1
|
Cao Y, Lizano P, Li M, Chand T, Sun H, Zhou X, Deng G, Long X, Mu J, Gong Q, Walter M, Qiu C, Jia Z. White matter microstructural and inflammation-based subgroups in bipolar disorder II depression differentiate in depressive and psychotic symptoms. J Affect Disord 2025; 368:493-502. [PMID: 39299597 DOI: 10.1016/j.jad.2024.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Elevated inflammation and impaired white matter (WM) microstructure have been observed in bipolar disorder (BD). The link between inflammation, WM integrity, and psychiatric symptoms in BD-II depression (BDII-D) remains unknown. We aimed to define BDII-D subgroups through the interplay of inflammation and WM microstructure, and to explore differences in psychiatric symptoms between subgroups, thus offering insight into elucidating the explanatory measures linked to BDII-D. METHODS WM differences were compared between 146 BDII-D individuals and 151 health controls (HCs) by Tract-Based Spatial Statistics. Partial correlation with multiple comparison corrections was used to explore associations between WM, inflammation, and psychiatric symptoms. The canonical correlation analysis metrics of WM and inflammation followed by k-means clustering were used to define WM microstructural-inflammation subgroups of BDII-D. The differences in clinical profiles were compared between the subgroups. RESULTS Compared with HCs, BDII-D showed significant WM alterations in the anterior thalamic radiation (ATR), cingulum, forceps, and inferior fronto-occipital fasciculus. In BDII-D, lower fraction anisotropy (FA) within the right ATR and cingulum were significantly associated with higher interleukin-6, while lower FA in the cingulum and lower axial diffusivity in the forceps major exhibited significant links with higher C-reactive protein. Among the subgroups identified, subgroup II characterized by elevated inflammation and impaired WM integrity displayed greater psychiatric symptoms. CONCLUSIONS WM alterations are concentrated in emotional neurocircuits and are linked to inflammation in BDII-D. WM-inflammation subgroups exhibit distinct variations in psychiatric symptoms. Thus, WM alterations and inflammation might be an explanatory process in the pathophysiology of BDII-D.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; The Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743 Jena, Germany; Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana 131029, India
| | - Huan Sun
- Department of Psychiatry, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xipeng Long
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
3
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Xu FB, Hu S, Wang JJ, Wang XZ. Utilizing systematic Mendelian randomization to identify potential therapeutic targets for mania. Front Psychiatry 2024; 15:1375209. [PMID: 38505796 PMCID: PMC10948470 DOI: 10.3389/fpsyt.2024.1375209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Background Mania has caused incalculable economic losses for patients, their families, and even society, but there is currently no effective treatment plan for this disease without side effects. Methods Using bioinformatics and Mendelian randomization methods, potential drug target genes and key substances associated with mania were explored at the mRNA level. We used the chip expression profile from the GEO database to screen differential genes and used the eQTL and mania GWAS data from the IEU database for two-sample Mendelian randomization (MR) to determine core genes by colocalization. Next, we utilized bioinformatics analysis to identify key substances involved in the mechanism of action and determined related gene targets as drug targets. Results After differential expression analysis and MR, a causal relationship between the expression of 46 genes and mania was found. Colocalization analysis yielded six core genes. Five key substances were identified via enrichment analysis, immune-related analysis, and single-gene GSVA analysis of the core genes. MR revealed phenylalanine to be the only key substance that has a unidirectional causal relationship with mania. In the end, SBNO2, PBX2, RAMP3, and QPCT, which are significantly associated with the phenylalanine metabolism pathway, were identified as drug target genes. Conclusion SBNO2, PBX2, RAMP3, and QPCT could serve as potential target genes for mania treatment and deserve further basic and clinical research. Medicinal target genes regulate the phenylalanine metabolism pathway to achieve the treatment of mania. Phenylalanine is an important intermediate substance in the treatment of mania that is regulated by drug target genes.
Collapse
Affiliation(s)
- Fang-Biao Xu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sen Hu
- Department of Medical Records, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Jing-Jing Wang
- Neurology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Zhi Wang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Escelsior A, Inuggi A, Sterlini B, Bovio A, Marenco G, Bode J, Favilla L, Tardito S, Altosole T, Pereira da Silva B, Fenoglio D, Filaci G, Amore M, Serafini G. T-cell immunophenotype correlations with cortical thickness and white matter microstructure in bipolar disorder. J Affect Disord 2024; 348:179-190. [PMID: 38154587 DOI: 10.1016/j.jad.2023.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Inflammation and immunological alterations, such as T-cell and cytokine changes, are implicated in bipolar disorder (BD), with some evidence linking them to brain structural changes (e.g., cortical thickness (CT), gray matter (GM) volume and white matter (WM) microstructure). However, the connection between specific peripheral cell types, such as T-cells, and neuroimaging in BD remains scarcely investigated. AIMS OF THE STUDY This study aims to explore the link between T-cell immunophenotype and neuroradiological findings in BD. METHODS Our study investigated 43 type I BD subjects (22 depressive, 21 manic) and 26 healthy controls (HC), analyzing T lymphocyte immunophenotype and employing neuroimaging to assess CT for GM and fractional anisotropy (FA) for WM. RESULTS In lymphocyte populations, BD patients exhibited elevated CD4+ and CD4+ central memory (TCM) cells frequencies, but lower CD8+ effector memory (TEM) and terminal effector memory (TTEM) cells. Neuroimaging analysis revealed reduced CT in multiple brain regions in BD patients; and significant negative correlations between CD4 + TCM levels and CT of precuneus and fusiform gyrus. Tract-based spatial statistics (TBSS) analysis showed widespread alteration in WM microstructure in BD patients, with negative and positive correlations respectively between FA and radial diffusivity (RD) and CD4 + TCM. Additionally, positive and negative correlations were found respectively between FA and RD and the CD8 + TEM and CD8 + TTEM subsets. CONCLUSIONS Our research revealed distinct T lymphocyte changes and brain structure alterations in BD, underscoring possible immune-brain interactions, warranting further study and therapeutic exploration.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Center for Cancer & Immunology Research, Children's National Hospital, 111 Michigan Ave NW (5th floor), Washington, DC 20010, United States of America.
