/Nrf2 signaling. Our results support AS-IV as a potential therapeutic agent for SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
16
|
Zheng Y, Lin X, Ren M, Song K, Chen Y, Zeng L, Jiang J. Flavonoids from Citrus paradise cv. Changshan-huyou exerts protective effect on ischemia-induced cerebral injury in mice via inhibiting RhoA-ROCK2 signaling pathway. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:77-87. [PMID: 37283121 PMCID: PMC10407990 DOI: 10.3724/zdxbyxb-2022-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/23/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the protective effect and mechanism of total flavonoids from Citrus paradise cv. Changshan-huyou extracts (TFC) on oxygen-glucose deprivation (OGD) of primary neurons and chronic ischemia-induced cerebral injury in mice. METHODS Primary hippocampal neurons of 18-day fetal rats were isolated and cultured for 1 week, then treated with 0.25, 0.50 and 1.00 mg/mL TFC. After oxygen-glucose deprivation for 1 h, cells were reperfused for 6 and 24 h, respectively. The cytoskeleton was observed by phalloidin staining. In animal study, 6-week ICR male mice were randomly divided into sham operation group, model group, low-dose (10 mg/kg), medium-dose (25 mg/kg) and high-dose (50 mg/kg) TFC treatment groups, with 20 mice in each group. After 3 weeks, chronic cerebral ischemia was induced by unilateral common carotid artery ligation in all groups except sham operation group. Mice were treated with different concentrations of TFC in the three TFC treatment groups for 4 weeks. Open field test, novel object recognition test and Morris water maze test were used to evaluate anxiety, learning and memory of these mice. Nissl, HE and Golgi stainings were used to detect neuronal degeneration and dendritic spine changes in the cortex and the hippocampus. The expression levels of Rho-associated kinase (ROCK) 2, LIM kinase (LIMK) 1, cofilin and its phosphorylation, as well as the expression of globular actin (G-actin) and filamentous actin (F-actin) protein in hippocampus of mice were detected by Western blotting. RESULTS Neurons subjected to OGD showed that neurites displayed shortening and breakage; while treatment with TFC reversed OGD-induced neurite injury, especially in the 0.50 mg/mL TFC group. Compared with the sham operation group, the mice in the model group showed a significant decline in anxiety and cognitive ability (P<0.01), whereas treatment with TFC significantly reversed anxiety and cognitive deficits (P<0.05). Improvement in the medium-dose TFC group was the most obvious. Histopathological analysis indicated that the number of Nissl bodies and dendritic spines in hippocampus and cortex were decreased in the model group (all P<0.01). However, after treatment with medium dose of TFC, the number of Nissl bodies and dendritic spines (all P<0.05) was significantly recovered. Compared with the sham operation group, the phosphorylation level of ROCK2 in the brain tissue of the model group was significantly increased (P<0.05), while the phosphorylation levels of LIMK1 and cofilin were significantly decreased (P<0.05), and the relative content ratio of G-actin/F-actin was significantly increased (P<0.05). After administration of TFC, the phosphorylation level of ROCK2 in brain tissue of each group was significantly decreased (P<0.05), while the phosphorylation levels of LIMK1 and cofilin were significantly up-regulated (P<0.05) and the relative content ratio of G-actin/F-actin was significantly decreased (P<0.05). CONCLUSIONS TFC protects from ischemia-induced cytoskeletal damage, reduces neuronal dendritic spine injury and protects mice against chronic cerebral ischemia through RhoA-ROCK2 signaling pathway, indicating that TFC might be a potential candidate for treatment of chronic ischemic cerebral injury.
Collapse
Affiliation(s)
- Yi Zheng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Xinxiao Lin
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Minlan Ren
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Kerui Song
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yanyu Chen
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Jianping Jiang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
17
|
Wang Y, Sadike D, Huang B, Li P, Wu Q, Jiang N, Fang Y, Song G, Xu L, Wang W, Xie M. Regulatory T cells alleviate myelin loss and cognitive dysfunction by regulating neuroinflammation and microglial pyroptosis via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination. J Neuroinflammation 2023; 20:41. [PMID: 36803990 PMCID: PMC9938996 DOI: 10.1186/s12974-023-02721-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/20/2023] Open
Abstract
Demyelination occurs in multiple central nervous system (CNS) disorders and is tightly associated with neuroinflammation. Pyroptosis is a form of pro-inflammatory and lytic cell death which has been observed in CNS diseases recently. Regulatory T cells (Tregs) have exhibited immunoregulatory and protective effects in CNS diseases. However, the roles of Tregs in pyroptosis and their involvement in LPC-induced demyelination have not been explicated. In our study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) or PBS were subjected to two-site lysophosphatidylcholine (LPC) injection. Immunofluorescence, western blot, Luxol fast blue (LFB) staining, quantitative real-time PCR (qRT-PCR) and neurobehavior assessments were performed to evaluate the severity of demyelination, neuroinflammation and pyroptosis. Pyroptosis inhibitor was further used to investigate the role of pyroptosis in LPC-induced demyelination. RNA-sequencing was applied to explore the potential regulatory mechanism underlying the involvement of Tregs in LPC-induced demyelination and pyroptosis. Our results showed that depletion of Tregs aggravated microgliosis, inflammatory responses, immune cells infiltration and led to exacerbated myelin injury as well as cognitive defects in LPC-induced demyelination. Microglial pyroptosis was observed after LPC-induced demyelination, which was aggravated by Tregs depletion. Inhibition of pyroptosis by VX765 reversed myelin injury and cognitive function exacerbated by Tregs depletion. RNA-sequencing showed TLR4/myeloid differentiation marker 88 (MyD88) as the central molecules in Tregs-pyroptosis pathway, and refraining TLR4/MyD88/NF-κB pathway alleviated the aggravated pyroptosis induced by Tregs depletion. In conclusion, our findings for the first time indicate that Tregs alleviate myelin loss and improve cognitive function by inhibiting pyroptosis in microglia via TLR4/MyD88/NF-κB pathway in LPC-induced demyelination.
