1
|
Wellington NJ, Boucas AP, Lagopoulos J, Kuballa AV. Clinical potential of epigenetic and microRNA biomarkers in PTSD. J Neurogenet 2024:1-23. [PMID: 39470065 DOI: 10.1080/01677063.2024.2419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Molecular studies identifying alterations associated with PTSD have predominantly focused on candidate genes or conducted genome-wide analyses, often encountering issues with replicability. This review aims to identify robust bi-directional epigenetic and microRNA (miRNA) regulators focusing on their functional impacts on post-traumatic stress disorder (PTSD) and their utility in clinical diagnosis, whilst examining knowledge gaps in the existing research. A systematic search was conducted across multiple databases, including Web of Science, Scopus, Global Health (CABI), and PubMed, augmented by grey literature, yielding 3465 potential articles. Ultimately, 92 studies met the inclusion criteria and were analysed to pinpoint significant epigenetic changes with clinically relevant potential in PTSD. The selected studies explored histone modifications, CpG sites, single nucleotide polymorphisms (SNPs), and miRNA biomarkers. Specifically, nine studies examined epigenetic markers, detailing the influence of methylation on chromatin accessibility at histone positions H3K4, H3K9, and H3K36 within a PTSD context. Seventy-three studies investigated DNA methylation, identifying 20 hypermethylated and five hypomethylated CpG islands consistently observed in PTSD participants. Nineteen studies linked 88 SNPs to PTSD, with only one SNP replicated within these studies. Furthermore, sixteen studies focused on miRNAs, with findings indicating 194 downregulated and 24 upregulated miRNAs were associated with PTSD. Although there are epigenetic mechanisms that are significantly affected by PTSD, a granular deconstruction of these mechanisms elucidates the need to incorporate more nuanced approaches to identifying the factors that contribute to PTSD. Technological advances in diagnostic tools are driving the need to integrate detailed participant characteristics, trauma type, genetic susceptibilities, and best practices for robust reporting. This comprehensive approach will be crucial for enhancing the translational potential of PTSD research for clinical application.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, Australia
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| | | | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Sunshine Plaza, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Australia
| |
Collapse
|
2
|
Park HR, Cai M, Yang EJ. Herbal Formula Extract Ameliorates Anxiety and Cognitive Impairment via Regulation of the Reelin/Dab-1 Pathway in a Murine Model of Post-Traumatic Stress Disorder. Pharmaceutics 2024; 16:1150. [PMID: 39339187 PMCID: PMC11434737 DOI: 10.3390/pharmaceutics16091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally once daily for 14 days to determine its effects on PTSD in mice by combining prolonged stress and foot shock. The open field and Y-maze tests determined the effect of HFE on PTSD-induced anxiety and cognition. Hippocampal neuronal plastic changes and molecular mechanism were verified. Treatment with HFE decreased anxiety-like behavior and enhanced cognition. Moreover, it reduced the number of PTSD-related hilar ectopic granule cells in the dentate gyrus (DG). PTSD mice showed reduced neuronal plasticity of doublecortin+ cells in the DG, which was restored by HFE treatment. HFE reversed PTSD-induced inhibition of the Reelin/Dab1 pathway, a critical signaling cascade involved in brain development, and regulated Reelin methylation. Furthermore, DNA methylation, methyl-CpG binding protein 2, and DNA methyltransferase 1, which were elevated in the hippocampus of PTSD mice, were restored following HFE treatment. HFE increased the expression of synaptic plasticity-related factors in the hippocampus of PTSD mice. Our findings suggest that HFE can facilitate PTSD treatment by alleviating behavioral abnormalities through the restoration of hippocampal dysfunction via regulation of the Reelin/Dab-1 pathway and DNA methylation in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
3
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
4
|
Patas K, Baker DG, Chrousos GP, Agorastos A. Inflammation in Posttraumatic Stress Disorder: Dysregulation or Recalibration? Curr Neuropharmacol 2024; 22:524-542. [PMID: 37550908 PMCID: PMC10845099 DOI: 10.2174/1570159x21666230807152051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 08/09/2023] Open
Abstract
Despite ample experimental data indicating a role of inflammatory mediators in the behavioral and neurobiological manifestations elicited by exposure to physical and psychologic stressors, causative associations between systemic low-grade inflammation and central nervous system inflammatory processes in posttraumatic stress disorder (PTSD) patients remain largely conceptual. As in other stress-related disorders, pro-inflammatory activity may play an equivocal role in PTSD pathophysiology, one that renders indiscriminate employment of anti-inflammatory agents of questionable relevance. In fact, as several pieces of preclinical and clinical research convergingly suggest, timely and targeted potentiation rather than inhibition of inflammatory responses may actually be beneficial in patients who are characterized by suppressed microglia function in the face of systemic low-grade inflammation. The deleterious impact of chronic stress-associated inflammation on the systemic level may, thus, need to be held in context with the - often not readily apparent - adaptive payoffs of low-grade inflammation at the tissue level.
