1
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Aflouk Y, Saoud H, Inoubli O, Yacoub S, Zaafrane F, Gaha L, Bel Hadj Jrad B. TLR4 Polymorphisms (T399I/D299G) Association with Schizophrenia and Bipolar Disorder in a Tunisian Population. Biochem Genet 2024; 62:2418-2436. [PMID: 37947916 DOI: 10.1007/s10528-023-10553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Immune dysregulation has been widely described in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). Particularly, TLR4-altered activation was proposed as one of the underlying processes of psychosis onset. Since TLR4 activation was altered by T399I and D299G polymorphisms, we hypothesized that those variants could present common genetic factors of SCZ and BD. A total of 293 healthy volunteers and 335 psychotic patients were genotyped using PCR-RFLP. Genotype, allele, and haplotype distribution between controls and patients were evaluated according to clinical parameters. Statistical analyses were adjusted by logistic regression. In dominant model, T399I CT + TT and allele frequency were significantly higher in controls compared to psychotic population (p = 0.004, p = 0.002, respectively), SCZ (p = 0.02, p = 0.01, respectively), and BD (p = 0.03, p = 0.02, respectively). Similarly, D299G AG + GG and allele frequency were significantly higher in controls compared to psychotic population (p = 0.04, p = 0.04, respectively) and SCZ (p = 0.04, p = 0.03, respectively). T399I CT + TT and T allele were overrepresented in controls compared to paranoid subgroup (Padjusted = 0.04, p = 0.04, respectively) and type I BD (p = 0.04). Moreover, T399I and D299G were less prevalent in SCZ late-onset age (p = 0.03, p = 0.02, respectively). TA haplotype was associated with protection from psychoses (p = 0.02) and particularly from schizophrenia (p = 0.04). In conclusion, TLR4 polymorphisms could present a preventive genetic background against psychoses onset in a Tunisian population. While T399I could be associated with protection against SCZ and BD, presenting an overlapping genetic factor between those psychoses, D299G was suggested to be associated with protection only from schizophrenia.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia.
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| | - Oumaima Inoubli
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| | - Saloua Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, 4000, Sousse, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Avenue Taher Haded, 5000, Monastir, Tunisia
| |
Collapse
|
3
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Weickert TW, Ji E, Galletly C, Boerrigter D, Morishima Y, Bruggemann J, Balzan R, O’Donnell M, Liu D, Lenroot R, Weickert CS, Kindler J. Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning. Schizophr Bull 2024; 50:403-417. [PMID: 38102721 PMCID: PMC10919782 DOI: 10.1093/schbul/sbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND HYPOTHESES Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Danny Boerrigter
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jason Bruggemann
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, Australia
- Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ryan Balzan
- School of Psychology, Flinders University, Adelaide, SA, Australia
| | - Maryanne O’Donnell
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- Kiloh Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jochen Kindler
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
5
|
Chaudhary A, Mehra P, Keshri AK, Rawat SS, Mishra A, Prasad A. The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy. Mol Neurobiol 2024; 61:1527-1542. [PMID: 37725212 DOI: 10.1007/s12035-023-03639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The new and evolving paradigms of psychiatric disorders pathogenesis are deeply inclined toward chronic inflammation that leads to disturbances in the neuronal networks of patients. A strong association has been established between the inflammation and neurobiology of depression which is mediated by different toll-like receptors (TLRs). TLRs and associated signalling pathways are identified as key immune regulators to stress and infections in neurobiology. They are a special class of transmembrane proteins, which are one of the broadly studied members of the Pattern Recognition Patterns family. This review focuses on summarizing the important findings on the role of TLRs associated with psychotic disorders and acquired epilepsy. This review also shows the promising potential of TLRs in immune response mediated through antidepressant therapies and TLRs polymorphism associated with various psychotic disorders. Moreover, this also sheds light on future directions to further target TLRs as a therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Human Computer Interface Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
6
|
Bris ÁG, MacDowell KS, Ulecia-Morón C, Martín-Hernández D, Moreno B, Madrigal JLM, García-Bueno B, Caso JR, Leza JC. Differential regulation of innate immune system in frontal cortex and hippocampus in a "double-hit" neurodevelopmental model in rats. Neurotherapeutics 2024; 21:e00300. [PMID: 38241165 PMCID: PMC10903097 DOI: 10.1016/j.neurot.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
Neurodevelopmental disorders (NDs) are neuropsychiatric conditions affecting central nervous system development, characterized by cognitive and behavioural alterations. Inflammation has been recently linked to NDs. Animal models are essential for understanding their pathophysiology and identifying therapeutic targets. Double-hit models can reproduce neurodevelopmental and neuroinflammatory impairments. Sixty-seven newborn rats were assigned to four groups: Control, Maternal deprivation (MD, 24-h-deprivation), Isolation (Iso, 5 weeks), and Maternal deprivation + Isolation (MD + Iso, also known as double-hit). Cognitive dysfunction was assessed using behavioural tests. Inflammasome, MAPKs, and TLRs inflammatory elements expression in the frontal cortex (FC) and hippocampus (HP) was analysed through western blot and qRT-PCR. Oxidative/nitrosative (O/N) evaluation and corticosterone levels were measured in plasma samples. Double-hit group was affected in executive and working memory. Most inflammasomes and TLRs inflammatory responses were increased in FC compared to the control group, whilst MAPKs were downregulated. Conversely, hippocampal inflammasome and inflammatory components were reduced after the double-hit exposure, while MAPKs were elevated. Our findings reveal differential regulation of innate immune system components in FC and HP in the double-hit group. Further investigations on MAPKs are necessary to understand their role in regulating HP neuroinflammatory status, potentially linking our MAPKs results to cognitive impairments through their proliferative and anti-inflammatory activity.