Collapse
Affiliation(s)
- Yao Wang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Dilinuer Sadike
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Bo Huang
- grid.412793.a0000 0004 1799 5032Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Ping Li
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Qiao Wu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Na Jiang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Yongkang Fang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Guini Song
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Li Xu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030 People’s Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
18
|
Li D, Huang Z, Dai Y, Guo L, Lin S, Liu X. Bioinformatic identification of potential biomarkers and therapeutic targets in carotid atherosclerosis and vascular dementia. Front Neurol 2023; 13:1091453. [PMID: 36703641 PMCID: PMC9872033 DOI: 10.3389/fneur.2022.1091453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Vascular disease is the second most common cause of dementia. The prevalence of vascular dementia (VaD) has increased over the past decade. However, there are no licensed treatments for this disease. Carotid atherosclerosis (CAS) is highly prevalent and is the main cause of ischemic stroke and VaD. We studied co-expressed genes to understand the relationships between CAS and VaD and further reveal the potential biomarkers and therapeutic targets of CAS and VaD. Methods CAS and VaD differentially expressed genes (DEGs) were identified through bioinformatic analysis Gene Expression Omnibus (GEO) datasets GSE43292 and GSE122063, respectively. Furthermore, a variety of target prediction methods and network analysis approaches were used to assess the protein-protein interaction (PPI) networks, the Gene Ontology (GO) terms, and the pathway enrichment for DEGs, and the top 7 hub genes, coupled with corresponding predicted miRNAs involved in CAS and VaD, were assessed as well. Result A total of 60 upregulated DEGs and 159 downregulated DEGs were identified, of which the top 7 hub genes with a high degree of connectivity were selected. Overexpression of these hub genes was associated with CAS and VaD. Finally, the top 7 hub genes were coupled with corresponding predicted miRNAs. hsa-miR-567 and hsa-miR-4652-5p may be significantly associated with CAS and VaD.
Collapse
|
19
|
Depletion of regulatory T cells exacerbates inflammatory responses after chronic cerebral hypoperfusion in mice. Mol Cell Neurosci 2022; 123:103788. [PMID: 36302461 DOI: 10.1016/j.mcn.2022.103788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vascular cognitive impairment is the second most common cause of dementia which can be induced by chronic cerebral hypoperfusion. Regulatory T cells (Tregs) have been proven to provide beneficial effects in several central nervous system (CNS) diseases, but the roles of Tregs in chronic cerebral hypoperfusion-induced white matter damage have not been explored. In this study, Foxp3-diphtheria toxin receptor (DTR) mice treated with diphtheria toxin (DT) and wild type C57BL/6 mice treated with anti-CD25 antibody were subjected to bilateral carotid artery stenosis (BCAS). Flow cytometry analysis showed Tregs were widely distributed in spleen whereas barely distributed in brain under normal conditions. The distribution of lymphocytes and Tregs did not change significantly in spleen and brain after BCAS. Depletion of Tregs decreased the numbers of mature oligodendrocytes and anti-inflammatory microglia at 14 days and 28 days following BCAS. And pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interferon-γ (IFN-γ) showed higher expression after Tregs depletion. In contrast, Tregs depletion did not change the overall severity of white matter injury as shown by the expression of myelin-associated glycoprotein (MAG), myelin basic protein (MBP), luxol fast blue (LFB) staining and electron microscopy assay. Moreover, Tregs depletion had marginal effect on cognition defects after BCAS revealed by Morris water maze and novel object recognition examination at 28 days after BCAS. In summary, our results suggest an anti-inflammatory role of Tregs with marginal effects on white matter damage in mice after BCAS-induced chronic cerebral hypoperfusion.
Collapse
|
20
|
Wang Z, Wang X, Liao Y, Chen G, Xu K. Immune response treated with bone marrow mesenchymal stromal cells after stroke. Front Neurol 2022; 13:991379. [PMID: 36203971 PMCID: PMC9530191 DOI: 10.3389/fneur.2022.991379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke. However, only a small part of patients could benefit from it. Therefore, finding a new treatment is necessary. Bone marrow mesenchymal stromal cells (BMSCs) provide a novel strategy for stroke patients. Now, many patients take stem cells to treat stroke. However, the researches of the precise inflammatory mechanism of cell replacement treatment are still rare. In this review, we summarize the immune response of BMSCs treated to stroke and may provide a new perspective for stem cell therapy.
