1
|
Kabore MD, McElrath CC, Ali MAE, Almengo K, Gangaplara A, Fisher C, Barreto MA, Shaikh A, Olkhanud PB, Xu X, Gaskin D, Lopez-Ocasio M, Saxena A, McCoy JP, Fitzhugh CD. Low dose post-transplant cyclophosphamide and sirolimus induce mixed chimerism with CTLA4-Ig or lymphocyte depletion in an MHC-mismatched murine allotransplantation model. Bone Marrow Transplant 2024; 59:615-624. [PMID: 38347187 PMCID: PMC11073977 DOI: 10.1038/s41409-024-02237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) offers a curative option for patients with certain non-malignant hematological diseases. High-dose post-transplant cyclophosphamide (PT-Cy) (200 mg/kg) and sirolimus (3 mg/kg), (HiC) synergistically induce stable mixed chimerism. Further, sirolimus and cytotoxic T lymphocyte-associated antigen-4 immunoglobulin (CTLA4-Ig), also known as Abatacept (Aba), promote immune tolerance and allograft survival. Here, in a major histocompatibility complex (MHC)-mismatched allo-HCT murine model, we combined Aba and/or T-cell depleting anti-Thy1.2 (Thy) with a lower dose of PT-Cy (50 mg/kg) and Sirolimus (3 mg/kg), (LoC). While mice in the LoC group showed graft rejection, the addition of Thy to LoC induced similar donor chimerism levels when compared to the HiC group. However, the addition of Aba to LoC led to graft acceptance only in younger mice. When Thy was added to the LoC+Aba setting, graft acceptance was restored in both age groups. Engrafted groups displayed significantly reduced frequencies of recipient-specific interferon-γ-producing T cells as well as an increased frequency in regulatory T cells (Tregs) except in the LoC+Aba group. Splenocytes from engrafted mice showed no proliferation upon restimulation with Balb/c stimulators. Collectively, in combination with Aba or Thy, LoC may be considered to reduce graft rejection in patients who undergo allo-HCT.
Collapse
Affiliation(s)
- Mariama D Kabore
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corbin C McElrath
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mohamed A E Ali
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine Almengo
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arunakumar Gangaplara
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Miltenyi Biotec, Gaithersburg, MD, 20878, USA
| | - Cameron Fisher
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mauricio A Barreto
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ahmad Shaikh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Purevdorj B Olkhanud
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Xu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deanna Gaskin
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Ocasio
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ankit Saxena
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Courtney D Fitzhugh
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Zhang P, Fleming P, Andoniou CE, Waltner OG, Bhise SS, Martins JP, McEnroe BA, Voigt V, Daly S, Kuns RD, Ekwe AP, Henden AS, Saldan A, Olver S, Varelias A, Smith C, Schmidt CR, Ensbey KS, Legg SR, Sekiguchi T, Minnie SA, Gradwell M, Wagenaar I, Clouston AD, Koyama M, Furlan SN, Kennedy GA, Ward ES, Degli-Esposti MA, Hill GR, Tey SK. IL-6-mediated endothelial injury impairs antiviral humoral immunity after bone marrow transplantation. J Clin Invest 2024; 134:e174184. [PMID: 38557487 PMCID: PMC10977988 DOI: 10.1172/jci174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.