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
6
|
Aggio V, Fabbella L, Poletti S, Lorenzi C, Finardi A, Colombo C, Zanardi R, Furlan R, Benedetti F. Circulating cytotoxic immune cell composition, activation status and toxins expression associate with white matter microstructure in bipolar disorder. Sci Rep 2023; 13:22209. [PMID: 38097657 PMCID: PMC10721611 DOI: 10.1038/s41598-023-49146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Patients with bipolar disorder (BD) show higher immuno-inflammatory setpoints, with in vivo alterations in white matter (WM) microstructure and post-mortem infiltration of T cells in the brain. Cytotoxic CD8+ T cells can enter and damage the brain in inflammatory disorders, but little is known in BD. Our study aimed to investigate the relationship between cytotoxic T cells and WM alterations in BD. In a sample of 83 inpatients with BD in an active phase of illness (68 depressive, 15 manic), we performed flow cytometry immunophenotyping to investigate frequencies, activation status, and expression of cytotoxic markers in CD8+ and tested for their association with diffusion tensor imaging (DTI) measures of WM microstructure. Frequencies of naïve and activated CD8+ cell populations expressing Perforin, or both Perforin and Granzyme, negatively associated with WM microstructure. CD8+ Naïve cells negative for Granzyme and Perforin positively associates with indexes of WM integrity, while the frequency of CD8+ memory cells negatively associates with index of WM microstructure, irrespective of toxins expression. The resulting associations involve measures representative of orientational coherence and myelination of the fibers (FA and RD), suggesting disrupted oligodendrocyte-mediated myelination. These findings seems to support the hypothesis that immunosenescence (less naïve, more memory T cells) can detrimentally influence WM microstructure in BD and that peripheral CD8+ T cells may participate in inducing an immune-related WM damage in BD mediated by killer proteins.
Collapse
Affiliation(s)
- Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Lorena Fabbella
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Vita-Salute San Raffaele University, Milan, Italy
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Mood Disorders Unit, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Singh A, Pandey HR, Arya A, Agarwal V, Shree R, Kumar U. Altered white matter integrity in euthymic children with bipolar disorder: A tract-based spatial statistical analysis of diffusion tensor imaging. J Affect Disord 2023; 340:820-827. [PMID: 37597779 DOI: 10.1016/j.jad.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Pediatric Bipolar Disorder (BD) is a serious mental illness that affects children and adolescents, characterized by episodes of mania, depression, and mixed episodes. Recent studies have suggested that abnormalities in the white matter (WM) may be a contributing factor. The neuropathogenesis of BD in children is not well-described, and research in this area is limited. Euthymic phase is a period in which clinical symptoms are present but not severe enough to significantly impact mood and daily behavior. In order to better understand the WM changes associated with BD in children, this study utilized Diffusion Tensor Imaging (DTI), to investigate alterations in WM microstructure. 20 confirmed euthymic BD children (aged 7-16) and 20 typically developing children were included in the study. DTI scans were obtained using a 3 T Magnetom Skyra and were analyzed using tract-based spatial statistics (TBSS) to examine changes in fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Results showed that compared to the healthy control group, the euthymic BD group exhibited increased FA, AD, RD, and MD values in several brain regions, including the thalamus, precentral corticospinal tract, and superior longitudinal fasciculus. Conversely, decreased values were observed in the body of the corpus callosum and inferior fronto-occipital fasciculus. These findings suggest that alterations in WM microstructure are a hallmark of pediatric bipolar disorder. These findings provide important insights into the brain changes associated with pediatric bipolar disorder and open the door for new avenues of research.
Collapse
Affiliation(s)
- Anshita Singh
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Himanshu R Pandey
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amit Arya
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Vivek Agarwal
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Raj Shree
- Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India.
| |
Collapse
|
8
|
Szałach ŁP, Lisowska KA, Cubała WJ, Barbuti M, Perugi G. The immunomodulatory effect of lithium as a mechanism of action in bipolar disorder. Front Neurosci 2023; 17:1213766. [PMID: 37662097 PMCID: PMC10469704 DOI: 10.3389/fnins.2023.1213766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Bipolar disorder (BD) is a chronic mental disorder characterized by recurrent episodes of mania and depression alternating with periods of euthymia. Although environmental and genetic factors have been described, their pathogenesis is not fully understood. Much evidence suggests a role for inflammatory mediators and immune dysregulation in the development of BD. The first-line treatment in BD are mood-stabilizing agents, one of which is lithium (Li) salts. The Li mechanism of action is not fully understood, but it has been proposed that its robust immunomodulatory properties might be one of the mechanisms responsible for its effectiveness. In this article, the authors present the current knowledge about immune system changes accompanying BD, as well as the immunomodulatory effect of lithium. The results of studies describing connections between immune system changes and lithium effectiveness are often incoherent. Further research is needed to understand the connection between immune system modulation and the therapeutic action of lithium in BD.
Collapse
Affiliation(s)
- Łukasz P. Szałach
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna A. Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J. Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Margherita Barbuti
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Aronica R, Enrico P, Squarcina L, Brambilla P, Delvecchio G. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci Biobehav Rev 2022; 143:104922. [PMID: 36272579 DOI: 10.1016/j.neubiorev.2022.104922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.
