1
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
2
|
Wang K, Liu T, Zhang Y, Lv H, Yao H, Zhao Y, Li J, Li X. Combined Placental Mesenchymal Stem Cells with Guided Nanoparticles Effective Against Diabetic Nephropathy in Mouse Model. Int J Nanomedicine 2024; 19:901-915. [PMID: 38293609 PMCID: PMC10826715 DOI: 10.2147/ijn.s446733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Background Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus and constitutes the primary cause of mortality in affected patients. Previous studies have shown that placental mesenchymal stem cells (PL-MSCs) can alleviate kidney dysfunction in animal models of DN. However, the limited ability of mesenchymal stem cells (MSCs) to home to damaged sites restricts their therapeutic potential. Enhancing the precision of PL-MSCs' homing to target tissues is therefore vital for the success of cell therapies in treating DN. Methods We developed Fe3O4 coated polydopamine nanoparticle (NP)-internalized MSCs and evaluated their therapeutic effectiveness in a mouse model of streptozotocin- and high-fat diet-induced DN, using an external magnetic field. Results Our study confirmed that NPs were effectively internalized into PL-MSCs without compromising their intrinsic stem cell properties. The magnetic targeting of PL-MSCs notably improved their homing to the kidney tissues in mice with DN, resulting in enhanced kidney function compared to the transplantation of PL-MSCs alone. Furthermore, the anti-inflammatory and antifibrotic attributes of PL-MSCs played a role in the recovery of kidney function and structure. Conclusion These results demonstrate that magnetically targeted therapy using PL-MSCs is a promising approach for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Ke Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
- Gynecology and Obstetrics Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yucheng Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Ye Zhao
- Dermatological Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
3
|
Wang J, Liu H, Yue G, Deng Y, Cai W, Xu J. Human placenta-derived mesenchymal stem cells ameliorate diabetic kidney disease by modulating the T helper 17 cell/ regulatory T-cell balance through the programmed death 1 / programmed death-ligand 1 pathway. Diabetes Obes Metab 2024; 26:32-45. [PMID: 37722965 DOI: 10.1111/dom.15282] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
AIM To investigate the therapeutic effects and immunomodulatory mechanisms of human placenta-derived mesenchymal stem cells (PMSCs) in diabetic kidney disease (DKD). METHODS Streptozotocin-induced DKD rats were administered an equivalent volume of saline or PMSCs (1 × 106 in 2 mL phosphate-buffered saline per rat) for 3 weeks. Eight weeks after treatment, we examined the biochemical parameters in the blood and urine, the ratio of T helper 17 cells (Th17) and regulatory T cells (Treg) in the blood, cytokine levels in the kidney and blood, and renal histopathological changes. In addition, we performed PMSC tracing and renal transcriptomic analyses using RNA-sequencing. Finally, we determined whether PMSCs modulated the Th17/Treg balance by upregulating programmed death 1 (PD-1) in vitro. RESULTS The PMSCs significantly improved renal function, which was assessed by serum creatinine levels, urea nitrogen, cystatin C levels, urinary albumin-creatinine ratio, and the kidney index. Further, PMSCs alleviated pathological changes, including tubular vacuolar degeneration, mesangial matrix expansion, and glomerular filtration barrier injury. In the DKD rats in our study, PMSCs were mainly recruited to immune organs, rather than to the kidney or pancreas. PMSCs markedly promoted the Th17/Treg balance and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-17A and IL-1β) in the kidney and blood of DKD rats. In vitro experiments showed that PMSCs significantly reduced the proportion of Th17 cells and increased the proportion of Treg cells by upregulating PD-1 in a cell-cell contact manner and downregulating programmed death-ligand 1 (PD-L1) expression in PMSCs, which reversed the Th17/Treg balance. CONCLUSION We found that PMSCs improved renal function and pathological damage in DKD rats and modulated Th17/Treg balance through the PD-1/PD-L1 pathway. These findings provide a novel mechanism and basis for the clinical use of PMSCs in the treatment of DKD.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| | - Honghong Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guanru Yue
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, China
| |
Collapse
|
4
|
Copur S, Yavuz F, Covic A, Kanbay M. A review on renal autologous cell transplantation: an investigational approach towards chronic kidney disease. Int Urol Nephrol 2023; 55:2539-2544. [PMID: 36971874 DOI: 10.1007/s11255-023-03574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chronic kidney disease is among the most common causes of mortality and morbidity in adult population with limited therapeutic approaches including various medications and kidney replacement therapies. Kidney transplantation is the gold standard therapeutic alternative for the management of chronic kidney disease; nonetheless, important drawbacks include the lack of adequate living or deceased donors, high rates of pre- and post-operative complications including surgical complications, infectious complications and medication-induced adverse effects. With the latest preclinical and in vitro studies demonstrating the potentiality of kidney cells obtained from diseased kidneys to convert into fully functional kidney cells lead to a novel therapeutic alternative referred as autologous selected renal cell transplantation. Even though the clinical studies investigating the efficiency and adverse effects of autologous selected renal cell transplantation are limited, it is no doubt promising. The need for future large-scale studies on chronic kidney disease patients from a diversity of etiologies is clear for the better establishment of the therapeutic potential of autologous selected renal cell transplantation. In this narrative review, our aim is to evaluate the role of renal autologous stem cell therapy in the management of chronic kidney disease.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, 34010, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, 34010, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
6
|
Pilat N. Inadvertent stem cell transfer demonstrating a way for tolerance induction. Kidney Int 2023; 103:21-22. [PMID: 36603970 DOI: 10.1016/j.kint.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
In this issue, Sobrino et al. present a case of hematopoietic chimerism and subsequent tolerance after isolated kidney transplantation in a pediatric patient with syndromic combined immune deficiency. This report not only highlights the chimerism approach for tolerance induction in transplantation, but it is also the first evidence of hematopoietic stem cells in human kidneys. This commentary discusses the potency and risks of the chimerism approach for tolerance induction after solid organ transplantation, especially in (pediatric) patients with immune deficiencies.
Collapse
Affiliation(s)
- Nina Pilat
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria; Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Tang LX, Wei B, Jiang LY, Ying YY, Li K, Chen TX, Huang RF, Shi MJ, Xu H. Intercellular mitochondrial transfer as a means of revitalizing injured glomerular endothelial cells. World J Stem Cells 2022; 14:729-743. [PMID: 36188114 PMCID: PMC9516466 DOI: 10.4252/wjsc.v14.i9.729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that mesenchymal stem cells (MSCs) can rescue injured target cells via mitochondrial transfer. However, it has not been fully understood how bone marrow-derived MSCs repair glomeruli in diabetic kidney disease (DKD).
AIM To explore the mitochondrial transfer involved in the rescue of injured glomerular endothelial cells (GECs) by MSCs, both in vitro and in vivo.
