1
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
2
|
Wu Y, Che J, Dong J, Zhang X, Deng Y, Chen W, Zhang J. CCR5 antagonist maraviroc alleviates doxorubicin-induced neuroinflammation and neurobehavioral deficiency by regulating NF-κB/NLRP3 signaling in a breast cancer mouse model. Neuropharmacology 2024; 254:109981. [PMID: 38704022 DOI: 10.1016/j.neuropharm.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The chemotherapeutic agent Doxorubicin (DOX) is known to cause chemotherapy-induced cognitive impairment (CICI). Maraviroc, a potent C-C chemokine receptor 5 (CCR5) antagonist, shows neuroprotective properties, while its role in CICI remains unclear. This study determined the therapeutic potential of maraviroc on CICI. Adult C57BL/6J mice with implanted breast cancer cells received four weekly intraperitoneal injections of saline (Control group), 5 mg/kg DOX (DOX group), 10 mg/kg maraviroc (MVC group), or 5 mg/kg DOX with 10 mg/kg maraviroc (DOX + MVC group). The Morris Water Maze (MWM) was used for neurobehavioural test. Western blot analysis and immunofluorescence were used to evaluate the expressions of inflammatory markers, apoptosis-related proteins, and synaptic-related proteins. The volume and weight of tumor were also evaluated after treatments. DOX treatment significantly increased chemokines (CCL3, CCL4) and inflammatory cytokines (IL-1β, TNF-α) in tumor-bearing mice hippocampus. While maraviroc administration reduced hippocampal proinflammatory factors compared to the DOX group. Furthermore, it also lowered apoptosis markers, restored synaptic proteins levels, and inhibited the NF-κB/NLRP3 pathway. Accordingly, maraviroc treatment significantly improved DOX-induced neurobehavioural impairments as evidenced by an increased number of platform crossings and percentage of target quadrant time in the MWM test. Additionally, when combined with DOX, maraviroc had additional inhibitory effects on tumor growth. These findings suggest that maraviroc can mitigate DOX-induced CICI by suppressing elevated proinflammatory chemokines and cytokines through the NF-κB/NLRP3 pathway, potentially offering an anti-tumor benefit. This research presents a promising therapeutic approach for DOX-induced CICI, enhancing the safety and efficacy of cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Ji Che
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Jing Dong
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Xiang Zhang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Yixu Deng
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Wei Chen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Jun Zhang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
3
|
Hamilton S, Oxlad M, Sianis Y. Experiences of women with breast cancer disclosing cancer-related cognitive impairment symptoms to health professionals: a Systematic review and meta-synthesis. J Psychosoc Oncol 2024; 42:888-908. [PMID: 38648500 DOI: 10.1080/07347332.2024.2342836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Cancer-related cognitive impairment involves changes in cognitive domains among people diagnosed with cancer. This review aimed to explore and synthesize the experiences of women with breast cancer disclosing cancer-related cognitive impairment symptoms to health professionals. METHODS A systematic review and meta-synthesis was conducted to generate synthesized findings from existing literature. Six databases were searched from inception until mid-October 2022, with eligible studies appraised using the QualSyst Quality Assessment Checklist. RESULTS Three synthesized findings were generated from eight included studies. Findings highlight that women initiated conversations disclosing symptoms and frequently experienced dismissal or minimization from health professionals. Women rarely received information about cognitive impairment symptoms before treatment. Women reported that health professionals could be more involved in managing cognitive impairment symptoms. CONCLUSION This meta-synthesis highlights the importance of health professionals providing information before treatment and following up on cognitive impairment symptoms.