Collapse
Affiliation(s)
- Rosario Aronica
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy.
| |
Collapse
|
11
|
Expression of type 1 cannabinoid receptor gene in bipolar disorder. J Psychiatr Res 2022; 156:406-413. [PMID: 36323143 DOI: 10.1016/j.jpsychires.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Endocannabinoid System (ECBs) may have a crucial role in bipolar disorder (BD). Previous reports have not detected abnormalities in the expression of the cannabinoid receptor gene CNR1, encoding for CB1. However, we hypothesized that differentiating between mania and depression may uncover differences in CNR1 expression levels. METHODS We recruited 44 subjects with BD type I (BD-I), in mania (n = 22) and depression (n = 22) and 25 Healthy Controls (HC). CNR1 gene expression was analyzed using a quantitative real-time polymerase chain reaction from peripheral blood mononuclear cells. Data were analyzed using frequentist non-parametric and Bayesian approaches (generalized location-scale model based on lognormal and gamma distributions). RESULTS Using the frequentist non-parametric approach, the depression group had lower CNR1 expression compared to the mania group (p = 0.004). In addition, there was a negative correlation between CNR1 expression and Hamilton Depression Scale score (rho = -0.37; p = 0.007). Bayesian analyses further revealed that CNR1 expression in the mania group was higher and less variable than among HC (>95% probability), while CNR1 expression in the depression group was lower and more variable than among HC (100% probability). LIMITATIONS Lack of participants with bipolar disorder in the euthymic phase, lack of toxicology screening and evaluation of CNR1 variants. CONCLUSION CNR1 expression is higher and less variable in mania than in depression. It is highly probable that these differences also distinguish individuals in different illness phases from healthy controls. Future studies are needed to clarify the role of the endocannabinoid system in bipolar disorder.
Collapse
|
12
|
Chen WY, Huang MC, Chiu CC, Cheng YC, Kuo CJ, Chen PY, Kuo PH. The interactions between vitamin D and neurofilament light chain levels on cognitive domains in bipolar disorder. BJPsych Open 2022; 8:e207. [PMID: 36437810 PMCID: PMC9707506 DOI: 10.1192/bjo.2022.608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bipolar disorder is a chronic mental disorder related to cognitive deficits. Low serum vitamin D levels are significantly associated with compromised cognition in neuropsychiatric disorders. Although patients with bipolar disorder frequently exhibit hypovitaminosis D, the association between vitamin D and cognition in bipolar disorder, and their neuroaxonal integrity, is unclear. AIMS To investigate the interaction effects between vitamin D and neurofilament light chain (NfL) levels on cognitive domains in bipolar disorder. METHOD Serum vitamin D and NfL levels were determined in 100 euthymic patients with bipolar disorder in a cross-sectional study. Cognitive function was measured with the Brief Assessment of Cognition in Affective Disorders. We stratified by age groups and used general linear models to identify associations between vitamin D and NfL levels and their interaction effects on cognitive domains. RESULTS The mean vitamin D and NfL levels were 16.46 ng/nL and 11.10 pg/mL, respectively; 72% of patients were vitamin D deficient. In the older group, more frequent hospital admissions and lower physical activity were identified in the group with versus without vitamin D deficiency. The age-modified interaction effect of vitamin D and NfL was associated with composite neurocognitive scores and verbal fluency in both age groups, and with processing speed domain in the younger group. CONCLUSIONS We observed a high vitamin D deficiency prevalence in bipolar disorder. We identified the interaction of vitamin D and NfL on cognitive domains, and the effect was modified by age. Longitudinal or randomised controlled studies enrolling patients with various illness durations and mood statuses are required to validate our findings.
Collapse
Affiliation(s)
- Wen-Yin Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chih Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Ying-Chih Cheng
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; and Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Taiwan
| | - Chian-Jue Kuo
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Songde branch, Taiwan; and Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taiwan; and Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taiwan
| |
Collapse
|
13
|
Sammer G, Neumann E, Blecker C, Pedraz-Petrozzi B. Fractional anisotropy and peripheral cytokine concentrations in outpatients with depressive episode: a diffusion tensor imaging observational study. Sci Rep 2022; 12:17450. [PMID: 36261698 PMCID: PMC9582033 DOI: 10.1038/s41598-022-22437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023] Open
Abstract
Over the past few years, evidence of a positive relationship between inflammation and depression has grown steadily. The aim of the current study was to investigate whether such depression-related inflammation could also be associated with altered microstructural changes in the white matter. FA and serum cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) were measured in 25 patients with depression (DE) and 24 healthy controls (HC). Diffusion tensor imaging was performed. Fractional anisotropy (FA) was calculated using the FSL pipeline for Tract-Based Spatial Statistics (TBSS). Both voxelwise and mean whole-brain FA were analyzed using general linear models (GLM). Higher concentrations of IL-1β were associated with lower whole-brain fractional anisotropy, particularly in people with depression (ρ = - 0.67; p < 0.001). TNF-α shared some variance with IL-1β and also showed a negative relationship between TNF-α concentrations and FA in depression (F1,46 = 11.13, p = 0.002, η2p = 0.21). In detail, the voxelwise analysis showed that the regression slopes of IL-1β on FA were more negative in the DE group than in the HC group, mainly in the corpus callosum (cluster statistics: genu corpus callosum, p = 0.022; splenium of corpus callosum, p = 0.047). Similar effects were not found for the other remaining cytokines. This study clearly demonstrated an association between peripherally measured IL-1β and white matter integrity in depression as assessed by DTI. The results suggest that microstructural changes in the corpus callosum are associated with increased peripheral IL-1β concentrations in depression.