Collapse
Affiliation(s)
- Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Beatriz Moreno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain.
| |
Collapse
|
7
|
Tsai SY, Sajatovic M, Chen PH, Huang YJ, Chung KH. Increased proportions of circulating pro-inflammatory monocytes and macrophages expressing toll-like receptor 4 in individuals with schizophrenia and bipolar disorder receiving medication. Psychiatry Clin Neurosci 2023; 77:672-673. [PMID: 37706614 DOI: 10.1111/pcn.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Shang-Ying Tsai
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Martha Sajatovic
- Department of Psychiatry, University Hospitals of Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Jui Huang
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
9
|
Kübler R, Ormel PR, Sommer IEC, Kahn RS, de Witte LD. Gene expression profiling of monocytes in recent-onset schizophrenia. Brain Behav Immun 2023; 111:334-342. [PMID: 37149105 DOI: 10.1016/j.bbi.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Immune-related mechanisms have been suggested to be involved in schizophrenia. Various studies have shown changes in monocytes isolated from the blood of schizophrenia patients, including changes in monocyte numbers, as well as altered protein and transcript levels of important markers. However, validation of these findings and understanding how these results are related to immune-related changes in the brain and schizophrenia genetic risk factors, is limited. The goal of this study was to better understand changes observed in monocytes of patients with early-onset schizophrenia. Using RNA sequencing, we analyzed gene expression profiles of monocytes isolated from twenty patients with early-onset schizophrenia and seventeen healthy controls. We validated expression changes of 7 out of 29 genes that were differentially expressed in previous studies including TNFAIP3, DUSP2, and IL6. At a transcriptome-wide level, we found 99 differentially expressed genes. Effect sizes of differentially expressed genes were moderately correlated with differential expression in brain tissue (Pearson's r = 0.49). Upregulated genes were enriched for genes in NF-κB and LPS signaling pathways. Downregulated genes were enriched for glucocorticoid response pathways. These pathways have been implicated in schizophrenia before and play a role in regulating the activation of myeloid cells. Interestingly, they are also involved in several non-inflammatory processes in the central nervous system, such as neurogenesis and neurotransmission. Future studies are needed to better understand how dysregulation of the NF-κB and glucocorticoid pathways affects inflammatory and non-inflammatory processes in schizophrenia. The fact that dysregulation of these pathways is also seen in brain tissue, provides potential possibilities for biomarker development.
Collapse
Affiliation(s)
- Raphael Kübler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul R Ormel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Iris E C Sommer
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Neuroscience, University Medical Center Groningen, Groningen, the Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Matrisciano F. Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia. Curr Neuropharmacol 2023; 21:2409-2423. [PMID: 36946488 PMCID: PMC10616917 DOI: 10.2174/1570159x21666230322160259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 03/23/2023] Open
Abstract
Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago (UIC), Chicago, IL, USA
| |
Collapse
|
12
|
Mostafa M, Elwasify M, Fathy AA, Abdelsalam M. Toll-Like Receptor 4 Gene Polymorphisms and Susceptibility to Schizophrenia: A Case-Control Study. Immunol Invest 2022; 51:2009-2024. [PMID: 35815676 DOI: 10.1080/08820139.2022.2093118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schizophrenia is a common psychiatric disorder that exhibits a variety of symptoms. The exact etiology and pathogenesis are still doubtful. However, genetic and environmental factors seem to have a role. Years ago, the role of the immune system was focused on auto-antibodies, cytokines, different types of immune cells and immune genes. The Toll-like receptors (TLR) are a cornerstone of the innate immune system, particularly TLR4. TLR4 primarily recognises gram-negative lipopolysaccharides bacteria. This case-control study, for the first time to our knowledge, examined the role of TLR4 gene polymorphisms in 142 Egyptian schizophrenic patients and 175 healthy controls. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), four single nucleotide polymorphisms (SNPs) were investigated in the TLR4 gene rs11536889, rs10759931, rs1927911, and rs1927914. The Positive and Negative Syndrome Scale (PANSS) was used in diagnosis and assessment. A statistically significant association was observed between rs11536889, rs1927911 and rs1927914, but no association was found between rs10759931. There was no association between the different SNP genotypes and PANSS, except between rs1927914 and general psychopathologic symptoms. This study shows a strong association between TLR4 rs11356889 and rs1927911 minor alleles and schizophrenia. These findings could be additional evidence for the immune system's role in schizophrenia development. However, more studies with a more significant sample number, TLR4 protein assessment, and a larger number of SNPs are recommended.