Collapse
Affiliation(s)
- Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Peter Fleming
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E. Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Sheridan Daly
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Adaeze P. Ekwe
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S. Henden
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Alda Saldan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Stuart Olver
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Samuel R.W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark Gradwell
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Irma Wagenaar
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics and
| | - Glen A. Kennedy
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Mariapia A. Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| |
Collapse
|
3
|
Wittenbecher F, Lesch S, Kolling S, Blau IW, Vuong L, Borchert F, Movasshagi K, Tietze-Bürger C, Penack O, Ahn J, Bullinger L, Frentsch M, Na IK. Paired Donor and Recipient Immunophenotyping in Allogeneic Hematopoietic Stem Cell Transplantation: A Cellular Network Approach. Front Immunol 2022; 13:874499. [PMID: 35677053 PMCID: PMC9168993 DOI: 10.3389/fimmu.2022.874499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Abstract
Success and complications of allogeneic hematopoietic stem cell transplantation (alloHSCT) are closely connected to the transferred graft and immune reconstitution post alloHSCT. Due to the variety of immune cells and their distinct roles, a broad evaluation of the immune cellular network is warranted in mobilization and reconstitution studies in alloHSCT. Here, we propose a comprehensive phenotypic analysis of 26 immune cell subsets with multicolor flow cytometry from only 100µl whole blood per time point. Using this approach, we provide an extensive longitudinal analysis of almost 200 time points from 21 donor-recipient pairs. We observe a broad mobilization of innate and adaptive immune cell subsets after granulocyte-colony stimulating factor (G-CSF) treatment of healthy donors. Our data suggest that the relative quantitative immune cell subset composition in recipients approaches that of healthy donors from day +180 post alloHSCT onwards. Correlation of donor and recipient cell counts reveals distinct association patterns for different immune cell subsets and hierarchical clustering of recipient cell counts identifies distinct reconstitution groups in the first month after transplantation. We suggest our comprehensive immune subset analysis as a feasible and time efficient approach for a broad immune assessment for future clinical studies in the context of alloHSCT. This comprehensive cell composition assessment can be a critical step towards personalized graft composition strategies and individualized therapy management in areas such as GvHD prophylaxis in the highly complex immunological setting of alloHSCT.
Collapse
Affiliation(s)
- Friedrich Wittenbecher
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Stella Lesch
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kolling
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lam Vuong
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Borchert
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kamran Movasshagi
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carola Tietze-Bürger
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Johann Ahn
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Tumor Immunology, Charite´ - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
4
|
Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M, McCoy LE, Griffith SA, Thornhill J, Alrubayyi A, Huyveneers LEP, Nastouli E, Grant P, Edwards SG, Innes AJ, Frater J, Nijhuis M, Wensing AMJ, Martinez-Picado J, Olavarria E. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 2020; 7:e340-e347. [PMID: 32169158 PMCID: PMC7606918 DOI: 10.1016/s2352-3018(20)30069-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The London patient (participant 36 in the IciStem cohort) underwent allogeneic stem-cell transplantation with cells that did not express CCR5 (CCR5Δ32/Δ32); remission was reported at 18 months after analytical treatment interruption (ATI). Here, we present longer term data for this patient (up to 30 months after ATI), including sampling from diverse HIV-1 reservoir sites. METHODS We used ultrasensitive viral load assays of plasma, semen, and cerebrospinal fluid (CSF) samples to detect HIV-1 RNA. In gut biopsy samples and lymph-node tissue, cell-copy number and total HIV-1 DNA levels were quantified in multiple replicates, using droplet digital PCR (ddPCR) and quantitative real-time PCR. We also analysed the presence of intact proviral DNA using multiplex ddPCR targeting the packaging signal (ψ) and envelope (env). We did intracellular cytokine staining to measure HIV-1-specific T-cell responses. We used low-sensitive and low-avidity antibody assays to measure the humoral response to HIV-1. We predicted the probability of rebound using a mathematical model and inference approach. FINDINGS HIV-1 viral load in plasma remained undetectable in the London patient up to 30 months (last tested on March 4, 2020), using an assay with a detection limit of 1 copy per mL. The patient's CD4 count was 430 cells per μL (23·5% of total T cells) at 28 months. A very low-level positive signal for HIV-1 DNA was recorded in peripheral CD4 memory cells at 28 months. The viral load in semen was undetectable in both plasma (lower limit of detection [LLD] <12 copies per mL) and cells (LLD 10 copies per 106 cells) at 21 months. CSF was within normal parameters at 25 months, with HIV-1 RNA below the detection limit (LLD 1 copy per mL). HIV-1 DNA by ddPCR was negative in rectum, caecum, and sigmoid colon and terminal ileum tissue samples at 22 months. Lymph-node tissue from axilla was positive for the long-terminal repeat (33 copies per 106 cells) and env (26·1 copies per 106 cells), negative for ψ and integrase, and negative by the intact proviral DNA assay, at 27 months. HIV-1-specific CD4 and CD8 T-cell responses have remained absent at 27 months. Low-avidity Env antibodies have continued to decline. Mathematical modelling suggests that the probability of remission for life (cure) is 98% in the context of 80% donor chimerism in total HIV target cells and greater than 99% probability of remission for life with 90% donor chimerism. INTERPRETATION The London patient has been in HIV-1 remission for 30 months with no detectable replication-competent virus in blood, CSF, intestinal tissue, or lymphoid tissue. Donor chimerism has been maintained at 99% in peripheral T cells. We propose that these findings represent HIV-1 cure. FUNDING Wellcome Trust and amfAR (American Foundation for AIDS Research).