Collapse
Affiliation(s)
- Gebhard Sammer
- grid.8664.c0000 0001 2165 8627Psychiatry, Justus Liebig University Giessen, Klinikstrasse 36, 35392 Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Bender Institute of Neuroimaging (BION), Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Elena Neumann
- grid.8664.c0000 0001 2165 8627Internal Medicine and Rheumatology, Campus Kerckhoff, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Carlo Blecker
- grid.8664.c0000 0001 2165 8627Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Bender Institute of Neuroimaging (BION), Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Bruno Pedraz-Petrozzi
- grid.413757.30000 0004 0477 2235Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
14
|
Escelsior A, Sterlini B, Tardito S, Altosole T, Magioncalda P, Martino M, Serafini G, Murri MB, Aguglia A, Amerio A, da Silva BP, Trabucco A, Fenoglio D, Filaci G, Amore M. Evidence of alterations of Beta-endorphin levels and Mu-opioid receptor gene expression in bipolar disorder. Psychiatry Res 2022; 316:114787. [PMID: 35988328 DOI: 10.1016/j.psychres.2022.114787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Despite the well-recognized effects of endogenous opioids on mood and behavior, research on its role in bipolar disorder (BD) is still limited to small or anecdotal reports. Considering that Beta-endorphins (β-END) and Mu-opioid receptors (MOR), in particular, have a crucial activity in affective modulation, we hypothesized their alteration in BD. A cross-sectional study was conducted. We compared: (1) BD type I (BD-I) patients (n = 50) vs healthy controls (n = 27), (2) two BD-I subject subgroups: manic (MAN; n = 25) vs depressed (DEP; n = 25) subjects. Plasma levels of β-END and MOR gene expression in peripheral blood mononuclear cells were analyzed using ELISA Immunoassay qRT-PCR. We found that subjects with BD exhibited a significant upregulation of MOR gene expression and a decrease of β-END (p<0.0001 for both). MAN display higher MOR levels than DEP (p<0.001) and HC (p<0.0001). Plasma levels of β-END were lower in DEP compared to MAN (p<0.05) and HC (p<0.0001). The main limitations are the cross-sectional design and the lack of a group of euthymic subjects. Although preliminary, our results suggest a dysregulation of the endogenous opioid systems in BD. In particular, both MAN and DEP showed a reduction of β-END levels, whereas MAN was associated with MOR gene overexpression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Samuele Tardito
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Tiziana Altosole
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Paola Magioncalda
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martino Belveri Murri
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
15
|
Sun Y, Li J, Wang L, Cong T, Zhai X, Li L, Wu H, Li S, Xiao Z. Identification of Potential Diagnoses Based on Immune Infiltration and Autophagy Characteristics in Major Depressive Disorder. Front Genet 2022; 13:702366. [PMID: 35559009 PMCID: PMC9087348 DOI: 10.3389/fgene.2022.702366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Major depressive disorder (MDD) is a serious mental illness characterized by mood changes and high suicide rates. However, no studies are available to support a blood test method for MDD diagnosis. The objective of this research was to identify potential peripheral blood biomarkers for MDD and characterize the novel pathophysiology. Methods: We accessed whole blood microarray sequencing data for MDD and control samples from public databases. Biological functions were analysed by GO and KEGG pathway enrichment analyses using the clusterprofile R package. Infiltrated immune cell (IIC) proportions were identified using the CIBERSORT algorithm. Clustering was performed using the ConsensusClusterPlus R package. Protein–protein interactions (PPI) were assessed by constructing a PPI network using STRING and visualized using Cytoscape software. Rats were exposed to chronic unpredictable mild stress (CUMS) for 6 weeks to induce stress behaviour. Stress behaviour was evaluated by open field experiments and forced swimming tests. Flow cytometry was used to analyse the proportion of CD8+ T cells. The expression of the corresponding key genes was detected by qRT–PCR. Results: We divided MDD patients into CD8H and CD8L clusters. The functional enrichment of marker genes in the CD8H cluster indicated that autophagy-related terms and pathways were significantly enriched. Furthermore, we obtained 110 autophagy-related marker genes (ARMGs) in the CD8H cluster through intersection analysis. GO and KEGG analyses further showed that these ARMGs may regulate a variety of autophagy processes and be involved in the onset and advancement of MDD. Finally, 10 key ARMGs were identified through PPI analysis: RAB1A, GNAI3, VAMP7, RAB33B, MYC, LAMP2, RAB11A, HIF1A, KIF5B, and PTEN. In the CUMS model, flow cytometric analysis confirmed the above findings. qRT–PCR revealed significant decreases in the mRNA levels of Gnai3, Rab33b, Lamp2, and Kif5b in the CUMS groups. Conclusion: In this study, MDD was divided into two subtypes. We combined immune infiltrating CD8+ T cells with autophagy-related genes and screened a total of 10 ARMG genes. In particular, RAB1A, GNAI3, RAB33B, LAMP2, and KIF5B were first reported in MDD. These genes may offer new hope for the clinical diagnosis of MDD.
Collapse
Affiliation(s)
- Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ting Cong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiuli Zhai
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haikuo Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouxin Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Pereira AC, De Pascale J, Resende R, Cardoso S, Ferreira I, Neves BM, Carrascal MA, Zuzarte M, Madeira N, Morais S, Macedo A, do Carmo A, Moreira PI, Cruz MT, Pereira CF. ER-mitochondria communication is involved in NLRP3 inflammasome activation under stress conditions in the innate immune system. Cell Mol Life Sci 2022; 79:213. [PMID: 35344105 PMCID: PMC11072401 DOI: 10.1007/s00018-022-04211-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are key events in the initiation and/or progression of several diseases, are correlated with alterations at ER-mitochondria contact sites, the so-called "Mitochondria-Associated Membranes" (MAMs). These intracellular structures are also implicated in NLRP3 inflammasome activation which is an important driver of sterile inflammation, however, the underlying molecular basis remains unclear. This work aimed to investigate the role of ER-mitochondria communication during ER stress-induced NLRP3 inflammasome activation in both peripheral and central innate immune systems, by using THP-1 human monocytes and BV2 microglia cells, respectively, as in vitro models. Markers of ER stress, mitochondrial dynamics and mass, as well as NLRP3 inflammasome activation were evaluated by Western Blot, IL-1β secretion was measured by ELISA, and ER-mitochondria contacts were quantified by transmission electron microscopy. Mitochondrial Ca2+ uptake and polarization were analyzed with fluorescent probes, and measurement of aconitase and SOD2 activities monitored mitochondrial ROS accumulation. ER stress was demonstrated to activate the NLRP3 inflammasome in both peripheral and central immune cells. Studies in monocytes indicate that ER stress-induced NLRP3 inflammasome activation occurs by a Ca2+-dependent and ROS-independent mechanism, which is coupled with upregulation of MAMs-resident chaperones, closer ER-mitochondria contacts, as well as mitochondrial depolarization and impaired dynamics. Moreover, enhanced ER stress-induced NLRP3 inflammasome activation in the immune system was found associated with pathological conditions since it was observed in monocytes derived from bipolar disorder (BD) patients, supporting a pro-inflammatory status in BD. In conclusion, by demonstrating that ER-mitochondria communication plays a key role in the response of the innate immune cells to ER stress, this work contributes to elucidate the molecular mechanisms underlying NLRP3 inflammasome activation under stress conditions, and to disclose novel potential therapeutic targets for diseases associated with sterile inflammation.