METHODS In vitro experiments were performed to investigate the effect of co-culture with MSCs on high glucose-induced GECs. The transfer of mitochondria was visualized using fluorescent microscopy. GECs were freshly sorted and ultimately tested for apoptosis, viability, mRNA expression by real-time reverse transcriptase-polymerase chain reaction, protein expression by western blot, and mitochondrial function. Moreover, streptozotocin-induced DKD rats were infused with MSCs, and renal function and oxidative stress were detected with an automatic biochemical analyzer and related-detection kits after 2 wk. Kidney histology was analyzed by hematoxylin and eosin, periodic acid-Schiff, and immunohistochemical staining.
RESULTS Fluorescence imaging confirmed that MSCs transferred mitochondria to injured GECs when co-cultured in vitro. We found that the apoptosis, proliferation, and mitochondrial function of injured GECs were improved following co-culture. Additionally, MSCs decreased pro-inflammatory cytokines [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α] and pro-apoptotic factors (caspase 3 and Bax). Mitochondrial transfer also enhanced the expression of superoxide dismutase 2, B cell lymphoma-2, glutathione peroxidase (GPx) 3, and mitofusin 2 and inhibited reactive oxygen species (ROS) and dynamin-related protein 1 expression. Furthermore, MSCs significantly ameliorated functional parameters (blood urea nitrogen and serum creatinine) and decreased the production of malondialdehyde, advanced glycation end products, and ROS, whereas they increased the levels of GPx and superoxide dismutase in vivo. In addition, significant reductions in the glomerular basement membrane and renal interstitial fibrosis were observed following MSC treatment.
CONCLUSION MSCs can rejuvenate damaged GECs via mitochondrial transfer. Additionally, the improvement of renal function and pathological changes in DKD by MSCs may be related to the mechanism of mitochondrial transfer.
Collapse
Affiliation(s)
- Li-Xia Tang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Bing Wei
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lu-Yao Jiang
- Department of Medical Rehabilitation, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - You-You Ying
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ke Li
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Tian-Xi Chen
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Ruo-Fei Huang
- Department of Endocrinology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Miao-Jun Shi
- Department of Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| | - Hang Xu
- Department of Hemodialysis/Nephrology, The First People’s Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua 321300, Zhejiang Province, China
| |
Collapse
|
8
|
Ozkan S, Isildar B, Ercin M, Gezginci-Oktayoglu S, Konukoglu D, Neşetoğlu N, Oncul M, Koyuturk M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022; 13:438. [PMID: 36056427 PMCID: PMC9438289 DOI: 10.1186/s13287-022-03121-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs)-derived conditioned media (CM) can be increased after preconditioning with various chemical agents. The aim of this study is comparative evaluation of effects of N-CM and DFS-CM which are collected from normal (N) and deferoxamine (DFS) preconditioned umbilical cord-derived MSCs on rat diabetic nephropathy (DN) model. Methods After incubation of the MSCs in serum-free medium with/without 150 µM DFS for 48 h, the contents of N-CM and DFS-CM were analyzed by enzyme-linked immunosorbent assay. Diabetes (D) was induced by single dose of 55 mg/kg streptozotocin. Therapeutic effects of CMs were evaluated by biochemical, physical, histopathological and immunohistochemical analysis. Results The concentrations of vascular endothelial growth factor alpha, nerve growth factor and glial-derived neurotrophic factor in DFS-CM increased, while one of brain-derived neurotrophic factor decreased in comparison with N-CM. The creatinine clearance rate increased significantly in both treatment groups, while the improvement in albumin/creatinine ratio and renal mass index values were only significant for D + DFS-CM group. Light and electron microscopic deteriorations and loss of podocytes-specific nephrin and Wilms tumor-1 (WT-1) expressions were significantly restored in both treatment groups. Tubular beclin-1 expression was significantly increased for DN group, but it decreased in both treatment groups. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cell death increased in the tubules of D group, while it was only significantly decreased for D + DFS-CM group. Conclusions DFS-CM can be more effective in the treatment of DN by reducing podocyte damage and tubular apoptotic cell death and regulating autophagic activity with its more concentrated secretome content than N-CM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03121-6.
Collapse
Affiliation(s)
- Serbay Ozkan
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Basak Isildar
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Merve Ercin
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dildar Konukoglu
- Medical Biochemistry Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Neşet Neşetoğlu
- Faculty of Pharmacy, Drug Application and Research Center, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- Cerrahpasa Faculty of Medicine, Obstetrics and Gynecology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey.
| |
Collapse
|
9
|
Rafiee Z, Orazizadeh M, Nejad Dehbashi F, Neisi N, Babaahmadi-Rezaei H, Mansouri E. Mesenchymal stem cells derived from the kidney can ameliorate diabetic nephropathy through the TGF-β/Smad signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53212-53224. [PMID: 35278177 DOI: 10.1007/s11356-021-17954-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diabetic nephropathy (DN) has been introduced as one of the main microvascular complications in diabetic patients, the most common cause of end-stage renal disease (ESRD). Based on the therapeutic potential of mesenchymal stem cells in tissue repair, we aimed to test the hypothesis that kidney stem cells (KSCs) might be effective in the kidney regeneration process. Stem cells from rat kidney were separated, and the surface stem cell markers were determined by flow cytometry analysis. Thirty-two Sprague Dawley rats were divided into four groups (control, control that received kidney stem cells, diabetic, diabetic treated with stem cells). To establish diabetic, model STZ (streptozotocin) (60 mg/kg) was used. The KSCs were injected into experimental groups via tail vein (2 × 106 cells/rat). In order to determine the impact of stem cells on the function and structure of the kidney, biochemical and histological parameters were measured. Further, the expression of miRNA-29a, miR-192, IL-1β, and TGF-β was determined through the real-time PCR technique. Phosphorylation of Smad2/3 was evaluated by using the standard western blotting. The KSCs significantly reduced blood nitrogen (BUN), serum creatinine (Scr), and 24-h urinary proteins in DN (P < 0.05). IL-1β and TGF-β significantly increased in the kidney of diabetic rats. In addition, the expression of miR-29a is significantly increased, whereas miR-192 decreased after treatment with KSCs (P < 0.05). Diabetic rats showed an increased level of phosphorylation of both Smad2 and Smad3 (P < 0.05). Periodic acid-Schiff (PAS) staining showed improved histopathological changes in the presence of KSCs. Stem cells derived from adult rat kidney may be an option for treating the early DN to improve the functions and structure of kidneys in rats with DN.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Fereshteh Nejad Dehbashi
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Infectious and Tropical Diseases Research Center, Department of Virology, the School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran.