Collapse
Affiliation(s)
- Maged Mostafa
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Elwasify
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ahmed Fathy
- Department of Public Health, and Community, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Abdelsalam
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo Egypt
| |
Collapse
|
13
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
14
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
15
|
Li N, Huang J, Zhang P, Tong J, Chen S, Cui Y, Tan S, Wang Z, Yang F, Hong E, Li CSR, Tian L, Tan Y. Dysfunctional monocytic toll-like receptor 4 signaling pathway and cognitive deficits in chronic schizophrenia patients with tardive dyskinesia. Neurosci Lett 2022; 777:136581. [PMID: 35337952 DOI: 10.1016/j.neulet.2022.136581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/27/2022] [Accepted: 03/16/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mounting evidence suggests that the innate immune system is disrupted in schizophrenia patients with tardive dyskinesia (TD); however, the role of the toll-like receptor 4 (TLR4) signaling pathway remains unclear METHODS: In this study, we quantified the expression of the monocytic TLR4 signaling pathway using flow cytometry, before and after lipopolysaccharide (LPS) stimulation, in chronic schizophrenia patients with (n=61) and without TD (NTD, n=61) and healthy controls (HCs, n=74). Psychopathological symptoms, the severity of TD, and cognitive function were assessed using the Positive and Negative Syndrome Scale (PANSS), Abnormal Involuntary Movement Scale (AIMS), and MATRICS Consensus Cognitive Battery (MCCB), respectively RESULTS: 1) Both TD and NTD patients showed higher TLR4 signaling pathway activity at baseline than that in HCs, but their responses to LPS were weaker than those in HCs; 2) the alteration of the TLR4 signaling pathway was less severe in TD patients than in NTD patients; 3) TLR4 levels and MCCB scores were negatively correlated at baseline but positively correlated after LPS stimulation in TD patients; 4) there was no correlation between the TLR4 signals and PANSS or AIMS scores. CONCLUSIONS Our findings suggested the TLR4 signaling pathway disturbance might be related to cognitive deficits in schizophrenia patients with TD.
Collapse
Affiliation(s)
- Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P.R. China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Li Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China; Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Estonia
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China.
| |
Collapse
|
16
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
17
|
Li H, Chen W, Gou M, Li W, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Li N, Luo X, Zhang P, Huang J, Tian L, Li CSR, Tan Y. The relationship between TLR4/NF-κB/IL-1β signaling, cognitive impairment, and white-matter integrity in patients with stable chronic schizophrenia. Front Psychiatry 2022; 13:966657. [PMID: 36051545 PMCID: PMC9424630 DOI: 10.3389/fpsyt.2022.966657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Previous studies have implicated intricate interactions between innate immunity and the brain in schizophrenia. Monocytic Toll-like receptor (TLR) 4 signaling, a crucial "sensor" of innate immunity, was reported to be over-activated in link with cognitive impairment in schizophrenia. As TLR4 is predominantly expressed on gliocytes prior to expression in neurons, we hypothesized that higher TLR4 levels may contribute to cognitive deterioration by affecting white matter microstructure. METHODS Forty-four patients with stable chronic schizophrenia (SCS) and 59 healthy controls (HCs) were recruited in this study. The monocytic function was detected with lipopolysaccharide (LPS) stimulation to simulate bacterial infection. Basal and LPS- stimulated levels of TLR4, nuclear factor-kappa B (NF-κB), and interleukin (IL)-1β were quantified with flow cytometry. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB) and psychopathological symptoms were evaluated by the Positive and Negative Syndrome Scale (PANSS). We employed diffusion tensor imaging with a 3-T scanner and evaluated white-matter integrity with fractional anisotropy (FA). Subcortical volume and cortical thickness were also assessed. RESULTS The TLR4/NF-κB/IL-1β signaling pathway was activated in patients with SCS, but responded sluggishly to LPS stimulation when compared with HCs. Furthermore, monocytic TLR4 expressions were inversely correlated with cognitive function and white matter FA, but not with cortical thickness or subcortical gray matter volume in schizophrenia. CONCLUSION Our findings support altered TLR4 signaling pathway activity in association with deficits in cognition and white matter integrity in schizophrenia.