Collapse
Affiliation(s)
- Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xudong Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yidong Liao
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Kaya Xu
| |
Collapse
|
21
|
Xie C, Tang H, Liu G, Li C. Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking. Front Aging Neurosci 2022; 14:940166. [PMID: 36051307 PMCID: PMC9424771 DOI: 10.3389/fnagi.2022.940166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Backgroud: Vascular dementia is the second most common cause of dementia after Alzheimer’s disease, accounting for an estimated 15% of cases. Recently, Epimedium has attracted great attention for its potential neuroprotective benefit. However, the direct role and mechanism of Epimedium on vascular dementia still lack systematic research. To systematically explore the possible pharmacological mechanism of Epimedium for the treatment of vascular dementia, network pharmacology, molecular docking, combined with experiment validation were conducted. Methods: The bioactive compounds and targets of Epimedium were obtained from the TCMSP database. The potential targets of vascular dementia were identified from the DrugBank, OMIM, Genecards, Therapeutic Target Database, and DisGeNET databases. GO and KEGG pathway analyses were performed. Molecular docking was applied to validate the interaction between active components and hub targets. The bilateral common carotid artery occlusion (BCCAO) method was used for construction of a vascular dementia model in mice. The effects of Epimedium on learning and memory ability were examined by behavioral tests. The mechanisms of the cerebral protective effects of Epimedium were evaluated by WB, RT-PCR, and immunofluorescence. Results: A total of 23 Epimedium active ingredients, and 71 intersecting targets of Epimedium against vascular dementia were obtained. The top five hub targets AKT1, TNF, IL1β, IL6, and MMP9 were identified, and molecular docking showed good binding. GO enrichment showed a total of 602 enrichment results, with 458 (80.56%) key targets mainly focused on biological processes (BP). The response to hypoxia, positive regulation of nitric oxide biosynthetic process, aging, inflammatory response, cellular response to lipopolysaccharide, negative regulation of apoptotic process were well ranked. KEGG pathway enrichment analysis identified the TNF signaling pathway as an important pathway, with the MAPK/extracellular signal-regulated kinase (ERK) and NF-κB signaling pathways as the key pathways involved. Consistently, in vivo experiments showed that Epimedium treatment improved learning and memory functions in mice with vascular dementia. In addition, Epimedium attenuated the activation of microglia and astrocytes in the hippocampal region after BCCAO. RT-qPCR and Western blot analysis showed that Epimedium not only affected the expression of AKT, TNF, IL1β, IL6, and MMP9, but also suppressed the TNF signaling pathway. Conclusion: Epimedium may exert a protective effect against vascular dementia through the alleviation of oxidative stress, neuroinflammation, BBB dysfunction, apoptosis through TNF signaling pathway. This study explored the mechanism of Epimedium on vascular dementia systematically through network pharmacological and in vivo experiment approach, which provides insight into the treatment of vascular dementia.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Changqing Li
| |
Collapse
|
22
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Xu J, Liu J, Mi Y, Zhao T, Mu D, Meng Q, Wang F, Li N, Hou Y. Triad3A-Dependent TLR4 Ubiquitination and Degradation Contributes to the Anti-Inflammatory Effects of Pterostilbene on Vascular Dementia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5896-5910. [PMID: 35532888 DOI: 10.1021/acs.jafc.2c01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pterostilbene, a methylated stilbene derived from many plant foods, has significant anti-inflammatory activity. Meanwhile, vascular dementia (VaD) is the second most common subtype of dementia, in which inflammation is one of the major pathogenic contributors. However, the protective effect of pterostilbene on VaD is not well understood. In this work, we investigated the effect of pterostilbene on VaD and explored its underlying mechanisms using in vivo and in vitro models. Y-maze and Morris water maze tests showed pterostilbene-attenuated cognitive impairment in mice with bilateral common carotid artery occlusion (BCCAO). The hippocampal neuronal death and microglial activation in BCCAO mice were also reduced by pterostilbene treatment. Further, pterostilbene inhibited the expression of TLR4 and downstream inflammatory cytokines in these mice, with similar results observed in an oxygen-glucose deprivation and reperfusion (OGD/R) BV-2 cell model. In addition, its anti-inflammatory effect on OGD/R BV-2 cells was partially blocked by TLR4 overexpression. Moreover, Triad3A-TLR4 interactions were increased by pterostilbene following enhanced ubiquitination and degradation of TLR4, and the inhibitory effect of pterostilbene on inflammation was blocked by Triad3A knockdown in OGD/R-stimulated BV-2 cells. Together, these results reveal that pterostilbene could reduce vascular cognitive impairment and that Triad3A-mediated TLR4 degradation might be the key target.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Ting Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Danyang Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Feng Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110004, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| |
Collapse
|
24
|
Fu N, Zhu R, Zeng S, Li N, Zhang J. Effect of Anesthesia on Oligodendrocyte Development in the Brain. Front Syst Neurosci 2022; 16:848362. [PMID: 35664684 PMCID: PMC9158484 DOI: 10.3389/fnsys.2022.848362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.
Collapse
|
25
|
A3 adenosine receptor agonist IB-MECA reverses chronic cerebral ischemia-induced inhibitory avoidance memory deficit. Eur J Pharmacol 2022; 921:174874. [DOI: 10.1016/j.ejphar.2022.174874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
26
|
Poh L, Sim WL, Jo DG, Dinh QN, Drummond GR, Sobey CG, Chen CLH, Lai MKP, Fann DY, Arumugam TV. The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 2022; 17:4. [PMID: 35000611 PMCID: PMC8744307 DOI: 10.1186/s13024-021-00506-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
There is an increasing prevalence of Vascular Cognitive Impairment (VCI) worldwide, and several studies have suggested that Chronic Cerebral Hypoperfusion (CCH) plays a critical role in disease onset and progression. However, there is a limited understanding of the underlying pathophysiology of VCI, especially in relation to CCH. Neuroinflammation is a significant contributor in the progression of VCI as increased systemic levels of the proinflammatory cytokine interleukin-1β (IL-1β) has been extensively reported in VCI patients. Recently it has been established that CCH can activate the inflammasome signaling pathways, involving NLRP3 and AIM2 inflammasomes that critically regulate IL-1β production. Given that neuroinflammation is an early event in VCI, it is important that we understand its molecular and cellular mechanisms to enable development of disease-modifying treatments to reduce the structural brain damage and cognitive deficits that are observed clinically in the elderly. Hence, this review aims to provide a comprehensive insight into the molecular and cellular mechanisms involved in the pathogenesis of CCH-induced inflammasome signaling in VCI.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Quynh Nhu Dinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K. P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
27
|
Wan YS, You Y, Ding QY, Xu YX, Chen H, Wang RR, Huang YW, Chen Z, Hu WW, Jiang L. Triptolide protects against white matter injury induced by chronic cerebral hypoperfusion in mice. Acta Pharmacol Sin 2022; 43:15-25. [PMID: 33824460 PMCID: PMC8724323 DOI: 10.1038/s41401-021-00637-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
White matter injury is the major pathological alteration of subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion. It is characterized by progressive demyelination, apoptosis of oligodendrocytes and microglial activation, which leads to impairment of cognitive function. Triptolide exhibits a variety of pharmacological activities including anti-inflammation, immunosuppression and antitumor, etc. In this study, we investigated the effects of triptolide on white matter injury and cognitive impairments in mice with chronic cerebral hypoperfusion induced by the right unilateral common carotid artery occlusion (rUCCAO). We showed that triptolide administration alleviated the demyelination, axonal injury, and oligodendrocyte loss in the mice. Triptolide also improved cognitive function in novel object recognition test and Morris water maze test. In primary oligodendrocytes following oxygen-glucose deprivation (OGD), application of triptolide (0.001-0.1 nM) exerted concentration-dependent protection. We revealed that the protective effect of triptolide resulted from its inhibition of oligodendrocyte apoptosis via increasing the phosphorylation of the Src/Akt/GSK3β pathway. Moreover, triptolide suppressed microglial activation and proinflammatory cytokines expression after chronic cerebral hypoperfusion in mice and in BV2 microglial cells following OGD, which also contributing to its alleviation of white matter injury. Importantly, mice received triptolide at the dose of 20 μg·kg-1·d-1 did not show hepatotoxicity and nephrotoxicity even after chronic treatment. Thus, our results highlight that triptolide alleviates whiter matter injury induced by chronic cerebral hypoperfusion through direct protection against oligodendrocyte apoptosis and indirect protection by inhibition of microglial inflammation. Triptolide may have novel indication in clinic such as the treatment of chronic cerebral hypoperfusion-induced SIVD.