| |
Collapse
|
10
|
Hickson LJ, Abedalqader T, Ben-Bernard G, Mondy JM, Bian X, Conley SM, Zhu X, Herrmann SM, Kukla A, Lorenz EC, Kim SR, Thorsteinsdottir B, Lerman LO, Murad MH. A systematic review and meta-analysis of cell-based interventions in experimental diabetic kidney disease. Stem Cells Transl Med 2021; 10:1304-1319. [PMID: 34106528 PMCID: PMC8380442 DOI: 10.1002/sctm.19-0419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative, cell‐based therapy is a promising treatment option for diabetic kidney disease (DKD), which has no cure. To prepare for clinical translation, this systematic review and meta‐analysis summarized the effect of cell‐based interventions in DKD animal models and treatment‐related factors modifying outcomes. Electronic databases were searched for original investigations applying cell‐based therapy in diabetic animals with kidney endpoints (January 1998‐May 2019). Weighted or standardized mean differences were estimated for kidney outcomes and pooled using random‐effects models. Subgroup analyses tested treatment‐related factor effects for outcomes (creatinine, urea, urine protein, fibrosis, and inflammation). In 40 studies (992 diabetic rodents), therapy included mesenchymal stem/stromal cells (MSC; 61%), umbilical cord/amniotic fluid cells (UC/AF; 15%), non‐MSC (15%), and cell‐derived products (13%). Tissue sources included bone marrow (BM; 65%), UC/AF (15%), adipose (9%), and others (11%). Cell‐based therapy significantly improved kidney function while reducing injury markers (proteinuria, histology, fibrosis, inflammation, apoptosis, epithelial‐mesenchymal‐transition, oxidative stress). Preconditioning, xenotransplantation, and disease‐source approaches were effective. MSC and UC/AF cells had greater effect on kidney function while cell products improved fibrosis. BM and UC/AF tissue sources more effectively improved kidney function and proteinuria vs adipose or other tissues. Cell dose, frequency, and administration route also imparted different benefits. In conclusion, cell‐based interventions in diabetic animals improved kidney function and reduced injury with treatment‐related factors modifying these effects. These findings may aid in development of optimal repair strategies through selective use of cells/products, tissue sources, and dose administrations to allow for successful adaptation of this novel therapeutic in human DKD.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Tala Abedalqader
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gift Ben-Bernard
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jayla M Mondy
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksandra Kukla
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth C Lorenz
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bjorg Thorsteinsdottir
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - M Hassan Murad
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell Tissue Res 2021; 385:497-518. [PMID: 34050823 DOI: 10.1007/s00441-021-03461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
The umbilical cord has been proved to be an easy-access, reliable, and useful source of mesenchymal stem cells (MSC) for clinical applications due to its primitive, immunomodulatory, non-immunogenic, secretory and paracrine, migratory, proliferative, and multipotent properties. This set of characteristics has recently attracted great research interest in the fields of nanotechnology and regenerative medicine and cellular therapy. Accumulating evidence supports a pronounced therapeutic potential of MSC in many different pathologies, from hematology to immunology, wound-healing, tissue regeneration, and oncology. Diabetes mellitus, branded the epidemic of the century, is considered a chronic metabolic disorder, representing a major burden for health system sustainability and an important public health challenge to modern societies. The available treatments for type 2 diabetes mellitus (T2DM) still rely mainly on combinations of oral antidiabetic agents with lifestyle and nutritional adjustments. Despite the continuous development of novel and better hypoglycemic drugs, their efficacy is limited in the installment and progression of silent T2DM complications. T2DM comorbidities and mortality rates still make it a serious, common, costly, and long-term manageable disease. Recently, experimental models, preclinical observations, and clinical studies have provided some insights and preliminary promising results using umbilical cord MSCs to treat and manage diabetes. This review focuses on the latest research and applications of human-derived umbilical cord MSC in the treatment and management of T2DM, exploring and systematizing the key effects of both umbilical cord MSC and its factor-rich secretome accordingly with the major complications associated to T2DM.
Collapse
|
12
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
13
|
Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-κB signaling. Int Immunopharmacol 2021; 92:107353. [PMID: 33429334 DOI: 10.1016/j.intimp.2020.107353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Promoted inflammation enhances the development of nephropathy in obesity. Fisetin (3,3',4',7-tetrahydroxyflavone, FIS) is a naturally occurring dietary flavonoid, and exhibits anti-inflammatory and anti-oxidative properties. Inactive rhomboid protein 2 (iRhom2), an inactive member of the rhomboid intramembrane proteinase family, is an essential inflammation-associated regulator. Here, we attempted to investigate the protective mechanisms of FIS against high fat diet (HFD)-induced nephropathy, with particular focus on iRhom2. We found that HFD induced systematic and renal pro-inflammatory cytokine production. Furthermore, iRhom2 expression was markedly elevated in kidney of HFD-fed mice, and in PAL-incubated macrophages, accompanied with high phosphorylation of NF-κB. Significant oxidative stress was observed in kidney of HFD-fed mice through suppressing Nrf-2/HO-1 signaling. Moreover, activation of iRhom2/NF-κB signaling and oxidative stress by PAL was detected in macrophages, which were effectively reversed by FIS. Importantly, we showed that iRhom2 knockdown significantly abrogated the ability of FIS to restrain inflammation and oxidative stress induced by PAL in macrophages, indicating that iRhom2 might be a potential therapeutic target for FIS during nephropathy treatment. Together, these results revealed that FIS could mitigate HFD-induced renal injury by regulating iRhom2/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
|
14
|
Lin W, Li HY, Yang Q, Chen G, Lin S, Liao C, Zhou T. Administration of mesenchymal stem cells in diabetic kidney disease: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:43. [PMID: 33413678 PMCID: PMC7792034 DOI: 10.1186/s13287-020-02108-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy shows great promise for diabetic kidney disease (DKD) patients. Research has been carried out on this topic in recent years. The main goals of this paper are to evaluate the therapeutic effects of MSCs on DKD through a meta-analysis and address the mechanism through a systematic review of the literature. METHOD An electronic search of the Embase, Cochrane Library, ISI Web of Science, PubMed, and US National Library of Medicine (NLM) databases was performed for all articles about MSC therapy for DKD, without species limitations, up to January 2020. Data were pooled for analysis with Stata SE 12. RESULT The MSC-treated group showed a large and statistically significant hypoglycemic effect at 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, and 6 months. Total hypoglycemic effect was observed (SMD = - 1.954, 95%CI - 2.389 to - 1.519, p < 0.001; I2 = 85.1%). The overall effects on serum creatinine (SCr) and blood urea nitrogen (BUN) were analyzed, suggesting that MSC decreased SCr and BUN and mitigated the impairment of renal function (SCr: SMD = - 4.838, 95%CI - 6.789 to - 2.887, p < 0.001; I2 = 90.8%; BUN: SMD = - 4.912, 95%CI - 6.402 to - 3.422, p < 0.001; I2 = 89.3%). Furthermore, MSC therapy decreased the excretion of urinary albumin. Fibrosis indicators were assessed, and the results showed that transforming growth factor-β, collagen I, fibronectin, and α-smooth muscle actin were significantly decreased in the MSC-treated group compared to the control group. CONCLUSION MSCs might improve glycemic control and reduce SCr, BUN, and urinary protein. MSCs can also alleviate renal fibrosis. MSC therapy might be a potential treatment for DKD.