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK; Africa Health Research Institute, Durban, South Africa.
| | - Dimitra Peppa
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alison L Hill
- Department for Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | | | - Matthew Pace
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London (UCL), London, UK
| | - Sarah A Griffith
- Division of Infection and Immunity, University College London (UCL), London, UK
| | | | | | - Laura E P Huyveneers
- Department of Medical Microbiology, University Medical Center, Utrecht, Netherlands
| | - Eleni Nastouli
- Division of Infection and Immunity, University College London (UCL), London, UK; Department of Virology, UCL Hospitals, London, UK; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Paul Grant
- Department of Virology, UCL Hospitals, London, UK
| | - Simon G Edwards
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Andrew J Innes
- Imperial College London, London, UK; Imperial College NHS Healthcare Trust, Hammersmith Hospital, London, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Monique Nijhuis
- Department of Medical Microbiology, University Medical Center, Utrecht, Netherlands
| | - Anne Marie J Wensing
- Department of Medical Microbiology, University Medical Center, Utrecht, Netherlands
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain; University of Vic - Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Eduardo Olavarria
- Imperial College London, London, UK; Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| |
Collapse
|
5
|
Bender Ignacio RA, Dasgupta S, Stevens-Ayers T, Kula T, Hill JA, Lee SJ, Mielcarek M, Duerr A, Elledge SJ, Boeckh M. Comprehensive viromewide antibody responses by systematic epitope scanning after hematopoietic cell transplantation. Blood 2019; 134:503-514. [PMID: 31186276 PMCID: PMC6688428 DOI: 10.1182/blood.2019897405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Further insight into humoral viral immunity after hematopoietic cell transplantation (HCT) could have potential impact on donor selection or monitoring of patients. Currently, estimation of humoral immune recovery is inferred from lymphocyte counts or immunoglobulin levels and does not address vulnerability to specific viral infections. We interrogated the viral antibody repertoire before and after HCT using a novel serosurvey (VirScan) that detects immunoglobulin G responses to 206 viruses. We performed VirScan on cryopreserved serum from pre-HCT and 30, 100, and 365 days after myeloablative HCT from 37 donor-recipient pairs. We applied ecologic metrics (α- and β-diversity) and evaluated predictors of metrics and changes over time. Donor age and donor/recipient cytomegalovirus (CMV) serostatus and receipt systemic glucocorticoids were most strongly associated with VirScan metrics at day 100. Other clinical characteristics, including pre-HCT treatment and conditioning, did not affect antiviral repertoire metrics. The recipient repertoire was most similar (pairwise β-diversity) to that of donor at day 100, but more similar to pre-HCT self by day 365. Gain or loss of epitopes to common viruses over the year post-HCT differed by donor and recipient pre-HCT serostatus, with highest gains in naive donors to seropositive recipients for several human herpesviruses and adenoviruses. We used VirScan to highlight contributions of donor and recipient to antiviral humoral immunity and evaluate longitudinal changes. This work builds a foundation to test whether such systematic profiling could serve as a biomarker of immune reconstitution, predict clinical events after HCT, or help refine selection of optimal donors.