Collapse
Affiliation(s)
- Ana Catarina Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Jessica De Pascale
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- iBiMED-Department of Medical Sciences and Institute for Biomedicine, University Aveiro, Aveiro, Portugal
| | - Mylène A Carrascal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Tecnimede Group, Sintra, Portugal
| | - Mónica Zuzarte
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- iCBR-Institute for Clinical and Biomedical Research, University Coimbra, Coimbra, Portugal
| | - Nuno Madeira
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Psychiatry, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anália do Carmo
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Department of Clinical Pathology, CHUC-UC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University Coimbra, Coimbra, Portugal.
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal.
- , Coimbra, Portugal.
| |
Collapse
|
17
|
A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry 2022; 27:202-211. [PMID: 33859358 DOI: 10.1038/s41380-021-01091-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
This work provides an overview of the most consistent alterations in bipolar disorder (BD), attempting to unify them in an internally coherent working model of the pathophysiology of BD. Data on immune-inflammatory changes, structural brain abnormalities (in gray and white matter), and functional brain alterations (from neurotransmitter signaling to intrinsic brain activity) in BD were reviewed. Based on the reported data, (1) we hypothesized that the core pathological alteration in BD is a damage of the limbic network that results in alterations of neurotransmitter signaling. Although heterogeneous conditions can lead to such damage, we supposed that the main pathophysiological mechanism is traceable to an immune/inflammatory-mediated alteration of white matter involving the limbic network connections, which destabilizes the neurotransmitter signaling, such as dopamine and serotonin signaling. Then, (2) we suggested that changes in such neurotransmitter signaling (potentially triggered by heterogeneous stressors onto a structurally-damaged limbic network) lead to phasic (and often recurrent) reconfigurations of intrinsic brain activity, from abnormal subcortical-cortical coupling to changes in network activity. We suggested that the resulting dysbalance between networks, such as sensorimotor networks, salience network, and default-mode network, clinically manifest in combined alterations of psychomotricity, affectivity, and thought during the manic and depressive phases of BD. Finally, (3) we supposed that an additional contribution of gray matter alterations and related cognitive deterioration characterize a clinical-biological subgroup of BD. This model may provide a general framework for integrating the current data on BD and suggests novel specific hypotheses, prompting for a better understanding of the pathophysiology of BD.
Collapse
|
18
|
Postolache TT, Medoff DR, Brown CH, Fang LJ, Upadhyaya SK, Lowry CA, Miller M, Kreyenbuhl JA. Lipophilic vs. hydrophilic statins and psychiatric hospitalizations and emergency room visits in US Veterans with schizophrenia and bipolar disorder. Pteridines 2021; 32:48-69. [PMID: 34887622 PMCID: PMC8654264 DOI: 10.1515/pteridines-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective – Psychiatric hospitalizations and emergency department (ED) visits are costly, stigmatizing, and often ineffective. Given the immune and kynurenine activation in bipolar disorder (BD) and schizophrenia, as well as the immune-modulatory effects of statins, we aimed to compare the relative risk (RRs) of psychiatric hospitalizations and ED visits between individuals prescribed lipophilic vs. hydrophilic statins vs. no statins. We hypothesized (a) reduced rates of hospitalization and ER utilization with statins versus no statins and (b) differences in outcomes between statins, as lipophilia increases the capability to penetrate the blood–brain barrier with potentially beneficial neuroimmune, antioxidant, neuroprotective, neurotrophic, and endothelial stabilizing effects, and, in contrast, potentially detrimental decreases in brain cholesterol concentrations leading to serotoninergic dysfunction, changes in membrane lipid composition, thus affecting ion channels and receptors. Methods – We used VA service utilization data from October 1, 2010 to September 30, 2015. The RRs for psychiatric hospitalization and ED visits, were estimated using robust Poisson regression analyses. The number of individuals analyzed was 683,129. Results – Individuals with schizophrenia and BD who received prescriptions for either lipophilic or hydrophilic statins had a lower RR of psychiatric hospitalization or ED visits relative to nonstatin controls. Hydrophilic statins were significantly associated with lower RRs of psychiatric hospitalization but not of ED visits, compared to lipophilic statins. Conclusion – The reduction in psychiatric hospitalizations in statin users (vs. nonusers) should be interpreted cautiously, as it carries a high risk of confounding by indication. While the lower RR of psychiatric hospitalizations in hydrophilic statins relative to the lipophilic statins is relatively bias free, the finding bears replication in a specifically designed study. If replicated, important clinical implications for personalizing statin treatment in patients with mental illness, investigating add-on statins for improved therapeutic control, and mechanistic exploration for identifying new treatment targets are natural next steps.