Collapse
Affiliation(s)
- Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Hong-Yan Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Guangyong Chen
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041, China.
| |
Collapse
|
15
|
Liu D, Zheng W, Pan S, Liu Z. Concise review: current trends on applications of stem cells in diabetic nephropathy. Cell Death Dis 2020; 11:1000. [PMID: 33221823 PMCID: PMC7680458 DOI: 10.1038/s41419-020-03206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy, with high prevalence, is the main cause of renal failure in diabetic patients. The strategies for treating DN are limited with not only high cost but an unsatisfied effect. Therefore, the effective treatment of DN needs to be explored urgently. In recent years, due to their self-renewal ability and multi-directional differentiation potential, stem cells have exerted therapeutic effects in many diseases, such as graft-versus-host disease, autoimmune diseases, pancreatic diseases, and even acute kidney injury. With the development of stem cell technology, stem cell-based regenerative medicine has been tried to be applied to the treatment of DN. Related stem cells include embryonic stem cells, induced pluripotent stem cells, mesenchymal cells, and endothelial progenitor cells. Undoubtedly, stem cell transplantation has achieved certain results in the treatment of DN animal models. However, stem cell therapy still remains certain thorny issues during treatment. For instance, poor engraftment and limited differentiation of stem cells caused by the diabetic microenvironment, differentiation into unwanted cell lineages, and malignant transformation or genetic aberrations of stem cells. At present, various researches on the therapeutic effects of stem cells in DN with different opinions are reported and the specific mechanism of stem cells is still unclear. We review here the potential mechanism of stem cells as new therapeutic agents in the treatment of DN. Also, we review recent findings and updated information about not only the utilization of stem cells on DN in both preclinical and clinical trials but limitations and future expectations of stem cell-based therapy for DN.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China. .,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
16
|
Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
|
17
|
Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, Zhang Y, Tu C, Li C, Wu D. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 2020; 11:336. [PMID: 32746936 PMCID: PMC7397631 DOI: 10.1186/s13287-020-01852-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most serious complications of diabetes and the leading cause of end-stage chronic kidney disease. Currently, there are no effective drugs for treating DN. Therefore, novel and effective strategies to ameliorate DN at the early stage should be identified. This study aimed to explore the effectiveness and underlying mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs) in DN. Methods We identified the basic biological properties and examined the multilineage differentiation potential of UC-MSCs. Streptozotocin (STZ)-induced DN rats were infused with 2 × 106 UC-MSCs via the tail vein at week 6. After 2 weeks, we measured blood glucose level, levels of renal function parameters in the blood and urine, and cytokine levels in the kidney and blood, and analyzed renal pathological changes after UC-MSC treatment. We also determined the colonization of UC-MSCs in the kidney with or without STZ injection. Moreover, in vitro experiments were performed to analyze cytokine levels of renal tubular epithelial cell lines (NRK-52E, HK2) and human renal glomerular endothelial cell line (hrGECs). Results UC-MSCs significantly ameliorated functional parameters, such as 24-h urinary protein, creatinine clearance rate, serum creatinine, urea nitrogen, and renal hypertrophy index. Pathological changes in the kidney were manifested by significant reductions in renal vacuole degeneration, inflammatory cell infiltration, and renal interstitial fibrosis after UC-MSC treatment. We observed that the number of UC-MSCs recruited to the injured kidneys was increased compared with the controls. UC-MSCs apparently reduced the levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and pro-fibrotic factor (TGF-β) in the kidney and blood of DN rats. In vitro experiments showed that UC-MSC conditioned medium and UC-MSC-derived exosomes decreased the production of these cytokines in high glucose-injured renal tubular epithelial cells, and renal glomerular endothelial cells. Moreover, UC-MSCs secreted large amounts of growth factors including epidermal growth factor, fibroblast growth factor, hepatocyte growth factor, and vascular endothelial growth factor. Conclusion UC-MSCs can effectively improve the renal function, inhibit inflammation and fibrosis, and prevent its progression in a model of diabetes-induced chronic renal injury, indicating that UC-MSCs could be a promising treatment strategy for DN.
Collapse
Affiliation(s)
- E Xiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Bing Han
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Quan Zhang
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | | | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China. .,Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.
| |
Collapse
|
18
|
Li H, Rong P, Ma X, Nie W, Chen Y, Zhang J, Dong Q, Yang M, Wang W. Mouse Umbilical Cord Mesenchymal Stem Cell Paracrine Alleviates Renal Fibrosis in Diabetic Nephropathy by Reducing Myofibroblast Transdifferentiation and Cell Proliferation and Upregulating MMPs in Mesangial Cells. J Diabetes Res 2020; 2020:3847171. [PMID: 32455132 PMCID: PMC7222483 DOI: 10.1155/2020/3847171] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Transplantation of umbilical cord mesenchymal stem cells (UC-MSCs) is currently considered a novel therapeutic strategy for diabetic nephropathy (DN). However, the mechanisms by which UC-MSCs ameliorate renal fibrosis in DN are not well understood. Herein, we firstly investigated the therapeutic effects of mouse UC-MSC infusion on kidney structural and functional impairment in streptozotocin- (STZ-) induced diabetic mice. We found that the repeated injection with mUC-MSCs alleviates albuminuria, glomerulus injury, and fibrosis in DN mouse models. Next, mesangial cells were exposed to 5.6 mM glucose, 30 mM glucose, or mUC-MSC-conditioned medium, and then we performed western blotting, immunofluorescence, wound healing assay, and cell proliferation assay to measure extracellular matrix (ECM) proteins and matrix metalloproteinases (MMPs), myofibroblast transdifferentiation (MFT), and cell proliferation. We demonstrated that mUC-MSC paracrine decreased the deposition of fibronectin and collagen I by inhibiting TGF-β1-triggered MFT and cell proliferation mediated by PI3K/Akt and MAPK signaling pathways, and elevating the levels of MMP2 and MMP9. Importantly, we provided evidence that the antifibrosis role of mUC-MSC paracrine in DN might be determined by exosomes shed by MSCs. Together, these findings reveal the mechanisms underlying the therapeutic effects of UC-MSCs on renal fibrosis in DN and provide the evidence for DN cell-free therapy based on UC-MSCs in the future.