Collapse
Affiliation(s)
- Yu-shan Wan
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Yi You
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Qian-yun Ding
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.268505.c0000 0000 8744 8924College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Yi-xin Xu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Han Chen
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Rong-rong Wang
- grid.13402.340000 0004 1759 700XDepartment of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yu-wen Huang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Zhong Chen
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.268505.c0000 0000 8744 8924College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Wei-wei Hu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Lei Jiang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
28
|
Yan F, Tian Y, Huang Y, Wang Q, Liu P, Wang N, Zhao F, Zhong L, Hui W, Luo Y. Xi-Xian-Tong-Shuan capsule alleviates vascular cognitive impairment in chronic cerebral hypoperfusion rats by promoting white matter repair, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Biomed Pharmacother 2021; 145:112453. [PMID: 34808554 DOI: 10.1016/j.biopha.2021.112453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While the number of cases of vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has been increasing every year, there are currently no clinically effective treatment methods. At present, Xi-Xian-Tong-Shuan capsule is predominantly used in patients with acute cerebral ischemia; however, its protective effect on CCH has rarely been reported. OBJECTIVE To explore the underlying mechanisms by which Xi-Xian-Tong-Shuan capsule alleviates cognitive impairment caused by CCH. METHODS A model of CCH was established in specific-pathogen-free (SPF)-grade male Sprague-Dawley (SD) rats using bilateral common carotid artery occlusion (BCCAO). Xi-Xian-Tong-Shuan capsules were intragastrically administered for 42 days after the BCCAO surgery. We then assessed for changes in cognitive function, expression levels of pro-inflammatory factors, and coagulation function as well as for the presence of white matter lesions and neuronal loss. One-way ANOVA and Tukey's test were used to analyze the experimental data. RESULTS The rats showed significant cognitive dysfunction after the BCCAO surgery along with white matter lesions, a loss of neurons, and elevated levels of inflammatory factors, all of which were significantly reversed after intervention with Xi-Xian-Tong-Shuan capsules. CONCLUSION Xi-Xian-Tong-Shuan capsules can ameliorate vascular cognitive impairment in CCH rats by preventing damage of white matter, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Our study provides a new reference for the clinical treatment of chronic cerebral ischemia with Xi-Xian-Tong-Shuan capsules.
Collapse
Affiliation(s)
- Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Tian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ningqun Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wuhan Hui
- Department of Hematology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Cognitive Dysfunction after Heart Disease: A Manifestation of the Heart-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4899688. [PMID: 34457113 PMCID: PMC8387198 DOI: 10.1155/2021/4899688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The functions of the brain and heart, which are the two main supporting organs of human life, are closely linked. Numerous studies have expounded the mechanisms of the brain-heart axis and its related clinical applications. However, the effect of heart disease on brain function, defined as the heart-brain axis, is less studied even though cognitive dysfunction after heart disease is one of its most frequently reported manifestations. Hypoperfusion caused by heart failure appears to be an important risk factor for cognitive decline. Blood perfusion, the immune response, and oxidative stress are the possible main mechanisms of cognitive dysfunction, indicating that the blood-brain barrier, glial cells, and amyloid-β may play active roles in these mechanisms. Clinicians should pay more attention to the cognitive function of patients with heart disease, especially those with heart failure. In addition, further research elucidating the associated mechanisms would help discover new therapeutic targets to intervene in the process of cognitive dysfunction after heart disease. This review discusses cognitive dysfunction in relation to heart disease and its potential mechanisms.