Collapse
Affiliation(s)
- Teodor T Postolache
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Baltimore, MD 21201, United States of America; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America
| | - Deborah R Medoff
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Clayton H Brown
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Li Juan Fang
- Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Sanjaya K Upadhyaya
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Christopher A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), U.S. Department of Veterans Affairs, Aurora, CO 80045, United States of America; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), U.S. Department of Veterans Affairs, Denver, CO 80045, United States of America; Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, United States of America; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Michael Miller
- Department of Medicine, VAMC Baltimore and University of Maryland School of Medicine, Baltimore, Maryland 21201, United States of America
| | - Julie A Kreyenbuhl
- VISN 5 Capitol Health Care Network Mental Illness Research Education and Clinical Center (MIRECC), Baltimore, MD 21201, United States of America; Department of Psychiatry, Division of Psychiatric Services Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
19
|
Guglielmo R, Miskowiak KW, Hasler G. Evaluating endophenotypes for bipolar disorder. Int J Bipolar Disord 2021; 9:17. [PMID: 34046710 PMCID: PMC8160068 DOI: 10.1186/s40345-021-00220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. Endophenotype could help in reducing heterogeneity by defining biological traits that are more direct expressions of gene effects. The aim of this review is to examine the recent literature on clinical, epidemiological, neurobiological, and genetic findings and to select and evaluate candidate endophenotypes for bipolar disorder. Evaluating putative endophenotype could be helpful in better understanding the neurobiology of bipolar disorder by improving the definition of bipolar-related phenotypes in genetic studies. In this manner, research on endophenotypes could be useful to improve psychopathological diagnostics in the long-run by dissecting psychiatric macro phenotypes into biologically valid components. MAIN BODY The associations among the psychopathological and biological endophenotypes are discussed with respect to specificity, temporal stability, heritability, familiarity, and clinical and biological plausibility. Numerous findings regarding brain function, brain structure, neuropsychology and altered neurochemical pathways in patients with bipolar disorder and their relatives deserve further investigation. Overall, major findings suggest a developmental origin of this disorder as all the candidate endophenotypes that we have been able to select are present both in the early stages of the disorder as well as in subjects at risk. CONCLUSIONS Among the stronger candidate endophenotypes, we suggest circadian rhythm instability, dysmodulation of emotion and reward, altered neuroimmune state, attention and executive dysfunctions, anterior cingulate cortex thickness and early white matter abnormalities. In particular, early white matter abnormalities could be the result of a vulnerable brain on which new stressors are added in young adulthood which favours the onset of the disorder. Possible pathways that lead to a vulnerable brain are discussed starting from the data about molecular and imaging endophenotypes of bipolar disorder.
Collapse
Affiliation(s)
- Riccardo Guglielmo
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.,Department of Neuroscience, Institute of Psychiatry, Catholic University Medical School, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gregor Hasler
- Psychiatry Research Unit, Fribourg Network for Mental Health (RFSM), University of Fribourg, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
| |
Collapse
|
20
|
Bauer ME, Teixeira AL. Neuroinflammation in Mood Disorders: Role of Regulatory Immune Cells. Neuroimmunomodulation 2021; 28:99-107. [PMID: 33951643 DOI: 10.1159/000515594] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
Mood disorders are associated with chronic low-grade systemic (sterile) inflammation, with increased plasma levels of pro-inflammatory mediators targeting all tissues including the brain. Importantly, pro-inflammatory cytokines (ex., tumor-necrosis factor alpha [TNF-α], interleukin [IL]-6) regulate mood behavior and cognition by influencing neurotransmitter levels, activating stress-responsive endocrine axes, among other effects. However, the mechanisms underlying this enhanced inflammation are not well understood. There is increasing evidence indicating that impaired immunoregulatory mechanisms may play a role in this context. Patients with mood disorders (major depression [MDD] and bipolar disorder [BD]) have reduced numbers of major regulatory cells of both innate (natural killer regulatory cells and myeloid-derived suppressor cells [MDSCs]) and adaptive immune responses (CD4+CD25+FoxP3+, B regulatory cells). Dysfunctional regulatory immune cells might contribute to systemic and neuroinflammation observed in mood disorders via different mechanisms, such as: (i) failure to develop adequate stress-related responses, (ii) indirectly through microglial activation, (iii) lack of trophic support and pro-cognitive functions of T cells in the brain, and (iv) dysbiosis. In conclusion, maladaptive immunoregulatory mechanisms seem to be involved with both onset and progression of mood disorders. A deeper understanding of these mechanisms may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Moisés E Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- National Institute of Science and Technology - Neuroimmunomodulation (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Antônio L Teixeira
- Institute of Education and Research, Santa Casa BH, Belo Horizonte, Brazil
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
21
|
Hu R, Stavish C, Leibenluft E, Linke JO. White Matter Microstructure in Individuals With and At Risk for Bipolar Disorder: Evidence for an Endophenotype From a Voxel-Based Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1104-1113. [PMID: 32839153 PMCID: PMC11102922 DOI: 10.1016/j.bpsc.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant white matter (WM) microstructure has been proposed as a mechanism underlying bipolar disorder (BD). Given the strong genetic underpinnings of both WM microstructure and BD, such WM aberrations may be not only a disease marker, but also an endophenotype of BD. If so, they should be observable in individuals at risk for BD (AR) (i.e., first-degree relatives). This meta-analysis integrates evidence on perturbed WM microstructure in individuals with or at risk for BD. METHODS A comprehensive search of literature published through April 2020 identified diffusion tensor imaging studies that used a voxel-based approach to compare fractional anisotropy (FA) and radial diffusivity between individuals with BD and/or AR individuals and healthy volunteers. Effect size comparison and conjunction analysis allowed identification of endophenotypes and disease markers of BD. Effects of age, sex, mood state, and psychotropic medication were explored using meta-regressions. RESULTS We included 57 studies in individuals with BD (N = 4631) and 10 in AR individuals (N = 753). Both individuals with and at risk for BD were associated with lower FA in the body and splenium of the corpus callosum. In the BD group, decreased FA and increased radial diffusivity comprised the entire corpus callosum, anterior thalamic radiation, fronto-orbito-polar tracts, and superior longitudinal fasciculus, and were influenced by age, sex, and mood state. Studies with higher proportions of individuals taking lithium or antipsychotics reported smaller FA reductions in BD. CONCLUSIONS Findings suggest that abnormalities in the body and splenium of the corpus callosum may be an endophenotype for BD, and they associate BD with WM tracts relevant for working memory performance, attention, and reward processing.