Collapse
Affiliation(s)
- Hongde Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Nie
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Chen
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiong Dong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| |
Collapse
|
19
|
An X, Liao G, Chen Y, Luo A, Liu J, Yuan Y, Li L, Yang L, Wang H, Liu F, Yang G, Yi S, Li Y, Cheng J, Lu Y. Intervention for early diabetic nephropathy by mesenchymal stem cells in a preclinical nonhuman primate model. Stem Cell Res Ther 2019; 10:363. [PMID: 31791397 PMCID: PMC6889652 DOI: 10.1186/s13287-019-1401-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most severe chronic diabetic complications and the main cause of end-stage renal disease. Chronic inflammation plays a key role in the development of DN. However, few treatment strategies are available; therefore, new and effective strategies to ameliorate DN at the early stage must be identified. Methods Mesenchymal stem cells (MSCs) are characterized by anti-inflammatory and immune regulatory abilities. We developed a rhesus macaque model of DN and administered MSCs four times over 2 months. We measured blood glucose level, HbA1c, and levels of renal function parameters in the blood and urine, and cytokine levels in the kidney and blood circulatory system of rhesus macaques. Also, we analyzed the renal pathological changes of rhesus macaques. In vitro, we treated tubular epithelial cells (HK2) with 30 mmol/L glucose and 10 ng/mL human recombinant TNF-alpha (rhTNF-α) and explored the effects of MSCs on inflammation and Na+-glucose cotransporter 2 (SGLT2) expression in HK2. Results We found that MSCs decreased the blood glucose level and daily insulin requirement of DN rhesus macaques. Furthermore, MSCs had a dominant function in improving renal function and decreasing SGLT2 expression on renal tubular epithelial cells. Also, renal pathological changes were ameliorated after MSC treatment. Moreover, MSCs powerfully reduced inflammation, especially decreased the level of pro-inflammatory cytokine interleukin-16 (IL-16), in the kidney and blood circulatory system. Conclusions Our study is an important step to explore the mechanism of MSCs in ameliorating the early stage of DN, potentially through influencing SGLT2 expression and resulting in improved glycemic control and anti-inflammation. We hope these findings would provide insights for the clinical application of MSCs in DN. Electronic supplementary material The online version of this article (10.1186/s13287-019-1401-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Ai Luo
- Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Lichuan Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shounan Yi
- Center for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Camperdown, NSW, Australia
| | - Yuanmin Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Suh A, Pham A, Cress MJ, Pincelli T, TerKonda SP, Bruce AJ, Zubair AC, Wolfram J, Shapiro SA. Adipose-derived cellular and cell-derived regenerative therapies in dermatology and aesthetic rejuvenation. Ageing Res Rev 2019; 54:100933. [PMID: 31247326 DOI: 10.1016/j.arr.2019.100933] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Cellular and cell-derived components of adipose-derived tissue for the purposes of dermatologic and aesthetic rejuvenation applications have become increasingly studied and integrated into clinical practice. These components include micro-fragmented fat (nanofat), the stromal vascular fraction (SVF), adipose-derived mesenchymal stem cells (ASC), and extracellular vesicles (EVs), which have all shown capability to repair, regenerate, and rejuvenate surrounding tissue. Various aesthetic applications including hair growth, scar reduction, skin ischemia-reperfusion recovery, and facial rejuvenation are reviewed. In particular, results from preclinical and clinical studies are discussed, with a focus on clarification of nomenclature.
Collapse
|
21
|
Mesenchymal stem cells prevent the progression of diabetic nephropathy by improving mitochondrial function in tubular epithelial cells. Exp Mol Med 2019; 51:1-14. [PMID: 31285429 PMCID: PMC6802630 DOI: 10.1038/s12276-019-0268-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
The administration of mesenchymal stem cells (MSCs) was shown to attenuate overt as well as early diabetic nephropathy in rodents, but the underlying mechanism of this beneficial effect is largely unknown. Inflammation and mitochondrial dysfunction are major pathogenic factors in diabetic nephropathy. In this study, we found that the repeated administration of MSCs prevents albuminuria and injury to tubular epithelial cells (TECs), an important element in the progression of diabetic nephropathy, by improving mitochondrial function. The expression of M1 macrophage markers was significantly increased in diabetic kidneys compared with that in control kidneys. Interestingly, the expression of arginase-1 (Arg1), an important M2 macrophage marker, was reduced in diabetic kidneys and increased by MSC treatment. In cultured TECs, conditioned media from lipopolysaccharide-activated macrophages reduced peroxisomal proliferator-activated receptor gamma coactivator 1α (Pgc1a) expression and impaired mitochondrial function. The coculture of macrophages with MSCs increased and decreased the expression of Arg1 and M1 markers, respectively. Treatment with conditioned media from cocultured macrophages prevented activated macrophage-induced mitochondrial dysfunction in TECs. In the absence of MSC coculture, Arg1 overexpression in macrophages reversed Pgc1a suppression in TECs. These observations suggest that MSCs prevent the progression of diabetic nephropathy by reversing mitochondrial dysfunction in TECs via the induction of Arg1 in macrophages. Stem cells can halt the progression of kidney damage owing to diabetes by reducing inflammation and improving energy production in kidney cells. Eun Hee Koh at the University of Ulsan College of Medicine in Seoul, South Korea, and colleagues found that adult stem cells, known as mesenchymal stem cells (MSCs), derived from human umbilical cord blood had a protective effect on the kidneys of diabetic mice. Repeated administration of MSCs prevented the recruitment of pro-inflammatory cells into the kidney and increased the levels of arginase-1, a marker of cells with anti-inflammatory activity. Experiments in cells showed that MSCs stimulated the production of arginase-1 in that, in turn, were able to increase the production and activity of mitochondria in kidney cells. This study confirms an important role for MSCs in organ repair.
Collapse
|
22
|
Potential and Therapeutic Efficacy of Cell-based Therapy Using Mesenchymal Stem Cells for Acute/chronic Kidney Disease. Int J Mol Sci 2019; 20:ijms20071619. [PMID: 30939749 PMCID: PMC6479813 DOI: 10.3390/ijms20071619] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney disease can be either acute kidney injury (AKI) or chronic kidney disease (CKD) and it can lead to the development of functional organ failure. Mesenchymal stem cells (MSCs) are derived from a diverse range of human tissues. They are multipotent and have immunomodulatory effects to assist in the recovery from tissue injury and the inhibition of inflammation. Numerous studies have investigated the feasibility, safety, and efficacy of MSC-based therapies for kidney disease. Although the exact mechanism of MSC-based therapy remains uncertain, their therapeutic value in the treatment of a diverse range of kidney diseases has been studied in clinical trials. The use of MSCs is a promising therapeutic strategy for both acute and chronic kidney disease. The mechanism underlying the effects of MSCs on survival rate after transplantation and functional repair of damaged tissue is still ambiguous. The paracrine effects of MSCs on renal recovery, optimization of the microenvironment for cell survival, and control of inflammatory responses are thought to be related to their interaction with the damaged kidney environment. This review discusses recent experimental and clinical findings related to kidney disease, with a focus on the role of MSCs in kidney disease recovery, differentiation, and microenvironment. The therapeutic efficacy and current applications of MSC-based kidney disease therapies are also discussed.