Collapse
|
30
|
Jiang L, Cheng L, Chen H, Dai H, An D, Ma Q, Zheng Y, Zhang X, Hu W, Chen Z. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury. J Exp Med 2021; 218:152128. [PMID: 32991666 PMCID: PMC7527977 DOI: 10.1084/jem.20191365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) with the pathological characteristic of white matter injury often leads to lifelong cognitive and neurobehavioral dysfunction, but relevant therapies to promote remyelination are still unavailable. We found that histamine H2 receptor (H2R) negatively regulated the oligodendrocyte differentiation rate without affecting the oligodendrocytes at the oligodendrocyte precursor cell stage or mature stage following oxygen-glucose deprivation in vitro. Notably, selective deletion of the H2R gene (Hrh2) in differentiating oligodendrocytes (Hrh2fl/fl;CNPase-Cre) improved their differentiation, remyelination, and functional recovery following neonatal hypoxia-ischemia in mice. The regulation of oligodendrocyte differentiation by H2R is mediated by binding with Axin2, which leads to up-regulation of the Wnt/β-catenin signaling pathway. Furthermore, H2R antagonists also promoted oligodendrocyte differentiation and remyelination and the recovery of cognition and motor functions following neonatal hypoxia-ischemia. Thus, histamine H2R in oligodendrocytes could serve as a novel and effective therapeutic target for the retard of oligodendrocyte differentiation and remyelination following neonatal hypoxia-ischemia. The H2R antagonists may have potential therapeutic value for neonatal HIE.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Cheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanrong Zheng
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Department of Anatomy, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Poh L, Fann DY, Wong P, Lim HM, Foo SL, Kang SW, Rajeev V, Selvaraji S, Iyer VR, Parathy N, Khan MB, Hess DC, Jo DG, Drummond GR, Sobey CG, Lai MKP, Chen CLH, Lim LHK, Arumugam TV. AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol Psychiatry 2021; 26:4544-4560. [PMID: 33299135 DOI: 10.1038/s41380-020-00971-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response-particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1β and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Peiyan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sok Lin Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sung-Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinaya Rajagopal Iyer
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nageiswari Parathy
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea. .,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
32
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
33
|
Psenicka MW, Smith BC, Tinkey RA, Williams JL. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front Cell Neurosci 2021; 15:654284. [PMID: 34234647 PMCID: PMC8255483 DOI: 10.3389/fncel.2021.654284] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The pathology in neurodegenerative diseases is often accompanied by inflammation. It is well-known that many cells within the central nervous system (CNS) also contribute to ongoing neuroinflammation, which can promote neurodegeneration. Multiple sclerosis (MS) is both an inflammatory and neurodegenerative disease in which there is a complex interplay between resident CNS cells to mediate myelin and axonal damage, and this communication network can vary depending on the subtype and chronicity of disease. Oligodendrocytes, the myelinating cell of the CNS, and their precursors, oligodendrocyte precursor cells (OPCs), are often thought of as the targets of autoimmune pathology during MS and in several animal models of MS; however, there is emerging evidence that OPCs actively contribute to inflammation that directly and indirectly contributes to neurodegeneration. Here we discuss several contributors to MS disease progression starting with lesion pathology and murine models amenable to studying particular aspects of disease. We then review how OPCs themselves can play an active role in promoting neuroinflammation and neurodegeneration, and how other resident CNS cells including microglia, astrocytes, and neurons can impact OPC function. Further, we outline the very complex and pleiotropic role(s) of several inflammatory cytokines and other secreted factors classically described as solely deleterious during MS and its animal models, but in fact, have many neuroprotective functions and promote a return to homeostasis, in part via modulation of OPC function. Finally, since MS affects patients from the onset of disease throughout their lifespan, we discuss the impact of aging on OPC function and CNS recovery. It is becoming clear that OPCs are not simply a bystander during MS progression and uncovering the active roles they play during different stages of disease will help uncover potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan W. Psenicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brandon C. Smith
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Rachel A. Tinkey
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jessica L. Williams
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
34
|
Ran H, Yuan J, Huang J, Wang J, Chen K, Zhou Z. Adenosine A 2A Receptors in Bone Marrow-Derived Cells Attenuate Cognitive Impairment in Mice After Chronic Hypoperfusion White Matter Injury. Transl Stroke Res 2020; 11:1028-1040. [PMID: 32394183 PMCID: PMC7496018 DOI: 10.1007/s12975-019-00778-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
The mechanism of cognitive dysfunction caused by ischemic white matter lesions is unclear. To explore the effect and mechanism of different cell-derived adenosine A2A receptor (A2AR) in cognitive impairment caused by chronic hypoperfusion white matter lesions (CHWMLs), we destroyed the bone marrow hematopoietic capacity of the recipient mice using radiation irradiation followed by establishing the selectively inactivated or reconstituted A2AR models with the transplanting bone marrow from global A2AR gene knockout or wild-type mice into wild-type or gene knockout mice, respectively. Then Morris Water Maze (MWM), ELISA, immunohistochemistry, and Bielschowsky silver staining were used to assess the effect and mechanism of the cognitive function in chronic cerebral blood flow hypoperfusion (CCH) model. Selectively reconstructing bone marrow-derived cells (BMDCs) A2AR (WT → KO group) and activated total adenosine A2AR with CGS21680 (CCH + CGS group) improved the cognitive related index. Activation of BMDC A2AR suppressed expression of inflammatory cytokines in peripheral blood and reduced the number of activated microglia cells co-localized with cystatin F in local brain, consequently inhibited white matter lesions. On the contrary, selective inactivation of adenosine A2AR (KO → WT group) and activation of non-BMDC A2AR with CGS21680 (KO → WT + CGS group) served the opposite effects. These results suggested that BMDC A2AR could inhibit white matter lesions and attenuate cognitive impairment after CHWMLs, whereas non-BMDC A2ARs aggravate cognitive impairment. The systemic inflammatory response and local activated microglia with cystatin F high expression were involved in the process of cognitive function recovery with BMDC A2AR. The overall trend is that BMDC A2ARs play a leading role.