Collapse
Affiliation(s)
- Kostas Patas
- Department of Biopathology and Laboratory Medicine, Eginition University Hospital, Athens, Greece
| | - Dewleen G. Baker
- Department of Psychiatry, University of California, San Diego (UCSD), La Jolla, CA, USA
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, San Diego, CA, USA
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | - Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Division of Neurosciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
5
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Collender P, Bozack AK, Veazie S, Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, Riddell C, Eskenazi B, Holland N, Deardorff J, Cardenas A. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin Epigenetics 2023; 15:162. [PMID: 37845746 PMCID: PMC10577922 DOI: 10.1186/s13148-023-01581-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Šidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.
Collapse
Affiliation(s)
- Phillip Collender
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA
| | - Stephanie Veazie
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lars Van Der Laan
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Kogut
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Corinne Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Pierce ZP, Black JM. Stress and Susceptibility: A Systematic Review of Prenatal Epigenetic Risks for Developing Post-Traumatic Stress Disorder. TRAUMA, VIOLENCE & ABUSE 2023; 24:2648-2660. [PMID: 35714974 DOI: 10.1177/15248380221109792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This review aims to systematically assess the current literature about prenatal epigenetic markers that lead to post-traumatic stress disorder susceptibility across the lifespan. Studies included in this review met several research criteria: Studies included (1) participants with a PTSD diagnosis according to the DSM-5, (2) prenatal epigenetic marker data that could be analyzed, and (3) explicit references to postnatal PTSD susceptibility. Our study sample fit within a timeframe of 2002 (the earliest recorded studies of prenatal susceptibility to post-traumatic stress disorder in the databases used) and February 2021 when the literature search for this review was terminated. Studies for this review were collated from PubMed, MEDLINE, Science Direct, and Boston College School of Social Work Library databases. A systematic search was conducted in these databases using basic keyword terms, such as "PSTD resilience" and "PTSD vulnerability," and then adding clarifying terms to refine specific searches, such as "epigenetics," "genetics," "epigenetic markers," "haplotypes," and "mRNA methylation." Based on these criteria and research methods, 33 studies remained for inclusion in the review sample. This review suggests that BDNF Val66-Met, a polymorphism of FKBP5, and an altered messenger ribonucleic acid methylation marker in NR3C1 present most often in cases of PTSD. These epigenetic markers might be implicated in central neurological processes related to post-traumatic stress disorder symptomatology.
Collapse
Affiliation(s)
- Zachary P Pierce
- School of Social Work, Boston College, Chestnut Hill, MA, USA
- The Cell to Society Laboratory, School of Social Work, Boston College, Chestnut Hill, MA, USA
| | - Jessica M Black
- School of Social Work, Boston College, Chestnut Hill, MA, USA
- The Cell to Society Laboratory, School of Social Work, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
8
|
Sumner JA, Cleveland S, Chen T, Gradus JL. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl Psychiatry 2023; 13:25. [PMID: 36707505 PMCID: PMC9883529 DOI: 10.1038/s41398-023-02330-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and experiences of psychological trauma have been associated with subsequent CVD onset. Identifying key pathways connecting trauma with CVD has the potential to inform more targeted screening and intervention efforts to offset elevated cardiovascular risk. In this narrative review, we summarize the evidence for key psychological and biological mechanisms linking experiences of trauma with CVD risk. Additionally, we describe various methodologies for measuring these mechanisms in an effort to inform future research related to potential pathways. With regard to mechanisms involving posttraumatic psychopathology, the vast majority of research on psychological distress after trauma and CVD has focused on posttraumatic stress disorder (PTSD), even though posttraumatic psychopathology can manifest in other ways as well. Substantial evidence suggests that PTSD predicts the onset of a range of cardiovascular outcomes in trauma-exposed men and women, yet more research is needed to better understand posttraumatic psychopathology more comprehensively and how it may relate to CVD. Further, dysregulation of numerous biological systems may occur after trauma and in the presence of posttraumatic psychopathology; these processes of immune system dysregulation and elevated inflammation, oxidative stress, mitochondrial dysfunction, renin-angiotensin system dysregulation, and accelerated biological aging may all contribute to subsequent cardiovascular risk, although more research on these pathways in the context of traumatic stress is needed. Given that many of these mechanisms are closely intertwined, future research using a systems biology approach may prove fruitful for elucidating how processes unfold to contribute to CVD after trauma.