Collapse
|
23
|
Zhong L, Liao G, Wang X, Li L, Zhang J, Chen Y, Liu J, Liu S, Wei L, Zhang W, Lu Y. Mesenchymal stem cells-microvesicle-miR-451a ameliorate early diabetic kidney injury by negative regulation of P15 and P19. Exp Biol Med (Maywood) 2019; 243:1233-1242. [PMID: 30614256 DOI: 10.1177/1535370218819726] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microvesicles (MVs) from mesenchymal stem cells (MSCs) have been reported as a new communicated way between cells. This study evaluated the influence and underlying mechanism of MVs-shuttled miR-451a on renal fibrosis and epithelial mesenchymal transformation (EMT) in diabetic nephropathy (DN) with hyperuricemia. MVs were isolated from MSCs-cultured medium by gradient ultracentrifugation. The level of miR-451a in MSCs and MVs was analyzed by qPCR. The changes of miR-451a, E-cadherin, α-SMA, P15INK4b (P15), and P19INK4d (P19) were measured in hyperglycosis and hyperuricemia-induced cell (HK-2) and mouse models. The changes of cell cycle were analyzed by flow cytometry. The ability of proliferation and viability was measured by BrdU and CCK8, respectively. Dual-luciferase reporter assays were conducted to determine the target binding sites. The renal function and histological changes of mice were analyzed. MVs showed the same surface markers as MSCs but much higher miR-451a expression (4.87 ± 2.03 fold higher than MSCs). miR-451a was decreased to 26% ± 11% and 6.7% ± 0.82% in injured HK-2 cells and kidney, respectively. MV-miR-451a enhanced the HK2 cells proliferation and viability in vitro, and decreased the morphologic and functional injury of kidney in vivo. Moreover, infusion of MV-miR-451a reduced the level of α-SMA and raised E-cadherin expression. These effects were responsible for the improved arrested cell cycle and down-regulation of P15 and P19 via miR-451a targeting their 3′-UTR sites. This study demonstrated that MSC–MV-miR-451a could inhibit cell cycle inhibitors P15 and P19 to restart the blocked cell cycle and reverse EMT in vivo and in vitro, and thus miR-451a is potentially a new target for DN therapy. Impact statement The mechanism of MSCs repairing the injured kidney in diabetic nephropathy is not yet clear. In the research, MVs showed the same surface markers as MSCs but much higher MiR-451a expression. miR-451a was decreased in both injured HK-2 cells and kidneys. MV-miR-451a stimulated the cell proliferation and viability in vitro and promoted structural and functional improvements of injured kidney in vivo. Infusion of MV-miR-451a ameliorated EMT by reducing α-SMA and increasing E-cadherin. These effects relied on the improved cell cycle arrest and the down-regulation of P15 and P19 via miR-451a binding to their 3′-UTR region. This study demonstrated that MSC–MV-miR-451a could specifically inhibit cell cycle inhibitors to restart the blocked cell cycle and reverse EMT in vivo and in vitro. Therefore, miR-451a may be a new target for DN therapy.
Collapse
Affiliation(s)
- Ling Zhong
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Guangneng Liao
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojiao Wang
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lan Li
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Zhang
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Younan Chen
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingping Liu
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuyun Liu
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lingling Wei
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wengeng Zhang
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanrong Lu
- Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
24
|
Solis MA, Moreno Velásquez I, Correa R, Huang LLH. Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 2019; 11:20. [PMID: 30820250 PMCID: PMC6380040 DOI: 10.1186/s13098-019-0415-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Latin America is a fast-growing region that currently faces unique challenges in the treatment of all forms of diabetes mellitus. The burden of this disease will be even greater in the coming years due, in part, to the large proportion of young adults living in urban areas and engaging in unhealthy lifestyles. Unfortunately, the national health systems in Latin-American countries are unprepared and urgently need to reorganize their health care services to achieve diabetic therapeutic goals. Stem cell research is attracting increasing attention as a promising and fast-growing field in Latin America. As future healthcare systems will include the development of regenerative medicine through stem cell research, Latin America is urged to issue a call-to-action on stem cell research. Increased efforts are required in studies focused on stem cells for the treatment of diabetes. In this review, we aim to inform physicians, researchers, patients and funding sources about the advances in stem cell research for possible future applications in diabetes mellitus. Emerging studies are demonstrating the potential of stem cells for β cell differentiation and pancreatic regeneration. The major economic burden implicated in patients with diabetes complications suggests that stem cell research may relieve diabetic complications. Closer attention should be paid to stem cell research in the future as an alternative treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ricardo Correa
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Rhode Island, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ USA
| | - Lynn L. H. Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Gaipov A, Taubaldiyeva Z, Askarov M, Turebekov Z, Kozina L, Myngbay A, Ulyanova O, Tuganbekova S. Infusion of autologous bone marrow derived mononuclear stem cells potentially reduces urinary markers in diabetic nephropathy. J Nephrol 2018; 32:65-73. [PMID: 30406605 DOI: 10.1007/s40620-018-0548-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Previous studies demonstrated safety and efficacy of autologous bone marrow-derived mononuclear cells (ABM-MNCs) in induced type-1 diabetes mellitus (T1DM) rats. However, the effect of ABM-MNCs on urinary markers of DN in humans is not well studied. We evaluated the therapeutic effect of ABM-MNCs on the urinary markers microalbuminuria (MAU), urinary type-IV collagen and urinary neutrophil gelatinase-associated lipocalin (uNGAL) in T1DM patients with and without nephropathy. METHODS This prospective open-label pilot study included 15 patients with T1DM, who had completed 2 visits within 6 months. Patients were divided into two groups according to the presence (DN, n = 7) and absence of nephropathy (T1DM, n = 8). ABM-MNCs were injected at each visit as per study protocol. Routine laboratory data, diabetes tests (fasting serum C-peptide and insulin, glycated hemoglobin, fasting and postprandial glucose), 24-h MAU and urinary type-IV collagen were measured at each visit. uNGAL levels were studied before and after 3 days of ABM-MNCs infusion at each visit. RESULTS Mean age of patients was 29.2 ± 10.4 years, 33% were male, and 27% of the overall group had hypertension. MAU was significantly reduced in the overall group (- 26.0%, p = 0.037), including in DN (- 83.2%, p = 0.021). A short-term significant reduction of uNGAL levels was observed 3 days after ABM-MNCs administration during the both the 1st visit (median 13.4 vs. 9.5 ng/ml, p = 0.027) and 2nd visit (median 8.8 vs. 6.4 ng/ml, p = 0.042) in both groups. However this reduction did not remain significant at the 6-month follow-up. Urinary type-IV collagen did not respond significantly to ABM-MNCs infusion. CONCLUSION Infusion of autologous bone marrow-derived mononuclear cells significantly reduced levels of MAU in DN patients. Further studies with larger sample size are needed to confirm these observations.
Collapse
Affiliation(s)
- Abduzhappar Gaipov
- Department of Extracorporeal Hemocorrection, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009.