Collapse
Affiliation(s)
- Hongna Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Xie
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
18
|
Corsi-Zuelli F, Deakin B, de Lima MHF, Qureshi O, Barnes NM, Upthegrove R, Louzada-Junior P, Del-Ben CM. T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives. Brain Behav Immun Health 2021; 17:100330. [PMID: 34661175 PMCID: PMC7611834 DOI: 10.1016/j.bbih.2021.100330] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Many studies have reported that patients with psychosis, even before drug treatment, have mildly raised levels of blood cytokines relative to healthy controls. In contrast, there is a remarkable scarcity of studies investigating the cellular basis of immune function and cytokine changes in psychosis. The few flow-cytometry studies have been limited to counting the proportion of the major classes of monocyte and lymphocytes without distinguishing their pro- and anti-inflammatory subsets. Moreover, most of the investigations are cross-sectional and conducted with patients on long-term medication. These features make it difficult to eliminate confounding of illness-related changes by lifestyle factors, disease duration, and long exposure to antipsychotics. This article focuses on regulatory T cells (Tregs), cornerstone immune cells that regulate innate and adaptive immune forces and neuro-immune interactions between astrocytes and microglia. Tregs are also implicated in cardio-metabolic disorders that are common comorbidities of psychosis. We have recently proposed that Tregs are hypofunctional ('h-Tregs') in psychosis driven by our clinical findings and other independent research. Our h-Treg-glial imbalance hypothesis offers a new account for the co-occurrence of systemic immune dysregulation and mechanisms of psychosis development. This article extends our recent review, the h-Treg hypothesis, to cover new discoveries on Treg-based therapies from pre-clinical findings and their clinical implications. We provide a detailed characterisation of Treg studies in psychosis, identifying important methodological limitations and perspectives for scientific innovation. The outcomes presented in this article reaffirms our proposed h-Treg state in psychosis and reveals emerging preclinical research suggesting the potential benefit of Treg-enhancing therapies. There is a clear need for longitudinal studies conducted with drug-naïve or minimally treated patients using more sophisticated techniques of flow-cytometry, CyTOF expression markers, and in vitro co-culture assays to formally test the suppressive capacity of Tregs. Investment in Treg research offers major potential benefits in targeting emerging immunomodulatory treatment modalities on person-specific immune dysregulations.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Mikhael Haruo Fernandes de Lima
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| | - Omar Qureshi
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive Edgbaston, Birmingham, B15 2TT, UK
- Celentyx Ltd, Birmingham Research Park, Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
| | - Nicholas M. Barnes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Prichatts Rd, Edgbaston, B152TT, UK
- Birmingham Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, B4 6NH, UK
| | - Paulo Louzada-Junior
- Center for Research on Inflammatory Diseases – CRID, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Brazil
| |
Collapse
|
19
|
Aflouk Y, Inoubli O, Saoud H, Zaafrane F, Gaha L, Bel Hadj Jrad B. Association between TLR2 polymorphisms (- 196-174 Ins/Del, R677W, R753Q, and P631H) and schizophrenia in a Tunisian population. Immunol Res 2021; 69:541-552. [PMID: 34546527 DOI: 10.1007/s12026-021-09238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Since immune dysregulation has been well studied in schizophrenia pathophysiology, recent studies showed a potent role of TLR2 in neuroinflammation process underlying schizophrenia pathogenesis. However, the genetic predisposition is still unclear. Thus, we hypothesized that TLR2 polymorphisms - 196-174 Ins/Del (rs111200466), R753Q (rs5743708), R677W (rs121917864), and P631H (rs5743704) could be involved in schizophrenia predisposition. A case-control study was performed on a Tunisian population composed of 250 healthy controls and 250 patients genotyped by PCR-RFLP. Genotype and allele distribution were evaluated with sex, schizophrenia subtypes, and other clinical features. We also assessed a haplotype analysis for TLR2 polymorphisms with schizophrenia. Our results showed higher ins/del genotype frequency in healthy women compared to patients (p = 0.006; OR = 0.2). In the other hand, logistic regression showed higher ins/del genotype frequency in controls compared to paranoid patients (p = 0.05; OR = 0.48, adjusted). Frequencies of CT and T allele of R677W were significantly higher in patients compared to controls (p < 10-4, OR = 10.39; p < 10-4, OR = 4, adjusted, respectively). R753Q polymorphism was exclusively detected in patients (GA + AA = 2.5%) particularly in men with disorganized subtype. P631H did not show any association with schizophrenia. Finally, haplotype analysis showed that InsGTC and delGTC were associated with higher risk of schizophrenia (p = 0.0001, OR = 8.58; p = 0.04, OR = 5.01, respectively). In the Tunisian population, our results suggested that TLR2 R677W could be associated with susceptibility for schizophrenia, while - 196-174 Ins/Del suggested a trend of protection in women. Otherwise, R753Q could have an effect on schizophrenia especially for disorganized subgroup.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia.