Collapse
Affiliation(s)
- Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Shiloh Cleveland
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Chen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jaimie L Gradus
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Zheng Y, Lunetta KL, Liu C, Katrinli S, Smith AK, Miller MW, Logue MW. An evaluation of the genome-wide false positive rates of common methods for identifying differentially methylated regions using illumina methylation arrays. Epigenetics 2022; 17:2241-2258. [PMID: 36047742 PMCID: PMC9665129 DOI: 10.1080/15592294.2022.2115600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Differentially methylated regions (DMRs) are genomic regions with specific methylation patterns across multiple loci that are associated with a phenotype. We examined the genome-wide false positive (GFP) rates of five widely used DMR methods: comb-p, Bumphunter, DMRcate, mCSEA and coMethDMR using both Illumina HumanMethylation450 (450 K) and MethylationEPIC (EPIC) data and simulated continuous and dichotomous null phenotypes (i.e., generated independently of methylation data). coMethDMR provided well-controlled GFP rates (~5%) except when analysing skewed continuous phenotypes. DMRcate generally had well-controlled GFP rates when applied to 450 K data except for the skewed continuous phenotype and EPIC data only for the normally distributed continuous phenotype. GFP rates for mCSEA were at least 0.096 and comb-p yielded GFP rates above 0.34. Bumphunter had high GFP rates of at least 0.35 across conditions, reaching as high as 0.95. Analysis of the performance of these methods in specific regions of the genome found that regions with higher correlation across loci had higher regional false positive rates on average across methods. Based on the false positive rates, coMethDMR is the most recommended analysis method, and DMRcate had acceptable performance when analysing 450 K data. However, as both could display higher levels of FPs for skewed continuous distributions, a normalizing transformation of skewed continuous phenotypes is suggested. This study highlights the importance of genome-wide simulations when evaluating the performance of DMR-analysis methods.
Collapse
Affiliation(s)
- Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans. Brain Behav Immun Health 2022; 26:100567. [DOI: 10.1016/j.bbih.2022.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
|
11
|
Young G. Psychotherapeutic Change Mechanisms and Causal Psychotherapy: Applications to Child Abuse and Trauma. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2022; 15:911-923. [PMID: 35958715 PMCID: PMC9360301 DOI: 10.1007/s40653-022-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 05/07/2023]
Abstract
The study of change mechanisms in psychotherapy needs to be integrated with the causality of behavior, which leads to the concept of causal psychotherapy. Causal psychotherapy is posited as a useful adjunct to standard, evidence based psychotherapies for child and youth victims of abuse and trauma. The article illustrates six processes that could be involved in causal psychotherapy in this context, from the distal to the proximal. They include the distal mechanism of activation-inhibition coordination. The most proximal one relates to executive function. The intermediate levels include ones related to co-regulation (e.g., self control), analysis-synthesis, objectivity-subjectivity, and psychological reserve, which is a new concept in the domain of psychological change mechanisms. Each of the variables can vary from high to low, with the low end being more problematic. Psychotherapy can aim to bring the patient toward adaptive levels. The literature review focuses on psychotherapeutic change mechanisms, and standard psychotherapies for child/youth abuse/trauma, especially trauma-focused cognitive behavior therapy (TF-CBT). Then, it considers causal aspects of child/youth abuse and trauma, including PTSD. The discussion relates causal therapy to the question of unifying psychology and psychotherapy under the rubric of causality as a core integrative mechanism.
Collapse
Affiliation(s)
- Gerald Young
- Glendon College, York University, Toronto, Canada
| |
Collapse
|
12
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
13
|
Krystal JH, Southwick SM, Girgenti MJ. Matthew J. Friedman, M.D., Ph.D. and His Legacy of Leadership in the Field of Post-traumatic Stress Disorder. Psychiatry 2022; 85:161-170. [PMID: 35588483 DOI: 10.1080/00332747.2022.2068931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Katrinli S, Smith AK. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100366. [PMID: 34355049 PMCID: PMC8322450 DOI: 10.1016/j.ynstr.2021.100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 11/01/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating condition that adversely affect mental and physical health. Recent studies have increasingly explored the role of the immune system in risk for PTSD and its related symptoms. Dysregulation of the immune system may lead to central nervous system tissue damage and impair learning and memory processes. Individuals with PTSD often have comorbid inflammatory or auto-immune disorders. Evidence shows associations between PTSD and multiple genes that are involved in immune-related or inflammatory pathways. In this review, we will summarize the evidence of immune dysregulation in PTSD, outlining the contributions of distinct cell types, genes, and biological pathways. We use the Human Leukocyte Antigen (HLA) locus to illustrate the contribution of genetic variation to function in different tissues that contribute to PTSD etiology, severity, and comorbidities.