Collapse
Affiliation(s)
- Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kangning Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
35
|
Youssef MI, Zhou Y, Eissa IH, Wang Y, Zhang J, Jiang L, Hu W, Qi J, Chen Z. Tetradecyl 2,3-dihydroxybenzoate alleviates oligodendrocyte damage following chronic cerebral hypoperfusion through IGF-1 receptor. Neurochem Int 2020; 138:104749. [PMID: 32387468 DOI: 10.1016/j.neuint.2020.104749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Currently, there is no effective therapy for chronic cerebral hypoperfusion-induced subcortical ischemic vascular dementia (SIVD), which displays cognitive deficits and progressive white matter damage. Tetradecyl 2,3-dihydroxybenzoate (ABG-001) is a lead compound derived from gentisides with neuritogenic activity. In this report, we intended to investigate the effect of ABG-001 on the SIVD experimental model through right unilateral common carotid arteries occlusion (rUCCAO) in mice. We found that ABG-001 remarkably alleviated white matter damage and cognitive deficits after cerebral hypoperfusion induced by rUCCAO. The protection of ABG-001 on the white matter was related to an amelioration of the oligodendrocyte apoptosis and demyelination rather than promoting remyelination. Molecular docking study showed that ABG-001 possesses a high affinity for insulin-like growth factor-1 receptor (IGF-1R), but not for tropomyosin receptor kinase A (TrkA). The protection of ABG-001 against oligodendrocyte damage was abrogated by IGF-1R antagonist or knockdown of IGF-1R through shRNA, but not TrkA antagonist. Moreover, ABG-001 did not induce hematological, renal or hepatic toxicity after chronic treatment. The present study indicates that ABG-001 protects oligodendrocytes through IGF-1R to relieve demyelination following chronic cerebral hypoperfusion, which could be represented as an encouraging treatment for SIVD.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Yiting Zhou
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, Zhejiang, 310016, PR China
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Yanhui Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Zhang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, East Qingchun Road 3, Hangzhou, Zhejiang, 310016, PR China
| | - Lei Jiang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Weiwei Hu
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Jianhua Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
36
|
Xie D, Ge X, Ma Y, Tang J, Wang Y, Zhu Y, Gao C, Pan S. Clemastine improves hypomyelination in rats with hypoxic-ischemic brain injury by reducing microglia-derived IL-1β via P38 signaling pathway. J Neuroinflammation 2020; 17:57. [PMID: 32061255 PMCID: PMC7023767 DOI: 10.1186/s12974-019-1662-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background Microglia activation is associated with the development of hypoxic–ischemic brain injury (HIBI). Neuroinflammation suppression might be a suitable therapeutic target in hypoxic oligodendrocyte injury. This study aims to determine whether clemastine can improve hypomyelination by suppressing the activated microglia and promoting the maturation of oligodendrocyte progenitor cells (OPCs) in HIBI. Methods A bilateral common carotid artery occlusion (BCCAO) rat model that received continuous intraperitoneal injection (1 mg/kg) for 14 days was employed to elaborate the neuroprotection effects of clemastine. Interleukin-1β (IL-1β), nod-like receptor protein 3 (NLRP3), histamine H1 receptor, and OPC differentiation levels in the corpus callosum were measured. Primary cultured OPCs and co-culture of microglia and OPCs were used to explore the link between microglia activation and hypomyelination. Data were evaluated by one-way ANOVA with Fisher’s protected least significant difference test. Results Clemastine treatment could reverse hypomyelination and restrain the upregulation of IL-1β and NLRP3 in the corpus callosum of BCCAO rats. Primary cultured OPCs treated with IL-1β showed failed maturation. However, clemastine could also reverse the OPC maturation arrest by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Co-culture of microglia and OPCs with oxygen glucose deprivation treatment exhibited IL-1β and NLRP3 upregulation. Clemastine could downregulate NLRP3 and IL-1β and reverse hypomyelination by inhibiting the p38 signaling pathway. Conclusions Clemastine could restrain microglia activation, improve axonal hypomyelination in BCCAO rats, and thus might be a viable strategy to inhibit hypomyelination in the corpus callosum of patients with HIBI.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yanli Ma
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Jialong Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Yajie Zhu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, China.
| |
Collapse
|
37
|
Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. Eur J Pharmacol 2020; 874:172988. [PMID: 32032599 DOI: 10.1016/j.ejphar.2020.172988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is a major public health concern with high rates of morbidity and mortality worldwide. Currently used medications, though effective, are also associated with several adverse effects. Development of effective neuroprotective agents with fewer side-effects would be of clinical value. Previous studies have shown that withaferin compounds have a potential neuroprotective effect in nervous system disorders. However, the effect of withaferin compounds, especially withaferin A (WFA), on traumatic brain injury is unclear. In the present study, both in vivo and in vitro models were used to assess whether WFA could exert a neuroprotective effect after TBI and were used to explore the associated mechanisms. The results showed that WFA significantly improved neurobehavioral function in a dose-dependent fashion and alleviated histological alteration of injury to tissues in TBI mice. In vitro models of TBI revealed that dose-dependent WFA treatment increased the viability of SH-SY5Y cells. In addition, WFA treatment could attenuate blood-brain barrier disruption and brain edema via suppressing apoptosis in endothelial cells. Furthermore, both our in vivo and in vitro results reveal that WFA treatment could significantly reduce levels of several neuroinflammation cytokines (IL-1β, IL-6, and TNF-α), which correlate with an overall reduction in microglial activation. These data suggest that the neuroprotection by WFA is, at least in part, related to regulation of microglial activation and inhibition of vascular endothelial cell apoptosis. Taken together, these findings support further investigation of WFA as a promising therapeutic agent for promoting functional recovery after traumatic brain injury.
Collapse
|
38
|
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, Guadalupi L, Bruno A, Dolcetti E, Buttari F, Bullitta S, Vanni V, Centonze D, Mandolesi G. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets 2020; 24:37-46. [PMID: 31899994 DOI: 10.1080/14728222.2020.1709823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.Areas covered: Recent studies in animal models, together with the development of ex vivo chimeric MS models, have disclosed a critical role for IL-1 not only at the peripheral level but also within the CNS. In the present review, we highlight the IL-1-dependent neuropathological aspects of MS, by providing an overview of the cells of the immune and CNS systems that respond to IL-1 signaling, and by emphasizing the subsequent effects on the CNS, from demyelinating processes, to synaptopathy, and excitotoxicity.Expert opinion: Drugs that act on the IL-1 system show a therapeutic potential in several autoinflammatory diseases and preclinical studies have highlighted the effects of these compounds in MS. We will discuss why anti-IL-1 therapies in MS have been neglected to date.
Collapse
Affiliation(s)
- Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
39
|
Han QY, Zhang H, Zhang X, He DS, Wang SW, Cao X, Dai YT, Xu Y, Han LJ. dl-3-n-butylphthalide preserves white matter integrity and alleviates cognitive impairment in mice with chronic cerebral hypoperfusion. CNS Neurosci Ther 2019; 25:1042-1053. [PMID: 31334611 PMCID: PMC6698981 DOI: 10.1111/cns.13189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023] Open
Abstract
Aims Effects of dl‐3‐n‐butylphthalide (NBP) on white matter damage and cognitive impairment in vascular cognitive impairment (VCI) have not been well studied. This study aimed to investigate the effects of NBP treatment on chronic cerebral hypoperfusion‐induced white matter lesions and cognitive dysfunction in mice. Methods Mice were subjected to bilateral common carotid artery stenosis (BCAS) for over 30 days. The cerebral blood flow was detected using a laser Doppler flowmetry. Cognitive functions were assessed by several behavioral tests. We also evaluated the effects of NBP on the blood‐brain barrier (BBB) disruption and reactive astrogliosis, using Evans Blue extravasation, Western blot, CBA, and immunofluorescence in BCAS mice and cultured astrocytes. Results The results indicated that NBP treatment attenuated spatial memory dysfunction while promoted cerebral perfusion and white matter integrity in BCAS mice. Moreover, NBP treatment prevented BBB leakage and damage of endothelial cells, as well as disruption of endothelial tight junctions. Furthermore, NBP administration effectively decreased the number of activated astrocytes and pro‐inflammatory cytokines, as well as the production of MMPs, in BCAS‐induced mice and LPS‐stimulated astrocytes. Conclusion Our results indicated that NBP represents a promising therapy for chronic cerebral hypoperfusion‐induced white matter damage and cognitive impairment.