| | - Oumaima Inoubli
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| |
Collapse
|
20
|
Li WT, Huang XF, Deng C, Zhang BH, Qian K, He M, Sun TL. Olanzapine Induces Inflammation and Immune Response via Activating ER Stress in the Rat Prefrontal Cortex. Curr Med Sci 2021; 41:788-802. [PMID: 34403105 DOI: 10.1007/s11596-021-2401-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Antipsychotics, in particular olanzapine, are first-line medications for schizophrenia. The prefrontal cortex (PFC) is an important region for antipsychotics' therapeutic effects. The PFC inflammatory and immune pathways are associated with schizophrenia pathogenesis. However, the effect of antipsychotics on the inflammatory and immune pathways in the PFC remains unclear. We aimed to examined the time-dependent effect of olanzapine on inflammatory and immune markers in the PFC of rats. Since the inflammatory and immune pathways are related to endoplasmic reticulum (ER) stress, we further investigated whether or not olanzapine-induced inflammation and immune responses were related to ER stress. METHODS Expression of pro-inflammatory markers including IkappaB kinase β (IKKβ), nuclear factor kappa B (NFκB), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and IL-1β, and immune-related proteins including inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) were examined by Western blotting. RESULTS Olanzapine treatments for 1, 8 and 36 days significantly activated the inflammatory IKKβ/NFκB signaling, and increased the expression of TNF-α, IL-6, IL-1β and immune-related proteins such as iNOS, TLR4 and CD14. Olanzapine treatment for 1 day, 8 and 36 days also induced ER stress in the PFC. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced inflammation and the immune response in the PFC. CONCLUSION These results suggested olanzapine exposure could be a factor that induces central inflammation and immunological abnormities in schizophrenia subjects. Olanzapine induces PFC inflammation and immune response, possibly via activating ER stress signaling.
Collapse
Affiliation(s)
- Wen-Ting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
21
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
22
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
23
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
24
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Ortega-Vila B, Llinàs J, Hernandez-Rodriguez J, Lladó J, Olmos G, Strauch K, Heine-Suñer D, Vives-Bauzà C, Flaquer A. The conserved ASTN2/BRINP1 locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Sci Rep 2021; 11:14529. [PMID: 34267256 PMCID: PMC8282839 DOI: 10.1038/s41598-021-93555-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1–33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Francesca Cañellas
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Department of Psychiatry, HUSE, IdISBa, Palma, Spain
| | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bernat Ortega-Vila
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jaume Llinàs
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jerònia Lladó
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Gabriel Olmos
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| | - Damià Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain. .,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.
| | - Antònia Flaquer
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Abstract
OBJECTIVE Increasing evidence suggests that immunological and inflammatory dysfunctions may play an important role in predisposition, onset, and progression of schizophrenia and related psychosis. The activation of cells of the mononuclear phagocyte system, especially microglia and monocytes, has been reported in schizophrenia. We carried out this systematic review and meta-analysis to investigate if there are significant differences in monocyte count comparing healthy controls with people suffering from schizophrenia and related disorders. METHODS We searched main electronic databases; nine records met all our criteria and were included in the meta-analysis. Meta-analyses based on random effects models have been carried out generating pooled standardised mean differences (SMDs) of monocyte count in peripheral blood between schizophrenia and related psychosis and healthy controls. Heterogeneity was estimated. Relevant sensitivity and subgroup analyses were conducted. RESULTS Patients showed higher monocyte count as compared with healthy control (SMD = 0.393; p = 0.001). Heterogeneity across studies was from moderate to high (I2 = 65.952%); sensitivity analysis leaving out two studies responsible for most of the heterogeneity showed a slightly higher SMD. Subgroup analyses confirmed this result, showing no significant differences in the effect size across different study characteristics. CONCLUSIONS Monocyte count can be considered an indirect marker of microglia activation in the central nervous system. Thus, the observed higher monocyte count in patients could be considered as a possible peripheral marker of microglia's activation in schizophrenia disorder.
Collapse
|
27
|
Expression and Functionality Study of 9 Toll-Like Receptors in 33 Drug-Naïve Non-Affective First Episode Psychosis Individuals: A 3-Month Study. Int J Mol Sci 2020; 21:ijms21176106. [PMID: 32854231 PMCID: PMC7504008 DOI: 10.3390/ijms21176106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) are a pivotal component of the innate immune system that seem to have a role in the pathogenesis of psychosis. The purpose of this work was to compare the expression and functionality of 9 TLRs in three peripheral blood mononuclear cells (PBMCs) (monocytes, B cells, and T cells) between 33 drug-naïve first-episode psychosis (FEP) individuals and 26 healthy volunteers, at baseline and after 3-month of antipsychotic treatment. The expression of TLRs 1–9 were assessed by flow cytometry. For the assessment of the TLR functionality, cells collected in sodium heparin tubes were polyclonally stimulated for 18 h, with different agonists for human TLR1–9. The results of our study highlight the role that TLR5 and TLR8 might play in the pathophysiology of psychosis. We found a lower expression of these receptors in FEP individuals, regarding healthy volunteers at baseline and after 3-month of treatment on the three PBMCs subsets. Most TLRs showed a lower functionality (especially reduced intracellular levels of TNF-α) in patients than in healthy volunteers. These results, together with previous evidence, suggest that individuals with psychosis might show a pattern of TLR expression that differs from that of healthy volunteers, which could vary according to the intensity of immune/inflammatory response.