Collapse
Affiliation(s)
- Rebecca Hu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin Stavish
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Julia O Linke
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. ACTA ACUST UNITED AC 2020; 42:536-551. [PMID: 32267339 PMCID: PMC7524405 DOI: 10.1590/1516-4446-2019-0732] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by changes in mood that alternate between mania and hypomania or between depression and mixed states, often associated with functional impairment. Although effective pharmacological and non-pharmacological treatments are available, several patients with BD remain symptomatic. The advance in the understanding of the neurobiology underlying BD could help in the identification of new therapeutic targets as well as biomarkers for early detection, prognosis, and response to treatment in BD. In this review, we discuss genetic, epigenetic, molecular, physiological and neuroimaging findings associated with the neurobiology of BD. Despite the advances in the pathophysiological knowledge of BD, the diagnosis and management of the disease are still essentially clinical. Given the complexity of the brain and the close relationship between environmental exposure and brain function, initiatives that incorporate genetic, epigenetic, molecular, physiological, clinical, environmental data, and brain imaging are necessary to produce information that can be translated into prevention and better outcomes for patients with BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandre P Diaz
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA
| | - Camila N Lima
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| |
Collapse
|
23
|
Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 2020; 73:43-56. [PMID: 33125677 PMCID: PMC7862529 DOI: 10.1007/s43440-020-00177-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.
Collapse
|
24
|
Martino M, Magioncalda P, El Mendili MM, Droby A, Paduri S, Schiavi S, Petracca M, Inglese M. Depression is associated with disconnection of neurotransmitter-related nuclei in multiple sclerosis. Mult Scler 2020; 27:1102-1111. [PMID: 32907463 DOI: 10.1177/1352458520948214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression is frequently associated with multiple sclerosis (MS). However, the biological background underlying such association is poorly understood. OBJECTIVE Investigating the functional connections of neurotransmitter-related brainstem nuclei, along with their relationship with white matter (WM) microstructure, in MS patients with depressive symptomatology (MS-D) and without depressive symptomatology (MS-nD). METHODS Combined resting-state functional magnetic resonance imaging (fMRI) and diffusion-weighted MRI (dMRI) study on 50 MS patients, including 19 MS-D and 31 MS-nD patients, along with 37 healthy controls (HC). Main analyses performed are (1) comparison between groups of raphe nuclei (RN)-related functional connectivity (FC); (2) correlation between RN-related FC and whole brain dMRI-derived fractional anisotropy (FA) map; and (3) comparison between groups of FA in the RN-related WM area. RESULTS (1) RN-related FC was reduced in MS-D when compared to MS-nD and HC; (2) RN-related FC positively correlated with FA in a WM cluster mainly encompassing thalamic/basal ganglia regions, including the fornix; and (3) FA in such WM area was reduced in MS-D. CONCLUSION Depressive symptomatology in MS is specifically associated to a functional disconnection of neurotransmitter-related nuclei, which in turn may be traced to a distinct spatial pattern of WM alterations mainly involving the limbic network.
Collapse
Affiliation(s)
- Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Magioncalda
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan/Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | | | - Amgad Droby
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swetha Paduri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Section of Neurology, University of Genoa, Genoa, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy/Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| |
Collapse
|
25
|
Pender MP. Hypothesis: bipolar disorder is an Epstein-Barr virus-driven chronic autoimmune disease - implications for immunotherapy. Clin Transl Immunology 2020; 9:e1116. [PMID: 32257210 PMCID: PMC7133420 DOI: 10.1002/cti2.1116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 01/29/2023] Open
Abstract
Bipolar disorder (BD) is a chronic disease characterised by episodes of major depression and episodes of mania or hypomania, with a worldwide prevalence of 2.4%. The cause of BD is unknown. Here, I propose the hypothesis that BD is a chronic autoimmune disease caused by Epstein–Barr virus (EBV) infection of autoreactive B cells. It is postulated that EBV‐infected autoreactive B cells accumulate in the brain where they provide costimulatory survival signals to autoreactive T cells and differentiate into plasma cells producing pathogenic autoantibodies targeting brain components such as the N‐methyl‐D‐aspartate receptor. It is also proposed that the accumulation of EBV‐infected autoreactive B cells in the brain is a consequence of a genetically determined defect in the ability of CD8+ T cells to control EBV infection. The theory is supported by studies indicating that autoimmunity, EBV infection and CD8+ T‐cell deficiency all have roles in the pathogenesis of BD. According to the hypothesis, BD should be able to be treated by EBV‐specific T‐cell therapy and to be prevented by vaccination against EBV in early childhood. Exposure to sunlight or appropriate artificial light should also be beneficial in BD by augmenting CD8+ T‐cell control of EBV infection.