Collapse
Affiliation(s)
- Rachel A Bender Ignacio
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sayan Dasgupta
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Joshua A Hill
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine
| | - Marco Mielcarek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine
| | - Ann Duerr
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, and
- Department Global Health, University of Washington, Seattle, WA
| | | | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
6
|
Singh N, Loren AW. Overview of Hematopoietic Cell Transplantation for the Treatment of Hematologic Malignancies. Clin Chest Med 2017; 38:575-593. [DOI: 10.1016/j.ccm.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Ghosh A, Smith M, James SE, Davila ML, Velardi E, Argyropoulos KV, Gunset G, Perna F, Kreines FM, Levy ER, Lieberman S, Jay H, Tuckett AZ, Zakrzewski JL, Tan L, Young LF, Takvorian K, Dudakov JA, Jenq RR, Hanash AM, Motta ACF, Murphy GF, Liu C, Schietinger A, Sadelain M, van den Brink MR. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med 2017; 23:242-249. [PMID: 28067900 PMCID: PMC5528161 DOI: 10.1038/nm.4258] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Scott E. James
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marco L. Davila
- Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Enrico Velardi
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kimon V. Argyropoulos
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gertrude Gunset
- Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabiana Perna
- Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabiana M. Kreines
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Emily R. Levy
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sophie Lieberman
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hilary Jay
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Z. Tuckett
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Lisa Tan
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lauren F. Young
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kate Takvorian
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jarrod A. Dudakov
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R. Jenq
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan M. Hanash
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ana Carolina F. Motta
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - George F. Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, NJ
| | - Andrea Schietinger
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michel Sadelain
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marcel R.M. van den Brink
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Center of Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Ogonek J, Kralj Juric M, Ghimire S, Varanasi PR, Holler E, Greinix H, Weissinger E. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:507. [PMID: 27909435 PMCID: PMC5112259 DOI: 10.3389/fimmu.2016.00507] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT.
Collapse
Affiliation(s)
- Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Mateja Kralj Juric
- BMT, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sakhila Ghimire
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Pavankumar Reddy Varanasi
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | | | - Eva Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Castiello MC, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, Sereni L, van der Burg M, Ottaviano G, Albert MH, Grazia Roncarolo M, Naldini L, Aiuti A, Villa A, Bosticardo M. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2015; 136:692-702.e2. [PMID: 25792466 PMCID: PMC4559137 DOI: 10.1016/j.jaci.2015.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
Abstract
Background Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene–corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. Objective Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. Methods We evaluated B-cell counts, B-cell subset distribution, B cell–activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. Results After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19+CD21−CD35− and CD21low B cells and a reduction in B cell–activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. Conclusions We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Pala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giorgio Ottaviano
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael H Albert
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; IRGB CNR, Milan Unit, Milan, Italy.
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
van den Brink MRM, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:215-219. [PMID: 26637724 DOI: 10.1182/asheducation-2015.1.215] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Marcel R M van den Brink
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and Division of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| |
Collapse
|
11
|
Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, Bousvaros A, Dhanireddy S, Sung L, Keyserling H, Kang I. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2013; 58:e44-100. [PMID: 24311479 DOI: 10.1093/cid/cit684] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An international panel of experts prepared an evidenced-based guideline for vaccination of immunocompromised adults and children. These guidelines are intended for use by primary care and subspecialty providers who care for immunocompromised patients. Evidence was often limited. Areas that warrant future investigation are highlighted.