Collapse
Affiliation(s)
- Susan Hamilton
- School of Psychology, The University of Adelaide, Adelaide, Australia
| | - Melissa Oxlad
- School of Psychology, The University of Adelaide, Adelaide, Australia
| | - Yianni Sianis
- School of Psychology, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Bu L, Wang C, Bai J, Song J, Zhang Y, Chen H, Suo H. Gut microbiome-based therapies for alleviating cognitive impairment: state of the field, limitations, and future perspectives. Food Funct 2024; 15:1116-1134. [PMID: 38224464 DOI: 10.1039/d3fo02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cognitive impairment (CI) is a multifaceted neurological condition that can trigger negative emotions and a range of concurrent symptoms, imposing significant public health and economic burdens on society. Therefore, it is imperative to discover a remedy for CI. Nevertheless, the mechanisms behind the onset of this disease are multifactorial, which makes the search for effective amelioration difficult and complex, hindering the search for effective measures. Intriguingly, preclinical research indicates that gut microbiota by influencing brain function, plays an important role in the progression of CI. Furthermore, numerous preclinical studies have highlighted the potential of probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet in modulating the gut microbiota, thereby ameliorating CI symptoms. This review provides a comprehensive evaluation of CI pathogenesis, emphasizing the contribution of gut microbiota disorders to CI development. It also summarizes and discusses current strategies and mechanisms centered on the synergistic role of gut microbiota modulation in the microbiota-gut-brain axis in CI development. Finally, problems with existing approaches are contemplated and the development of microbial modulation strategies as therapeutic approaches to promote and restore brain cognition is discussed. Further research considerations and directions are highlighted to provide ideas for future CI prevention and treatment strategies.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Xizang 850000, China
| | - Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Modern "Chuan Cai Yu Wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
5
|
Cross C, Davies M, Bateman E, Crame E, Joyce P, Wignall A, Ariaee A, Gladman MA, Wardill H, Bowen J. Fibre-rich diet attenuates chemotherapy-related neuroinflammation in mice. Brain Behav Immun 2024; 115:13-25. [PMID: 37757978 DOI: 10.1016/j.bbi.2023.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.
Collapse
Affiliation(s)
- Courtney Cross
- School of Biomedicine, University of Adelaide, South Australia, Australia; Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Maya Davies
- School of Biomedicine, University of Adelaide, South Australia, Australia; Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Emma Bateman
- School of Biomedicine, University of Adelaide, South Australia, Australia; Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Elise Crame
- School of Biomedicine, University of Adelaide, South Australia, Australia; Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Anthony Wignall
- UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | - Amin Ariaee
- UniSA Clinical & Health Sciences, University of South Australia, South Australia, Australia
| | | | - Hannah Wardill
- School of Biomedicine, University of Adelaide, South Australia, Australia; Supportive Oncology Research Group, Precision Cancer Medicine (Theme), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, South Australia, Australia.
| | - Joanne Bowen
- School of Biomedicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Liu Y, Reiken S, Dridi H, Yuan Q, Mohammad KS, Trivedi T, Miotto MC, Wedderburn-Pugh K, Sittenfeld L, Kerley Y, Meyer JA, Peters JS, Persohn SC, Bedwell AA, Figueiredo LL, Suresh S, She Y, Soni RK, Territo PR, Marks AR, Guise TA. Targeting ryanodine receptor type 2 to mitigate chemotherapy-induced neurocognitive impairments in mice. Sci Transl Med 2023; 15:eadf8977. [PMID: 37756377 DOI: 10.1126/scitranslmed.adf8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-β signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Present address: College of Medicine, Alfaisal University, Box 50927, Riyadh 1153, Kingdom of Saudi Arabia
| | - Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kaylee Wedderburn-Pugh
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ynez Kerley
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jill A Meyer
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jonathan S Peters
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott C Persohn
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda A Bedwell
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lucas L Figueiredo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sukanya Suresh
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun She
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
8
|
Yao S, Zhang Q, Yao X, Zhang X, Pang L, Yu S, Cheng H. Advances of neuroimaging in chemotherapy related cognitive impairment (CRCI) of patients with breast cancer. Breast Cancer Res Treat 2023:10.1007/s10549-023-07005-y. [PMID: 37329458 DOI: 10.1007/s10549-023-07005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Chemotherapy related cognitive impairment (CRCI) has seriously affected the quality of life (QOL) of patients with breast cancer (BCs), thus the neurobiological mechanism of CRCI attracted widespread attention. Previous studies have found that chemotherapy causes CRCI through affecting brain structure, function, metabolism, and blood perfusion. FINDINGS A variety of neuroimaging techniques such as functional magnetic resonance imaging (fMRI), event-related potential (ERP), near-infrared spectroscopy (NIRS) have been widely applied to explore the neurobiological mechanism of CRCI. CONCLUSION This review summarized the progress of neuroimaging research in BCs with CRCI, which provides a theoretical basis for further exploration of CRCI mechanism, disease diagnosis and symptom intervention in the future. Multiple neuroimaging techniques for CRCI research.