Collapse
Affiliation(s)
- Qin-Yu Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dong-Sheng He
- Department of Neurology, The Northern Area of Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Sun-Wei Wang
- Department of Neurology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yu-Tian Dai
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li-Juan Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Zhang Z, Zhou M, Liu N, Shi Z, Pang Y, Li D, Qi J, Wu H, An R. The protection of New Interacting Motif E shot (NIMoEsh) in mice with collagenase-induced acute stage of intracerebral hemorrhage. Brain Res Bull 2019; 148:70-78. [PMID: 30935978 DOI: 10.1016/j.brainresbull.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Aberrant c-Jun N terminal kinase (JNK) activation is broadly involved in the pathogenesis of several acute and chronic neurological diseases. However, the mechanism of JNK activation leading to aggravation of injury after ICH remains unclear. In this study, we confirmed that using NIMoEsh to inhibit JNK activation effectively reduced the level of brain injury following ICH. We evaluated brain outcomes by histology, immunofluorescence, Luxol fast blue/Cresyl violet staining and other experimental methods. We found that NIMoEsh could significantly inhibit the activity of JNK and thus improve inflammation, white-matter damage and neuronal cell death after ICH in mice. Our results suggest that JNK activation plays an important role of brain damage after acute stage of ICH and that NIMoEsh may be a potential target drug for the treatment of ICH.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Zhou
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Nana Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Zhongkai Shi
- Radioimmunoassay Laboratory Department, Heilongjiang Province Hospital, Harbin 150036, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Danyang Li
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin 150001, China.
| | - Ruihua An
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
41
|
Wang QG, Xue X, Yang Y, Gong PY, Jiang T, Zhang YD. Angiotensin IV suppresses inflammation in the brains of rats with chronic cerebral hypoperfusion. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318799587. [PMID: 30223703 PMCID: PMC6144503 DOI: 10.1177/1470320318799587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the influence of central angiotensin IV (Ang IV) infusion on chronic cerebral hypoperfusion (CCH)-related neuropathological changes including amyloid-β (Aβ), hyperphosphorylated tau (p-tau) and the inflammatory response. MATERIALS AND METHODS Rats with CCH received central infusion of Ang IV, its receptor AT4R antagonist divalinal-Ang IV or artificial cerebrospinal fluid for six weeks. During this procedure, the systolic blood pressure (SBP) was monitored, and the levels of Aβ42, p-tau and pro-inflammatory cytokines in the brain were detected. RESULTS Rats with CCH exhibited higher levels of Aβ42, p-tau and pro-inflammatory cytokines in the brain when compared with controls. Infusion of Ang IV significantly reduced the expression of pro-inflammatory cytokines in the brains of rats with CCH. Meanwhile, the reduction of pro-inflammatory cytokines levels caused by Ang IV was reversed by divalinal-Ang IV. During the treatment, the SBP in rats was not significantly altered. CONCLUSION This study demonstrates for the first time that Ang IV dose-dependently suppresses inflammation through AT4R in the brains of rats with CCH, which is independent from SBP. These findings suggest that Ang IV/AT4R may represent a potential therapeutic target for CCH-related neurological diseases.
Collapse
Affiliation(s)
- Qing-Guang Wang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China.,2 Department of Neurology, Jiangyin People's Hospital, Nanjing Medical University, People's Republic of China
| | - Xiao Xue
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Yang Yang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Peng-Yu Gong
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Teng Jiang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Ying-Dong Zhang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| |
Collapse
|
42
|
Li Q, Zhao H, Pan P, Ru X, Zuo S, Qu J, Liao B, Chen Y, Ruan H, Feng H. Nexilin Regulates Oligodendrocyte Progenitor Cell Migration and Remyelination and Is Negatively Regulated by Protease-Activated Receptor 1/Ras-Proximate-1 Signaling Following Subarachnoid Hemorrhage. Front Neurol 2018; 9:282. [PMID: 29922213 PMCID: PMC5996890 DOI: 10.3389/fneur.2018.00282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/10/2018] [Indexed: 01/03/2023] Open
Abstract
Progressive white matter (WM) impairments caused by subarachnoid hemorrhage (SAH) contribute to cognitive deficits and poor clinical prognoses; however, their pathogenetic mechanisms are poorly understood. We investigated the role of nexilin and oligodendrocyte progenitor cell (OPC)-mediated repair in a mouse model of experimental SAH generated via left endovascular perforation. Nexilin expression was enhanced by the elevated migration of OPCs after SAH. Knocking down nexilin by siRNA reduced OPC migration both in vitro and in vivo and abridged WM repair. In contrast, the protease-activated receptor 1 (PAR1), Ras-proximate-1 (RAP1) and phosphorylated RAP1 (pRAP1) levels in WM were elevated after SAH. The genetic inhibition of PAR1 reduced RAP1 and pRAP1 expression, further enhancing nexilin expression. When delivered at an early stage at a concentration of 25 µg/kg, thrombin receptor antagonist peptide along with PAR1 knockdown rescued the down-regulation of myelin basic protein and improved remyelination at the later stage of SAH. Our results suggest that nexilin is required for OPC migration and remyelination following SAH, as it negatively regulates PAR1/RAP1 signaling, thus providing a promising therapeutic target in WM repair and functional recovery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pengyu Pan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jie Qu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Liao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. J Neurosci 2018; 38:3520-3533. [PMID: 29507145 DOI: 10.1523/jneurosci.2451-17.2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H2O2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders.SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative and mental disorders that are accompanied by cognitive impairment; however, the underlying mechanisms require clarification. Here, we used a chronic cerebral hypoperfusion mouse model to investigate whether TRPM2, a Ca2+-permeable cation channel highly expressed in immune cells, plays a destructive role in the development of chronic cerebral hypoperfusion-induced cognitive impairment, and propose a new hypothesis in which TRPM2-mediated activation of microglia, not macrophages, specifically contributes to the pathology through the aggravation of inflammatory responses. These findings shed light on the understanding of the mechanisms of chronic cerebral hypoperfusion-related inflammation, and are expected to provide a novel therapeutic molecule for cognitive impairment in CNS diseases.