Collapse
Affiliation(s)
- Lorry G Rubin
- Division of Pediatric Infectious Diseases, Steven and Alexandra Cohen Children's Medical Center of New York of the North Shore-LIJ Health System, New Hyde Park
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamazaki R, Nakasone H, Tanaka Y, Sato M, Terasako K, Wada H, Ishihara Y, Kawamura K, Sakamoto K, Ashizawa M, Machishima T, Kimura SI, Kikuchi M, Okuda S, Kako S, Kanda J, Tanihara A, Nishida J, Kanda Y. Allotype analysis to distinguish the origin of varicella-zoster virus immunoglobulin G after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19:1013-20. [PMID: 23583826 DOI: 10.1016/j.bbmt.2013.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/05/2013] [Indexed: 11/30/2022]
Abstract
Varicella-zoster virus (VZV) reactivation is a frequent complication after allogeneic hematopoietic stem cell transplantation (HSCT). Although previous studies have revealed that cellular immunity is important for suppressing reactivation, the role of humoral immunity against VZV has been poorly evaluated. We analyzed inherited polymorphisms in the immunoglobulin G (IgG) heavy chain constant regions of 50 HSCT recipient-donor pairs to distinguish donor-derived and recipient-derived antibodies. Twelve pairs were informative regarding the origin of IgG, since either the donors (n = 3) or recipients (n = 9) were homozygous null for the IgG1m(f) allotype. In these 9 homozygous-null recipients, allotype-specific IgG against VZV were measured by enzyme-linked immunosorbent assay and compared with measles-IgG. All 9 homozygous-null recipients were monitored for more than 1 year after HSCT, with (n = 4, localized zoster) or without (n = 5) clinical VZV disease. In 3 patients with VZV disease, donor-derived IgG against VZV was elevated between 500 to 700 days after HSCT after the episode of VZV disease. In 1 patient who suffered from VZV disease just before HSCT, donor-derived VZV IgG was elevated within 3 months after HSCT. On the other hand, 2 patients who received reduced-intensity conditioning (RIC) transplantation from an IgG1m(f) null donor maintained recipient-derived IgG against VZV for more than 1 year, whereas it was decreased within 3 months in 1 recipient who received conventional conditioning. In conclusion, the production of anti-VZV IgG by recipient plasma cells persists long after RIC. In patients without symptomatic VZV reactivation, donor-derived anti-VZV IgG did not reach titers comparable to those measured in healthy virus carriers.
Collapse
Affiliation(s)
- Rie Yamazaki
- Division of Hematology, Department of Internal Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Levine JE, Paczesny S, Sarantopoulos S. Clinical applications for biomarkers of acute and chronic graft-versus-host disease. Biol Blood Marrow Transplant 2012; 18:S116-24. [PMID: 22226094 DOI: 10.1016/j.bbmt.2011.10.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute and chronic graft-versus-host disease (aGVHD, cGVHD) are serious complications of allogeneic hematopoietic cell transplantation. The complex pathophysiology of these disease processes is associated with immune system activation, the release of cytokines and chemokines, and alterations in cell populations. The blood levels of specific protein and cellular levels in patients with GVHD have correlated with the development, diagnosis, and prognosis of GVHD. Here, we review the most promising biomarkers for aGVHD and cGVHD with clinical relevance. The utility of GVHD biomarkers in clinical care of allogeneic hematopoietic cell transplantation recipients needs to be proven through clinical trials, and potential approaches to trial design are discussed.
Collapse
Affiliation(s)
- John E Levine
- Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, Michigan 48109-5941, USA.