Collapse
|
28
|
Pattern of expression of Toll like receptor (TLR)-3 and -4 genes in drug-naïve and antipsychotic treated patients diagnosed with schizophrenia. Psychiatry Res 2020; 285:112727. [PMID: 31837816 DOI: 10.1016/j.psychres.2019.112727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Toll like receptors (TLRs), a class of conserved immune molecules are crucially involved in initiating innate immune response to infection. TLR activation and subsequent inflammation are linked to pathogenesis of many brain disorders. Preliminary studies indicate a possible role of TLR-driven immuno-inflammatory responses in schizophrenia. However, gene expression data of TLRs in drug-naïve as well as antipsychotic treated patients diagnosed with schizophrenia are albeit limited. In this study, expression profile of TLR3 and TLR4 genes in peripheral blood mononuclear cells (PBMCs) was compared between drug-naïve patients diagnosed with schizophrenia (N = 31) and healthy controls (N = 30). In addition, the pattern of expression of TLR3 and TLR4 genes were also examined after three months of antipsychotic medication in patients. Compared to healthy controls, gene expression levels of only TLR4 (F = 3.87, p = 0.05, ηp2 = 0.06), not TLR3 (F = 0.17, p = 0.71, ηp2 = 0.003) was significantly up-regulated in drug-naïve patients. The changes in the levels of gene expression of TLR3 (t = 0.09, p = 0.93, d = 0.02) and TLR4 (t = 0.29, p = 0.77, d = 0.06) before and after antipsychotic medication were not found to be statistically significant. This finding suggests possible contribution of TLR4 in immunopathogenetic pathway of schizophrenia.
Collapse
|
29
|
Alshammari TK, Alghamdi H, Alkhader LF, Alqahtani Q, Alrasheed NM, Yacoub H, Alnaem N, AlNakiyah M, Alshammari MA. Analysis of the molecular and behavioral effects of acute social isolation on rats. Behav Brain Res 2020; 377:112191. [DOI: 10.1016/j.bbr.2019.112191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023]
|
30
|
Alvarez-Herrera S, Escamilla R, Medina-Contreras O, Saracco R, Flores Y, Hurtado-Alvarado G, Maldonado-García JL, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L. Immunoendocrine Peripheral Effects Induced by Atypical Antipsychotics. Front Endocrinol (Lausanne) 2020; 11:195. [PMID: 32373066 PMCID: PMC7186385 DOI: 10.3389/fendo.2020.00195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAP) or second-generation antipsychotics are the clinical option for schizophrenia treatment during acute psychoses, but they are also indicated for maintenance during lifetime, even though they are being used for other psychiatric conditions in clinical practice such as affective disorders and autism spectrum disorder, among others. These drugs are differentiated from typical antipsychotics based on their clinical profile and are a better choice because they cause fewer side effects regarding extrapyramidal symptoms (EPS). Even though they provide clear therapeutic benefits, AAP induce peripheral effects that trigger phenotypic, functional, and systemic changes outside the Central Nervous System (CNS). Metabolic disease is frequently associated with AAP and significantly impacts the patient's quality of life. However, other peripheral changes of clinical relevance are present during AAP treatment, such as alterations in the immune and endocrine systems as well as the intestinal microbiome. These less studied alterations also have a significant impact in the patient's health status. This manuscript aims to revise the peripheral immunological, endocrine, and intestinal microbiome changes induced by AAP consumption recommended in the clinical guidelines for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Raúl Escamilla
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ricardo Saracco
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Yvonne Flores
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
- *Correspondence: Lenin Pavón
| |
Collapse
|
31
|
More dampened monocytic Toll-like receptor 4 response to lipopolysaccharide and its association with cognitive function in Chinese Han first-episode patients with schizophrenia. Schizophr Res 2019; 206:300-306. [PMID: 30429077 DOI: 10.1016/j.schres.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Accumulating evidence suggests alterations of the innate immune system are related to schizophrenia, although the precise mechanism remains to be elucidated. In this study, we aimed to detect the monocytic toll-like receptor 4 (TLR4) expression under basal and lipopolysaccharide (LPS)-stimulated conditions in first-episode (FE) Han Chinese patients with schizophrenia, as well as its association with cognitive function. METHODS Whole blood samples were taken in 42 FE schizophrenia patients and 36 healthy controls. Expressions of TLR4 on monocytes under basal and LPS-stimulated conditions were measured with flow cytometry. Psychopathological symptoms of schizophrenia were assessed by the Positive and Negative Syndrome Scale (PANSS) and the MATRICS Consensus Cognitive Battery (MCCB) was administered to all of the participants. RESULTS We found no differences in percentage and mean fluorescence intensity (MFI) of TLR4 expression on monocytes between patients and controls at basal status. However, LPS challenge resulted in a lower cell-surface level of TLR4 on monocytes in FE schizophrenia patients as compared to healthy controls (TLR4+%: F = 4.092, p = 0.047; TLR4 + MFI: F = 4.820, p = 0.031). In addition, correlation analysis together with multivariate linear regression analysis identified basal percentage of TLR4 in monocytes as the beneficial factor for visual learning and working memory in FE patients with schizophrenia. CONCLUSIONS Our findings suggested that TLR4 may be involved in the pathophysiology of schizophrenia, corroborating the role of innate immunity-related functional deficits in increased risk of schizophrenia.