| | - Zhannat Taubaldiyeva
- Department of Endocrinology, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| | - Manarbek Askarov
- Department of Stem Cell Technology, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| | - Zaiyrkhan Turebekov
- Department of Internal Medicine, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| | - Larisa Kozina
- Department of Biochemistry, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| | - Askhat Myngbay
- Private Institution "National Laboratory Astana", Nazarbayev University, Astana, Kazakhstan
| | - Olga Ulyanova
- Department of Endocrinology, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| | - Saltanat Tuganbekova
- Department of Internal Medicine, JSC National Scientific Medical Research Center, Avenue Abylai-Khan #42, Astana, Kazakhstan, 010009
| |
Collapse
|
26
|
Schubert R, Sann J, Frueh JT, Ullrich E, Geiger H, Baer PC. Tracking of Adipose-Derived Mesenchymal Stromal/Stem Cells in a Model of Cisplatin-Induced Acute Kidney Injury: Comparison of Bioluminescence Imaging versus qRT-PCR. Int J Mol Sci 2018; 19:ijms19092564. [PMID: 30158455 PMCID: PMC6165020 DOI: 10.3390/ijms19092564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023] Open
Abstract
Determining the cell fate and the distribution of mesenchymal stromal/stem cells (MSCs) after transplantation are essential parts of characterizing the mechanisms of action and biosafety profile of stem cell therapy. Many recent studies have shown that MSCs migrate into injured tissues, but are only detectable at extremely low frequencies. We investigated the cell fate of MSCs after transplantation in an acute kidney injury (AKI) mouse model using in vivo bioluminescence imaging (BLI) and subsequent verification of cell migration using quantitative real-time polymerase chain reaction (qRT-PCR). The AKI was induced by a single injection of cisplatin (8 or 12 mg/kg). One day later, adipose-derived mesenchymal stromal/stem cells isolated from luciferase transgenic mice (Luc+-mASCs, 5 × 105) were intravenously transplanted. Migration kinetics of the cells was monitored using BLI on day 1, 3, and 6, and finally via quantitative real-time PCR at the endpoint on day 6. Using BLI, infused Luc+-mASCs could only be detected in the lungs, but not in the kidneys. In contrast, PCR endpoint analysis revealed that Luc-specific mRNA could be detected in injured renal tissue; compared to the control group, the induction was 2.2-fold higher for the 8 mg/kg cisplatin group (p < 0.05), respectively 6.1-fold for the 12 mg/kg cisplatin group (p < 0.001). In conclusion, our study demonstrated that Luc-based real-time PCR rather than BLI is likely to be a better tool for cell tracking after transplantation in models such as cisplatin-induced AKI.
Collapse
Affiliation(s)
- Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department for Children and Adolescents Medicine, Hospital of the Goethe-University, 60596 Frankfurt, Germany.
| | - Julia Sann
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| | - Jochen T Frueh
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, 60590 Frankfurt, Germany.
- LOEWE Center for Cell and Gene Therapy, Goethe University, 60590 Frankfurt, Germany.
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University Frankfurt, 60590 Frankfurt, Germany.
- LOEWE Center for Cell and Gene Therapy, Goethe University, 60590 Frankfurt, Germany.
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, 60596 Frankfurt, Germany.
| |
Collapse
|
27
|
Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, Brenna C, Yard B, Gretz N, Bieback K. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med (Lausanne) 2018; 5:179. [PMID: 29963554 PMCID: PMC6013716 DOI: 10.3389/fmed.2018.00179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
Within the last years, the use of stem cells (embryonic, induced pluripotent stem cells, or hematopoietic stem cells), Progenitor cells (e.g., endothelial progenitor cells), and most intensely mesenchymal stromal cells (MSC) has emerged as a promising cell-based therapy for several diseases including nephropathy. For patients with end-stage renal disease (ESRD), dialysis or finally organ transplantation are the only therapeutic modalities available. Since ESRD is associated with a high healthcare expenditure, MSC therapy represents an innovative approach. In a variety of preclinical and clinical studies, MSC have shown to exert renoprotective properties, mediated mainly by paracrine effects, immunomodulation, regulation of inflammation, secretion of several trophic factors, and possibly differentiation to renal precursors. However, studies are highly diverse; thus, knowledge is still limited regarding the exact mode of action, source of MSC in comparison to other stem cell types, administration route and dose, tracking of cells and documentation of therapeutic efficacy by new imaging techniques and tissue visualization. The aim of this review is to provide a summary of published studies of stem cell therapy in acute and chronic kidney injury, diabetic nephropathy, polycystic kidney disease, and kidney transplantation. Preclinical studies with allogeneic or xenogeneic cell therapy were first addressed, followed by a summary of clinical trials carried out with autologous or allogeneic hMSC. Studies were analyzed with respect to source of cell type, mechanism of action etc.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Medical Faculty Mannheim, Orthopaedic and Trauma Surgery Centre (OUZ), Heidelberg University, Mannheim, Germany
| | - Sara Medina Balbuena
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Diego O. Pastene
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniela Nardozi
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Cinzia Brenna
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Benito Yard
- Department of Medicine (Nephrology/Endrocrinology/Rheumathology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, University of Heidelberg, Mannheim, Germany
| | - Karen Bieback
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, University of Heidelberg, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| |
Collapse
|
28
|
Systemically administered allogeneic mesenchymal stem cells do not aggravate the progression of precancerous lesions: a new biosafety insight. Stem Cell Res Ther 2018; 9:137. [PMID: 29751770 PMCID: PMC5948822 DOI: 10.1186/s13287-018-0878-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal cells currently tested for multiple therapeutic purposes. Their potential to home into tumors, to secrete trophic/vasculogenic factors, and to suppress immune response raises questions regarding their biosafety. Our aim was to evaluate whether systemically administered allogeneic MSCs modify the natural progression of precancerous lesions and whether their putative effect depends on cancer stage and/or cell dose. Methods Oral squamous cell carcinoma (OSCC) was induced in Syrian golden hamsters by topical application of 7,12-dimethylbenz[a]anthracene in one buccal pouch. At hyperplasia, dysplasia, or papilloma stage, animals received intracardially the vehicle or 0.7 × 106, 7 × 106, or 21 × 106 allogeneic bone marrow-derived MSCs/kg. OSCC progression was assessed according to the presence of erythroplakia and leukoplakia, extent of inflammation and vascularization, and appearance, volume, and staging of tumors. Also, the homing of donor cells was studied. Results Precancerous lesions progressed from hyperplasia to dysplasia in 2 weeks, from dysplasia to papilloma in 3 weeks, and from papilloma to carcinoma in 4 weeks. This time course was unmodified by the systemic administration of MSCs at hyperplasia or dysplasia stages. When MSCs were administered at papilloma stage, lesions did not progress to carcinoma stage. Tumors developed in hamsters receiving 0.7 × 106 or 7 × 106 MSCs/kg at hyperplasia stage were significantly smaller than those found in control animals (25 ± 4 or 23 ± 4 mm3 versus 72 ± 19 mm3, p < 0.05). Similar results were obtained when 0.7 × 106, 7 × 106, or 21 × 106 MSCs/kg were administered at papilloma stage (44 ± 15, 28 ± 7, or 28 ± 5 mm3 versus 104 ± 26 mm3, p < 0.05). For dysplasia stage, only the lower concentration of MSCs reached statistical significance (21 ± 9 mm3 versus 94 ± 39 mm3, p < 0.05). Animals receiving 21 × 106 MSCs/kg at hyperplasia stage developed tumors larger than those found in animals that received the vehicle (147 ± 47 mm3 versus 72 ± 19 mm3, p < 0.05). Donor cells were rarely found in precancerous lesions. Conclusions Systemically administered allogeneic MSCs do not aggravate the progression of precancerous lesions. Moreover, they preclude cancer progression and tumor growth. Electronic supplementary material The online version of this article (10.1186/s13287-018-0878-1) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J. Extracellular vesicle therapeutics for liver disease. J Control Release 2018; 273:86-98. [PMID: 29373816 DOI: 10.1016/j.jconrel.2018.01.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are endogenous nanoparticles that play important roles in intercellular communication. Unmodified and engineered EVs can be utilized for therapeutic purposes. For instance, mesenchymal stem cell (MSC)-derived EVs have shown promise for tissue repair, while drug-loaded EVs have the potential to be used for cancer treatment. The liver is an ideal target for EV therapy due to the intrinsic regenerative capacity of hepatic tissue and the tropism of systemically injected nanovesicles for this organ. This review will give an overview of the potential of EV therapeutics in liver disease. Specifically, the mechanisms by which MSC-EVs induce liver repair will be covered. Moreover, the use of drug-loaded EVs for the treatment of hepatocellular carcinoma will also be discussed. Although there are several challenges associated with the clinical translation of EVs, these biological nanoparticles represent a promising new therapeutic modality for liver disease.