Collapse
Affiliation(s)
- Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Xinxin Yao
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiuqing Zhang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Cancer and Cognition Laboratory, Anhui Medical University, Hefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China.
- Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Subramaniam CB, Wardill HR, Davies MR, Heng V, Gladman MA, Bowen JM. 5-Fluorouracil Induces an Acute Reduction in Neurogenesis and Persistent Neuroinflammation in a Mouse Model of the Neuropsychological Complications of Chemotherapy. Mol Neurobiol 2023; 60:1408-1424. [PMID: 36449255 DOI: 10.1007/s12035-022-03136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
The neuropsychological symptoms associated with chemotherapy treatment remain a major challenge with their prevention hampered by insufficient understanding of pathophysiology. While long-term neuroimmune changes have been identified as a hallmark feature shared by neurological symptoms, the exact timeline of mechanistic events preceding neuroinflammation, and the relationship between the glial cells driving this neuroinflammatory response, remain unclear. We therefore aimed to longitudinally characterize the neuroimmunological changes following systemic 5-fluorouracil (5-FU) treatment to gain insight into the timeline of events preceding the well-documented chronic neuroinflammation seen following chemotherapy. Eighteen female C57Bl/6 mice received a single intraperitoneal dose of 5-FU and groups were killed at days 1 and 2 (acute timepoint), days 4 and 8 (subacute timepoint), and days 16 and 32 (chronic timepoint). A further six mice were administered with vehicle control with tissues collected from three mice on day 1 and day 32 of the study. The expression of key genes of interest, BCL2, BDNF, TIMP1, MMP-9, MMP-2, TNFα, IL-1β, and IL-6R were assessed using real time polymerase chain reaction. Levels of neurogenesis were determined through immunofluorescent staining of doublecortin (DCX). The density of microglia and astrocytes were assessed using immunofluorescence staining of Iba1 and GFAP respectively. 5-FU treatment caused significant decreases to DCX staining at acute timepoints (p = 0.0030) which was positively correlated with BCL2 expression levels. An increase to microglial density was observed in the prefrontal cortex (p = 0.0256), CA3 region (p = 0.0283), and dentate gyrus (p = 0.0052) of the hippocampus at acute timepoints. 5-FU caused increases to astrocyte density, across multiple brains regions, at subacute and chronic timepoints which were positively correlated with TNFα, TIMP-1, MMP-2, and IL-6R expression. This study has identified acute objective neuroinflammatory changes suggesting that the role of early intervention should be explored to prevent the development of neuropsychological deficits in the longer-term following chemotherapy.
Collapse
Affiliation(s)
- Courtney B Subramaniam
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia.