| | | | | |
Collapse
|
14
|
Donor-derived HLA antibody production in patients undergoing SCT from HLA antibody-positive donors. Bone Marrow Transplant 2012; 47:1338-42. [DOI: 10.1038/bmt.2012.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Linderman JA, Shizuru JA. Rapid reconstitution of antibody responses following transplantation of purified allogeneic hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4191-9. [PMID: 21357265 DOI: 10.4049/jimmunol.1003674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Allogeneic hematopoietic cell transplantation has broad clinical applications extending from the treatment of malignancies to induction of immunologic tolerance. However, adaptive cellular and humoral immunity frequently remain impaired posttransplantation. Here, recovery of T-dependent and T-independent Ab responses was evaluated in mice transplanted with purified hematopoietic stem cells (HSCs) devoid of the mature immune cells believed to hasten immune recovery. Mixed and full donor chimeras were created by conditioning recipients with sublethal or lethal irradiation, respectively, across different donor/host genetic disparities. By 6 wk posttransplantation, all animals demonstrated robust T-independent Ab responses, and all mixed chimeras and recipients of MHC-matched or haploidentical HSCs with a shared MHC haplotype had T-dependent Ab responses equivalent to those of untransplanted controls. Full chimeras that received fully MHC-disparate HSCs showed delayed T-dependent Ab responses that recovered by 12 wk. This delay occurred despite early reconstitution and proper migration to germinal centers of donor-derived T(follicular helper) (T(FH)) cells. Congenic transplants into T(FH)-deficient CD4(-/-) mice revealed restoration of T-dependent Ab responses by 6 wk, leading us to conclude that MHC disparity caused delay in humoral recovery. These findings, together with our previous studies, show that, contrary to the view that depletion of graft lymphocytes results in poor posttransplant immunity, elimination of immune-suppressing graft-versus-host reactions permits superior immune reconstitution. This study also provides insight into the regeneration of T(FH) cells and humoral immunity after allogeneic HSC transplantation.
Collapse
Affiliation(s)
- Jessica A Linderman
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
16
|
Association between serum high-molecular-weight adiponectin level and the severity of chronic graft-versus-host disease in allogeneic stem cell transplantation recipients. Blood 2011; 117:3469-72. [PMID: 21258011 DOI: 10.1182/blood-2010-10-316109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recently, a growing body of evidence has suggested that adiponectin, which is secreted by adipose tissues, plays a critical role in obesity-related and autoimmune diseases. We compared the concentrations of adiponectin among 26 normal subjects and 34 allogeneic stem cell transplantation recipients. The concentrations of adiponectin were significantly higher in recipients with chronic graft-versus-host disease (cGVHD) than those in subjects without cGVHD (21.7 ± 11.0 vs 9.1 ± 6.1 μg/mL in females, P < .001; and 10.1 ± 6.8 vs 4.3 ± 2.9 μg/mL in males, P = .003). Multivariate analysis revealed that a higher concentration of adiponectin was associated with female sex (β-coefficient 8.2, P < .0001) and the severity of cGVHD (β-coefficient 6.6, 12.7, and 15.6, P < .01, each for mild, moderate, and severe cGVHD, respectively). In addition, adiponectin levels increased as cGVHD progressed, decreased as cGVHD improved, and did not change with stable cGVHD. In conclusion, adiponectin was associated with the severity of cGVHD and might play a role in the pathophysiology of cGVHD.
Collapse
|
17
|
Paniagua RT, Fiorentino DF, Chung L, Robinson WH. Tyrosine kinases in inflammatory dermatologic disease. J Am Acad Dermatol 2010; 65:389-403. [PMID: 20584561 DOI: 10.1016/j.jaad.2010.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023]
Abstract
Tyrosine kinases (TKs) are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific TKs have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of TKs are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight TK signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development.
Collapse
Affiliation(s)
- Ricardo T Paniagua
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Geriatric Research Education and Clinical Center, Palo Alto Department of Veterans Affairs Health Care System, Palo Alto, California
| | - David F Fiorentino
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Lorinda Chung
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Geriatric Research Education and Clinical Center, Palo Alto Department of Veterans Affairs Health Care System, Palo Alto, California
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Geriatric Research Education and Clinical Center, Palo Alto Department of Veterans Affairs Health Care System, Palo Alto, California.
| |
Collapse
|
18
|
|
19
|
Hiemenz JW. Management of Infections Complicating Allogeneic Hematopoietic Stem Cell Transplantation. Semin Hematol 2009; 46:289-312. [DOI: 10.1053/j.seminhematol.2009.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|