Collapse
|
32
|
Kozłowska E, Agier J, Wysokiński A, Łucka A, Sobierajska K, Brzezińska-Błaszczyk E. The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res 2019; 272:540-550. [PMID: 30616121 DOI: 10.1016/j.psychres.2018.12.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/30/2023]
Abstract
Increasing evidence suggests that in addition to neurochemical abnormalities, various immunological alterations are related to the pathogenesis of schizophrenia. Toll-like receptors (TLRs) actively mediate immune/inflammatory processes and play a pivotal role in damage/danger recognizing. Therefore, the aim of this study was to compare the expression of TLRs in peripheral blood mononuclear cells (PBMCs) in schizophrenic patients with those of healthy subjects. It also measures the metabolic status of the study subjects. Twenty-seven adult European Caucasian patients with paranoid schizophrenia and twenty-nine healthy volunteers were included in this prospective study. qRT-PCR assessed TLR mRNA expression levels. Body composition was measured using two methods: bioimpedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). The TLR1, TLR2, TLR4, TLR6, and TLR9 expression were down-regulated, in opposite to TLR3 and TLR7 which manifested higher expression in patients with schizophrenia. TLR5 and TLR8 mRNAs did not differ between groups. TLR mRNA expression was highly correlated. Decreased TLR expression may protect against excessive cell stimulation via exogenous and/or endogenous ligands, and may be recognized as a counterbalancing mechanism limiting the excessive development of inflammation.
Collapse
Affiliation(s)
- Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Anna Łucka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | | | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| |
Collapse
|
33
|
Mantere O, Trontti K, García-González J, Balcells I, Saarnio S, Mäntylä T, Lindgren M, Kieseppä T, Raij T, Honkanen JK, Vaarala O, Hovatta I, Suvisaari J. Immunomodulatory effects of antipsychotic treatment on gene expression in first-episode psychosis. J Psychiatr Res 2019; 109:18-26. [PMID: 30463035 DOI: 10.1016/j.jpsychires.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Previous studies suggest immunological alterations in patients with first-episode psychosis (FEP). Some studies show that antipsychotic compounds may cause immunomodulatory effects. To evaluate the immunological changes and the possible immunomodulatory effects in FEP, we recruited patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, from the catchment area of the Helsinki University Hospital and the City of Helsinki, Finland. Fasting peripheral blood samples were collected between 8 and 10 a.m. in 10 ml PAXgene tubes. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 147 candidate genes reflecting activation of the immune system. Cases had higher gene expression levels of BDKRB1 and SPP1/osteopontin compared with controls. Of the individual medications used as monotherapy, risperidone was associated with a statistically significant upregulation of 11 immune system genes, including cytokines and cytokine receptors (SPP1, IL1R1, IL1R2), pattern recognition molecules (TLR1, TLR2 and TLR6, dectin-1/CLEC7A), molecules involved in apoptosis (FAS), and some other molecules with functions in immune activation (BDKRB1, IGF1R, CR1). In conclusion, risperidone possessed strong immunomodulatory properties affecting mainly innate immune response in FEP patients, whereas the observed effects of quetiapine and olanzapine were only marginal. Our results further emphasize the importance of understanding the immunomodulatory mechanisms of antipsychotic treatment, especially in terms of specific compounds, doses and duration of medication in patients with severe mental illness. Future studies should evaluate the response pre- and post-treatment, and the possible role of this inflammatory activation for the progression of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Outi Mantere
- Department of Psychiatry, McGill University, Montréal, QC, Canada; Bipolar Disorders Clinic, Douglas Mental Health University Institute, 6875, LaSalle Boulevard Montreal, Quebec, H4H 1R3, Montréal, QC, Canada.