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - Maya R Davies
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - Vivien Heng
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Marc A Gladman
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Squillace S, Niehoff ML, Doyle TM, Green M, Esposito E, Cuzzocrea S, Arnatt CK, Spiegel S, Farr SA, Salvemini D. Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J Clin Invest 2022; 132:157738. [PMID: 36047496 PMCID: PMC9433103 DOI: 10.1172/jci157738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Niehoff
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Michael Green
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | - Christopher K Arnatt
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, Richmond, Virginia, USA
| | - Susan A Farr
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, Missouri, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and.,The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Grape-Seed-Derived Procyanidin Attenuates Chemotherapy-Induced Cognitive Impairment by Suppressing MMP-9 Activity and Related Blood–Brain-Barrier Damage. Brain Sci 2022; 12:brainsci12050571. [PMID: 35624958 PMCID: PMC9139059 DOI: 10.3390/brainsci12050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Chemotherapy-induced cognitive impairment (CICI) is often observed in cancer patients and impairs their life quality. Grape-seed-orientated procyanidin has been shown to have anti-inflammatory and neuroprotective effects, yet its effects in preventing CICI have not been investigated. (2) Method: Adult male mice received 2.3 mg/kg cisplatin or saline injections for three cycles consisting of five daily injections followed by 5 days of rest. Procyanidin or saline was administered 1 h prior to cisplatin treatment. Cognitive testing, gelatin zymography, and blood–brain-barrier (BBB) penetration tests were performed after treatment cessation. RAW264.7 cells were treated by stimulated supernatant of SHSY5Y cells. In addition, high-mobility group protein B1 (HMGB1) expression and MMP-9 activity were tested. (3) Results: Repeated cisplatin treatment increased BBB penetration, MMP-9 activity, impaired performance in contextual fear conditioning, and novel object recognition tasks. The knockout of MMP-9 rescues cognitive impairment and cisplatin-induced upregulation of HMGB1 in SHSY5Y cells. HMGB1/TLR4/IP3K/AKT signaling contributes to the increased MMP-9 activity in RAW264.7 cells. Procyanidin treatment attenuates MMP-9 activity, BBB damage, and CICI. (4) Conclusions: The results indicated that MMP-9 activation and BBB disruption is involved in CICI. Procyanidin may effectively alleviate the harmful effects of cisplatin.
Collapse
|
12
|
Young JW, Barback CV, Stolz LA, Groman SM, Vera DR, Hoh C, Kotta KK, Minassian A, Powell SB, Brody AL. MicroPET evidence for a hypersensitive neuroinflammatory profile of gp120 mouse model of HIV. Psychiatry Res Neuroimaging 2022; 321:111445. [PMID: 35101828 DOI: 10.1016/j.pscychresns.2022.111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Despite increased survivability for people living with HIV (PLWH), HIV-related cognitive deficits persist. Determining biological mechanism(s) underlying abnormalities is critical to minimize the long-term impact of HIV. Positron emission tomography (PET) studies reveal that PLWH exhibit elevated neuroinflammation, potentially contributing to these problems. PLWH are hypersensitive to environmental insults that drive elevated inflammatory profiles. Gp120 is an envelope glycoprotein exposed on the surface of the HIV envelope which enables HIV entry into a cell contributing to HIV-related neurotoxicity. In vivo evidence for mice overexpressing gp120 (transgenic) mice exhibiting neuroinflammation remains unclear. Here, we conducted microPET imaging in gp120 transgenic and wildtype mice, using the radiotracer [(18)F]FEPPA (binds to the translocator protein expressed by activated microglial serving as a neuroinflammatory marker). Imaging was performed at baseline and 24 h after lipopolysaccharide (LPS; 5 mg/kg) treatment (endotoxin that triggers an immune response). Gp120 transgenic mice exhibited elevated [(18F)]FEPPA in response to LPS vs. wildtype mice throughout the brain including dorsal and ventral striata, hypothalamus, and hippocampus. Gp120 transgenic mice are hypersensitive to environmental inflammatory insults, consistent with PLWH, measurable in vivo. It remains to-be-determined whether this heightened sensitivity is connected to the behavioral abnormalities of these mice or sensitive to any treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Christopher V Barback
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Louise A Stolz
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA
| | - Stephanie M Groman
- Department of Neuroscience, Medical Discovery Team on Addiction, University of Minnesota