Collapse
Affiliation(s)
- Michael P Pender
- Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Department of Neurology Royal Brisbane and Women's Hospital Brisbane QLD Australia
| |
Collapse
|
26
|
Benedetti F, Aggio V, Pratesi ML, Greco G, Furlan R. Neuroinflammation in Bipolar Depression. Front Psychiatry 2020; 11:71. [PMID: 32174850 PMCID: PMC7054443 DOI: 10.3389/fpsyt.2020.00071] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Bipolar disorder (BD) is a leading cause of worldwide disability among mood disorders. Pathological mechanisms are still vastly unclear, and current treatments with conventional medications are often unsatisfactory in maintaining symptoms control and an adequate quality of life. Consequently, current research is focusing on shedding new light on disease pathogenesis, to improve therapeutic effectiveness. Recent evidence has suggested a prominent role of inflammation in mood disorders. Elevated levels of peripheral proinflammatory mediators have been reported in BD, as well as in other mood disorders, and people with systemic autoimmune diseases have an increased risk of developing BD. These immunological alterations are stable, and current medications are unable to alter peripheral concentrations even when clinical improvement is evident. These findings have also been replicated in the central nervous system (CNS) milieu, whereas genetic studies have shown that these immune alterations are not due to the disorder itself, being detectable before the illness onset. Moreover, these inflammatory modifications seem to be affected by and linked to other biomarkers of the disorder, such as alterations of white matter (WM) microstructure, metabolism, kynurenine pathway, and circadian rhythmicity. Finally, these immune variations seem to be useful as predictors of therapeutic responsiveness to medications, and in discriminating between clinically different outcomes. The objective of this review is to summarize available evidence on the connection between inflammation and BD, focusing on peripheral inflammatory markers and recent findings on their connection with other typical features of BD, to outline a general overview of the disorder. Moreover, it is meant to analyze the issues with data gathering and interpretation, given the partially contradictory and inconsistent nature of results.
Collapse
Affiliation(s)
- Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele Hospital, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy
| | - Veronica Aggio
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele Hospital, Milano, Italy.,PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Maria Luisa Pratesi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giacomo Greco
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
27
|
Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, Tumati S, Tan Z, Lee HC, Lane TJ, Amore M, Inglese M, Northoff G. Abnormal Functional Relationship of Sensorimotor Network With Neurotransmitter-Related Nuclei via Subcortical-Cortical Loops in Manic and Depressive Phases of Bipolar Disorder. Schizophr Bull 2020; 46:163-174. [PMID: 31150559 PMCID: PMC6942162 DOI: 10.1093/schbul/sbz035] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Manic and depressive phases of bipolar disorder (BD) show opposite psychomotor symptoms. Neuronally, these may depend on altered relationships between sensorimotor network (SMN) and subcortical structures. The study aimed to investigate the functional relationships of SMN with substantia nigra (SN) and raphe nuclei (RN) via subcortical-cortical loops, and their alteration in bipolar mania and depression, as characterized by psychomotor excitation and inhibition. METHOD In this resting-state functional magnetic resonance imaging (fMRI) study on healthy (n = 67) and BD patients (n = 100), (1) functional connectivity (FC) between thalamus and SMN was calculated and correlated with FC from SN or RN to basal ganglia (BG)/thalamus in healthy; (2) using an a-priori-driven approach, thalamus-SMN FC, SN-BG/thalamus FC, and RN-BG/thalamus FC were compared between healthy and BD, focusing on manic (n = 34) and inhibited depressed (n = 21) patients. RESULTS (1) In healthy, the thalamus-SMN FC showed a quadratic correlation with SN-BG/thalamus FC and a linear negative correlation with RN-BG/thalamus FC. Accordingly, the SN-related FC appears to enable the thalamus-SMN coupling, while the RN-related FC affects it favoring anti-correlation. (2) In BD, mania showed an increase in thalamus-SMN FC toward positive values (ie, thalamus-SMN abnormal coupling) paralleled by reduction of RN-BG/thalamus FC. By contrast, inhibited depression showed a decrease in thalamus-SMN FC toward around-zero values (ie, thalamus-SMN disconnection) paralleled by reduction of SN-BG/thalamus FC (and RN-BG/thalamus FC). The results were replicated in independent HC and BD datasets. CONCLUSIONS These findings suggest an abnormal relationship of SMN with neurotransmitters-related areas via subcortical-cortical loops in mania and inhibited depression, finally resulting in psychomotor alterations.
Collapse
Affiliation(s)
- Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- To whom correspondence should be addressed; Clinica Psichiatrica, Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy; tel: +390103537668, fax: +390103537669, e-mail:
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Capobianco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniel Russo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Adavastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Shankar Tumati
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Zhonglin Tan
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hsin-Chien Lee
- Department of Psychiatry, College of Medicine and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Timothy J Lane
- Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Northoff
- University of Ottawa Brain and Mind Research Institute, and Mind Brain Imaging and Neuroethics Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
28
|
Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 2019; 177:12-19. [DOI: 10.1016/j.pbb.2018.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023]
|
29
|
Piaggio N, Schiavi S, Martino M, Bommarito G, Inglese M, Magioncalda P. Exploring mania-associated white matter injury by comparison with multiple sclerosis: a diffusion tensor imaging study. Psychiatry Res Neuroimaging 2018; 281:78-84. [PMID: 30268035 DOI: 10.1016/j.pscychresns.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD), especially in its active phases, has shown some neuroimaging and immunological similarities with multiple sclerosis (MS). The objective of this study was to compare white matter (WM) alterations in BD patients in manic phase (M-BD) and MS patients at early stage of disease and with low lesion burden. We compared diffusion tensor imaging (DTI)-derived fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) in a priori selected WM regions (i.e., corpus callosum and cingulum) betwixt 23 M-BD, 23 MS patients and 46 healthy controls. Both M-BD and MS showed WM changes in the corpus callosum, which, however, showed a greater impairment in MS patients. However, considering the different sub-regions of corpus callosum separately (i.e., genu, body, splenium), M-BD and MS presented an opposite pattern in spatial distribution of WM microstructure alterations, with a greater impairment in the anterior region in M-BD and in the posterior region in MS. Common features as well as divergent patterns in DTI changes are detected in M-BD and early MS, prompting a deeper investigation of analogies and differences in WM and immunological alterations of these disorders.
Collapse
Affiliation(s)
- Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy
| | - Matteo Martino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genova, Genoa, Italy.
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Paola Magioncalda
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genova, Genoa, Italy
| |
Collapse
|
30
|
|