Collapse
|
44
|
Pentón-Rol G, Marín-Prida J, Falcón-Cama V. C-Phycocyanin and Phycocyanobilin as Remyelination Therapies for Enhancing Recovery in Multiple Sclerosis and Ischemic Stroke: A Preclinical Perspective. Behav Sci (Basel) 2018; 8:bs8010015. [PMID: 29346320 PMCID: PMC5791033 DOI: 10.3390/bs8010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Myelin loss has a crucial impact on behavior disabilities associated to Multiple Sclerosis (MS) and Ischemic Stroke (IS). Although several MS therapies are approved, none of them promote remyelination in patients, limiting their ability for chronic recovery. With no available therapeutic options, enhanced demyelination in stroke survivors is correlated with a poorer behavioral recovery. Here, we show the experimental findings of our group and others supporting the remyelinating effects of C-Phycocyanin (C-PC), the main biliprotein of Spirulina platensis and its linked tetrapyrrole Phycocyanobilin (PCB), in models of these illnesses. C-PC promoted white matter regeneration in rats and mice affected by experimental autoimmune encephalomyelitis. Electron microscopy analysis in cerebral cortex from ischemic rats revealed a potent remyelinating action of PCB treatment after stroke. Among others biological processes, we discussed the role of regulatory T cell induction, the control of oxidative stress and pro-inflammatory mediators, gene expression modulation and COX-2 inhibition as potential mechanisms involved in the C-PC and PCB effects on the recruitment, differentiation and maturation of oligodendrocyte precursor cells in demyelinated lesions. The assembled evidence supports the implementation of clinical trials to demonstrate the recovery effects of C-PC and PCB in these diseases.
Collapse
Affiliation(s)
- Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| | - Javier Marín-Prida
- Center for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/214 y 222, La Lisa, PO Box 430, Havana 13600, Cuba.
| | - Viviana Falcón-Cama
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| |
Collapse
|
45
|
Yu X, Wu H, Zhao Y, Guo Y, Chen Y, Dong P, Mu Q, Wang X, Wang X. Bone marrow mesenchymal stromal cells alleviate brain white matter injury via the enhanced proliferation of oligodendrocyte progenitor cells in focal cerebral ischemic rats. Brain Res 2017; 1680:127-136. [PMID: 29258846 DOI: 10.1016/j.brainres.2017.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023]
Abstract
The effects of transplanting bone marrow mesenchymal stromal cells (BMSCs) for the treatment of white matter damage are not well understood, nor are the underlying mechanisms. Recent studies showed that endogenous oligodendrocyte progenitor cells (OPCs) can be stimulated to proliferate. Therefore, we explore the effects of BMSCs transplantation on white matter damage and the proliferation of OPCs in transient focal cerebral ischemic rats. BMSCs were transplanted into a group of rats that had undergone middle cerebral artery occlusion (MCAO) 24 h after reperfusion. The ratswere examined by MRI-T2 and DTI sequencesdynamically. The proliferating cells were labeled by 5-Bromo-2'-deoxyuridine (BrdU). The effects of BMSC transplantation on neurons, axons, myelination, and proliferating OPCs were examined by Nissl staining, MBP/NF-H and BrdU/NG2 immunofluorescence staining7 days after transplantation. More Nissl-stained neuronswere found and the FA value of MRI-DTI was significantly higher in the MCAO + BMSCs group than in the MCAOgroup (both P < .01). The fold change of MBP protein was significantly higher in the MCAO + BMSCs group than in the MCAO group (P < .01); the same was true of NF-H protein. Additionally, there were more BrdU+NG2+ cells in the SVZ areas of the MCAO + BMSCs group than in the MCAO group (P < .01). BMSCs thus were shown to alleviate neuronal/axonal injury and promote the proliferation of OPCs and formation of myelin sheath, significantly alleviating white matter damage in focal cerebral ischemic rats.
Collapse
Affiliation(s)
- Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hongjuan Wu
- Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Yansong Zhao
- Department of Ophthalmology, Weifang Medical University Affiliated Hospital, Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Yuanyuan Guo
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Yuxi Chen
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Peng Dong
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China
| | - Qingjie Mu
- Department of Hematology, Clinical Medical Institute, Weifang Medical University, Weifang 261053, PR China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
46
|
Zhou D, Meng R, Li SJ, Ya JY, Ding JY, Shang SL, Ding YC, Ji XM. Advances in chronic cerebral circulation insufficiency. CNS Neurosci Ther 2017; 24:5-17. [PMID: 29143463 DOI: 10.1111/cns.12780] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) may not be an independent disease; rather, it is a pervasive state of long-term cerebral blood flow insufficiency caused by a variety of etiologies, and considered to be associated with either occurrence or recurrence of ischemic stroke, vascular cognitive impairment, and development of vascular dementia, resulting in disability and mortality worldwide. This review summarizes the features and recent progress of CCCI, mainly focusing on epidemiology, experimental research, pathophysiology, etiology, clinical manifestations, imaging presentation, diagnosis, and potential therapeutic regimens. Some research directions are briefly discussed as well.
Collapse
Affiliation(s)
- Da Zhou
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Si-Jie Li
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jing-Yuan Ya
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia-Yue Ding
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ling Shang
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Chuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xun-Ming Ji
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|