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Carl Hoh
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Kishore K Kotta
- Department of Radiology, University of California, San Diego, La Jolla California; UCSD In Vivo Cancer and Molecular Imaging Program
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arthur L Brody
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
13
|
Whittaker AL, George RP, O'Malley L. Prevalence of cognitive impairment following chemotherapy treatment for breast cancer: a systematic review and meta-analysis. Sci Rep 2022; 12:2135. [PMID: 35136066 PMCID: PMC8826852 DOI: 10.1038/s41598-022-05682-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Breast cancer survival rates have markedly improved. Consequently, survivorship issues have received increased attention. One common sequel of treatment is chemotherapy-induced cognitive impairment (CICI). CICI causes a range of impairments that can have a significant negative impact on quality of life. Knowledge of the prevalence of this condition is required to inform survivorship plans, and ensure adequate resource allocation and support is available for sufferers, hence a systematic review of prevalence data was performed. Medline, Scopus, CINAHL and PSYCHInfo were searched for eligible studies which included prevalence data on CICI, as ascertained though the use of self-report, or neuropsychological tests. Methodological quality of included studies was assessed. Findings were synthesised narratively, with meta-analyses being used to calculate pooled prevalence when impairment was assessed by neuropsychological tests. The review included 52 studies. Time-points considered ranged from the chemotherapy treatment period to greater than 10 years after treatment cessation. Summary prevalence figures (across time-points) using self-report, short cognitive screening tools and neuropsychological test batteries were 44%, 16% and 21-34% respectively (very low GRADE evidence). Synthesised findings demonstrate that 1 in 3 breast cancer survivors may have clinically significant cognitive impairment. Prevalence is higher when self-report based on patient experience is considered. This review highlights a number of study design issues that may have contributed to the low certainty rating of the evidence. Future studies should take a more consistent approach to the criteria used to assess impairment. Larger studies are urgently needed.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA, 5371, Australia.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA, 5371, Australia
| | - Lucy O'Malley
- Division of Dentistry, School of Medical Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
George RP, Semendric I, Bowley-Schubert ER, Chivonivoni CT, Warrender AP, Whittaker AL. Reporting in rodent models of 'chemobrain': a systematic review assessing compliance with the ARRIVE guidelines. Support Care Cancer 2021; 29:7073-7084. [PMID: 34080055 DOI: 10.1007/s00520-021-06312-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/09/2022]
Abstract
Patients diagnosed with cancer are often plagued with debilitating side effects post-chemotherapy treatment. One such side effect is chemotherapy-induced cognitive impairment or 'chemobrain'. Rodent models are commonly used to investigate pathogenesis and potential therapeutic strategies. However, concerns have been raised regarding inadequacies in reporting of animal studies rendering them unreliable and irreproducible. The aim of this systematic review was to assess compliance with the ARRIVE reporting guidelines in peer-reviewed publications evaluating chemotherapy-induced cognitive changes in rodent models, and to determine if the introduction of the ARRIVE guidelines has improved quality of reporting. A comprehensive search was conducted to identify relevant peer-reviewed publications. Ninety-seven studies met the eligibility criteria, and publication compliance with the ARRIVE guideline reporting was assessed. No studies achieved full adherence with the ARRIVE guidelines. Furthermore, no significant improvement was demonstrated in the overall compliance score post-ARRIVE. Given the lack of standardisation of animal models in this research area, these results pose particular threat to future progress and translation of findings in this area of research. These results highlight the need for stricter adherence to the ARRIVE guidelines by journal editors and reviewers. Animal Ethics Committees also have an important educative role in improving knowledge and awareness of the guidelines amongst researchers.
Collapse
Affiliation(s)
- Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia.
| | - Ines Semendric
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | - Christine T Chivonivoni
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Alexandra P Warrender
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|