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Judit García-González
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Ingrid Balcells
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Tuukka Raij
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Jarno K Honkanen
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Outi Vaarala
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
34
|
Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154:204-219. [PMID: 29513402 PMCID: PMC5980185 DOI: 10.1111/imm.12922] [Citation(s) in RCA: 605] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, the leading cause of morbidity and disability, are gaining increased attention as they impose a considerable socioeconomic impact, due in part to the ageing community. Neuronal damage is a pathological hallmark of Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, Huntington's disease, spinocerebellar ataxia and multiple sclerosis, although such damage is also observed following neurotropic viral infections, stroke, genetic white matter diseases and paraneoplastic disorders. Despite the different aetiologies, for example, infections, genetic mutations, trauma and protein aggregations, neuronal damage is frequently associated with chronic activation of an innate immune response in the CNS. The growing awareness that the immune system is inextricably involved in shaping the brain during development as well as mediating damage, but also regeneration and repair, has stimulated therapeutic approaches to modulate the immune system in neurodegenerative diseases. Here, we review the current understanding of how astrocytes and microglia, as well as neurons and oligodendrocytes, shape the neuroimmune response during development, and how aberrant responses that arise due to genetic or environmental triggers may predispose the CNS to neurodegenerative diseases. We discuss the known interactions between the peripheral immune system and the brain, and review the current concepts on how immune cells enter and leave the CNS. A better understanding of neuroimmune interactions during development and disease will be key to further manipulating these responses and the development of effective therapies to improve quality of life, and reduce the impact of neuroinflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Jodie Stephenson
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Erik Nutma
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Paul van der Valk
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| | - Sandra Amor
- Centre for Neuroscience and TraumaBarts and the Blizard Institute, LondonSchool of Medicine and DentistryQueen Mary University of LondonLondonUK
- Department of PathologyVU University Medical CentreAmsterdamthe Netherlands
| |
Collapse
|
35
|
MacDowell KS, Pinacho R, Leza JC, Costa J, Ramos B, García-Bueno B. Differential regulation of the TLR4 signalling pathway in post-mortem prefrontal cortex and cerebellum in chronic schizophrenia: Relationship with SP transcription factors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:481-492. [PMID: 28803924 DOI: 10.1016/j.pnpbp.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Alterations in innate immunity may underlie the pathophysiology of schizophrenia (SZ). Toll-like receptor-4 (TLR4) is a master element of innate immunity. The specificity proteins (SPs), transcription factors recently implicated in SZ, are putative regulatory agents of this. This work was aimed at describing alterations in the TLR4 signalling pathway in postmortem brain prefrontal cortex (PFC) and cerebellum (CB) of 16 chronic SZ patients and 14 controls. The possible association of TLR4 pathway with SP1 and SP4 and SZ negative symptomatology is explored. In PFC, TLR4/myeloid differentiation factor 88 (MyD88)/inhibitory subunit of nuclear factor kappa B alpha (IκBα) protein levels were lower in SZ patients, while nuclear transcription factor-κB (NFκB) activity, cyclooxygenase-2 (COX-2) expression and the lipid peroxidation index malondialdehyde (MDA) appeared increased. The pattern of changes in CB is opposite, except for COX-2 expression that remained augmented and MDA levels unaltered. Network interaction analysis showed that TLR4/MyD88/IκBα/NFκB/COX-2 pathway was coupled in PFC and uncoupled in CB. SP4 co-expressed with TLR4 and NFκB in PFC and both SP1 and SP4 co-expressed with NFκB in CB. In PFC, correlation analysis found an inverse relationship between NFκB and negative symptoms. In summary, we found brain region-specific alterations in the TLR4 signalling pathway in chronic SZ, in which SP transcription factors could participate at different levels. Further studies are required to elucidate the regulatory mechanisms of innate immunity in SZ and its relationship with symptoms.
Collapse
Affiliation(s)
- Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Raquel Pinacho
- Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain
| | - Joan Costa
- Banc de Teixits Neurologics, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, 08830 Barcelona, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Psiquiatria Molecular, Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain; Dept. de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Dept. of Pharmacology, Faculty of Medicine, Hospital 12 de Octubre Imas12, IUINQ, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
37
|
Uniting the neurodevelopmental and immunological hypotheses: Neuregulin 1 receptor ErbB and Toll-like receptor activation in first-episode schizophrenia. Sci Rep 2017. [PMID: 28646138 PMCID: PMC5482801 DOI: 10.1038/s41598-017-03736-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current pathophysiological models of schizophrenia focus on neurodevelopmental and immunological mechanisms. We investigated a molecular pathway traditionally linked to the neurodevelopmental hypothesis (neuregulin 1 - ErbB), and pathogen-associated pattern recognition receptors associated with the immune hypothesis (Toll-like receptors, TLRs). We recruited 42 first-episode, drug-naïve patients with schizophrenia and 42 matched healthy control subjects. In monocytes TLR4/TLR5 and ErbB expressions were measured with flow-cytometry. Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the anti-inflammatory cytokine IL-10 were determined following the stimulation of TLR4/TLR5 and ErbB. Results revealed increased TLR4/TLR5 and decreased ErbB4 expression in schizophrenia relative to the control subjects. The expression of ErbB2 and ErbB3 receptors was unaltered in schizophrenia. TLR4 stimulation resulted in lower pro-inflammatory cytokine production in schizophrenia compared to the control levels, whereas the stimulation of ErbB by neuregulin 1 led to higher pro-inflammatory cytokine levels in patients with schizophrenia relative to the control group. In healthy controls, ErbB activation was associated with a marked production of IL-10, which was dampened in schizophrenia. These results indicate that the stimulation of TLR4 and ErbB induces opposite pro-inflammatory cytokine responses in schizophrenia.
Collapse
|
38
|
Melbourne JK, Feiner B, Rosen C, Sharma RP. Targeting the Immune System with Pharmacotherapy in Schizophrenia. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2017; 4:139-151. [PMID: 28674674 PMCID: PMC5493152 DOI: 10.1007/s40501-017-0114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennifer K. Melbourne
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Benjamin Feiner
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Cherise Rosen
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Rajiv P. Sharma
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, USA, 60612
| |
Collapse
|