Collapse
Affiliation(s)
- Seyma Katrinli
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA
| | - Alicia K Smith
- Emory University, Department of Gynecology and Obstetrics, Atlanta, GA, USA.,Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
15
|
Thakur A, Choudhary D, Kumar B, Chaudhary A. A review on post-traumatic stress disorder (PTSD): "Symptoms, Therapies and Recent Case Studies". Curr Mol Pharmacol 2021; 15:502-516. [PMID: 34036925 DOI: 10.2174/1874467214666210525160944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Post-traumatic stress disorder (PTSD), previously known as battle fatigue syndrome or shell shock, is a severe mental disturbance condition that is normally triggered by the experience of some frightening/scary events or trauma where a person undergoes some serious physical or mental harm or threatened. PTSD is a long-life effect of the continuous occurrence of traumatic conditions which, leading the production of feelings of helplessness, intense fear, and horror in the person. There are various examples of events that can cause PTSD, such as physical, mental, or sexual assault at home or working place by others, unexpected death of a loved one, an accidental event, war, or some kind of natural disaster. Treatment of PTSD includes the removal or reduction of these emotional feelings or symptoms with the aim to improve the daily life functioning of a person. Problems which are needed to be considered in case of PTSD like ongoing trauma, abusive or bad relationships. Various drugs which are used for the treatment of PTSD include selective serotonin reuptake inhibitors (SSRIs) (citalopram, fluvoxamine, fluoxetine, etc.); tricyclic antidepressants (amitriptyline and isocarboxazid); mood stabilizers (Divalproex and lamotrigine); atypical antipsychotics (aripiprazole and quetiapine), etc. In this review, we have covered the different risk factors, case studies related to various treatment options with different age group peoples in PTSD and their effects on them. We have also covered the symptoms and associated disorders which can play a key role in the development of PTSD.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031. Taiwan
| | - Diksha Choudhary
- Department of School of Pharmacy, Abhilashi University, Chail Chowk, tehsil Chachyot, Mandi, Himachal Pradesh 175028, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, India
| | - Amit Chaudhary
- Department of School of Pharmacy, Abhilashi University, Chail Chowk, tehsil Chachyot, Mandi, Himachal Pradesh 175028, India
| |
Collapse
|
16
|
Ensink JBM, Keding TJ, Henneman P, Venema A, Papale LA, Alisch RS, Westerman Y, van Wingen G, Zantvoord J, Middeldorp CM, Mannens MMAM, Herringa RJ, Lindauer RJL. Differential DNA Methylation Is Associated With Hippocampal Abnormalities in Pediatric Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1063-1070. [PMID: 33964519 DOI: 10.1016/j.bpsc.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent findings in neuroimaging and epigenetics offer important insights into brain structures and biological pathways of altered gene expression associated with posttraumatic stress disorder (PTSD). However, it is unknown to what extent epigenetic mechanisms are associated with PTSD and its neurobiology in youth. METHODS In this study, we combined a methylome-wide association study and structural neuroimaging measures in a Dutch cohort of youths with PTSD (8-18 years of age). We aimed to replicate findings in a similar independent U.S. cohort. RESULTS We found significant methylome-wide associations for pediatric PTSD (false discovery rate p < .05) compared with non-PTSD control groups (traumatized and nontraumatized youths). Methylation differences on nine genes were replicated, including genes related to glucocorticoid functioning. In both cohorts, methylation on OLFM3 gene was further associated with anterior hippocampal volume. CONCLUSIONS These findings point to molecular pathways involved in inflammation, stress response, and neuroplasticity as potential contributors to neural abnormalities and provide potentially unique biomarkers and treatment targets for pediatric PTSD.
Collapse
Affiliation(s)
- Judith B M Ensink
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Academic Centre for Child and Adolescent Psychiatry, De Bascule, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Taylor J Keding
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Andrea Venema
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ligia A Papale
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reid S Alisch
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yousha Westerman
- Academic Centre for Child and Adolescent Psychiatry, De Bascule, Amsterdam, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Jasper Zantvoord
- Department of Psychiatry, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Christel M Middeldorp
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Marcel M A M Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ryan J Herringa
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Ramon J L Lindauer
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Academic Centre for Child and Adolescent Psychiatry, De Bascule, Amsterdam, the Netherlands
| |
Collapse
|