Collapse
Affiliation(s)
- David A Borrelli
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kiera Yankson
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Neha Shukla
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - George Vilanilam
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
30
|
Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G, Christodoulou I, Zoumpourlis V. Genetically‑modified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)‑based targeted therapy (Review). Int J Mol Med 2018; 41:1177-1186. [PMID: 29328364 PMCID: PMC5819898 DOI: 10.3892/ijmm.2018.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
The tissue kallikrein-kinin system (KKS) is an endogenous multiprotein metabolic cascade which is implicated in the homeostasis of the cardiovascular, renal and central nervous system. Human tissue kallikrein (KLK1) is a serine protease, component of the KKS that has been demonstrated to exert pleiotropic beneficial effects in protection from tissue injury through its anti-inflammatory, anti-apoptotic, anti-fibrotic and anti-oxidative actions. Mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs) constitute populations of well-characterized, readily obtainable multipotent cells with special immunomodulatory, migratory and paracrine properties rendering them appealing potential therapeutics in experimental animal models of various diseases. Genetic modification enhances their inherent properties. MSCs or EPCs are competent cellular vehicles for drug and/or gene delivery in the targeted treatment of diseases. KLK1 gene delivery using adenoviral vectors or KLK1 protein infusion into injured tissues of animal models has provided particularly encouraging results in attenuating or reversing myocardial, renal and cerebrovascular ischemic phenotype and tissue damage, thus paving the way for the administration of genetically modified MSCs or EPCs with the human tissue KLK1 gene. Engraftment of KLK1-modified MSCs and/or KLK1-modified EPCs resulted in advanced beneficial outcome regarding heart and kidney protection and recovery from ischemic insults. Collectively, findings from pre-clinical studies raise the possibility that tissue KLK1 may be a novel future therapeutic target in the treatment of a wide range of cardiovascular, cerebrovascular and renal disorders.
Collapse
Affiliation(s)
- Marina Devetzi
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nicolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Ioannis Christodoulou
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
31
|
Elseweidy MM, Askar ME, Elswefy SE, Shawky M. Nephrotoxicity Induced by Cisplatin Intake in Experimental Rats and Therapeutic Approach of Using Mesenchymal Stem Cells and Spironolactone. Appl Biochem Biotechnol 2017; 184:1390-1403. [PMID: 29043663 DOI: 10.1007/s12010-017-2631-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 02/05/2023]
Abstract
Chronic kidney disease may lead to subsequent tissue fibrosis. However, many factors can combat injurious stimuli in these tissues aiming to repair, heal, and alleviate any disturbance. Chemokines release, migration of inflammatory cells to the affected site, and activation of fibroblasts for the production of extracellular matrix are commonly observed in this disease. In the last years, many studies have focused on spironolactone (SPL), a mineralocorticoid receptor antagonist, and its pharmacological effects. In the present study, SPL was selected as an anti-inflammatory agent to combat nephrotoxicity and renal fibrosis induced by cisplatin. Mesenchymal stem cells (MSCs) were also selected in addition as a referring agent. Renal fibrosis induced by cisplatin intake significantly increased creatinine, urea, nuclear factor kappa B, insulin-like growth factor-1, fibroblast growth factor-23, and kidney malondialdehyde (MDA) content. Hepatocyte growth factor and renal content of reduced glutathione demonstrated a significant decrease. Histopathological examination of kidney tissues demonstrated marked cellular changes which are correlated with the biochemical results. Oral SPL intake (20 mg/kg/body weight) daily for 4 weeks and MSCs administration (3 × 106 cell/rat) intravenous to the experimental rats resulted in a significant improvement of both the biomarkers studied and the histopathological profile of the renal tissue. Individual administration of spironolactone and MSCs exhibited a marked anti-inflammatory potential and alleviated to a great extent the nephrotoxicity and renal fibrotic pattern induced by cisplatin.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar E Elswefy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Shawky
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.,Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| |
Collapse
|
32
|
Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Saijo Y, Tsuchida H, Ishioka S, Nishikawa A, Saito T, Fujimiya M. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep 2017; 7:8484. [PMID: 28814814 PMCID: PMC5559488 DOI: 10.1038/s41598-017-08921-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/20/2017] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSC) has been applied as the most valuable source of autologous cell transplantation for various diseases including diabetic complications. However, hyperglycemia may cause abnormalities in intrinsic BM-MSC which might lose sufficient therapeutic effects in diabetic patients. We demonstrated the functional abnormalities in BM-MSC derived from both type 1 and type 2 diabetes models in vitro, which resulted in loss of therapeutic effects in vivo in diabetic nephropathy (DN). Then, we developed a novel method to improve abnormalities in BM-MSC using human umbilical cord extracts, namely Wharton’s jelly extract supernatant (WJs). WJs is a cocktail of growth factors, extracellular matrixes and exosomes, which ameliorates proliferative capacity, motility, mitochondrial degeneration, endoplasmic reticular functions and exosome secretions in both type 1 and type 2 diabetes-derived BM-MSC (DM-MSC). Exosomes contained in WJs were a key factor for this activation, which exerted similar effects to complete WJs. DM-MSC activated by WJs ameliorated renal injury in both type 1 and type 2 DN. In this study, we developed a novel activating method using WJs to significantly increase the therapeutic effect of BM-MSC, which may allow effective autologous cell transplantation.
Collapse
Affiliation(s)
- Kanna Nagaishi
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan. .,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan.
| | - Yuka Mizue
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Takako Chikenji
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Miho Otani
- Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| | - Masako Nakano
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Yusaku Saijo
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Hikaru Tsuchida
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Shinichi Ishioka
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Akira Nishikawa
- Department of Gynecology and Obstetrics, NTT Sapporo Hospital, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Second Department of Anatomy, Sapporo Medical University, Sapporo, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
33
|
Mesenchymal Stem Cell-Based Therapies against Podocyte Damage in Diabetic Nephropathy. Tissue Eng Regen Med 2017; 14:201-210. [PMID: 30603477 DOI: 10.1007/s13770-017-0026-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Injury to podocytes is an early event in diabetic nephropathy leading to proteinuria with possible progression to end-stage renal failure. The podocytes are unique and highly specialized cells that cover the outer layer of kidney ultra-filtration barrier and play an important role in glomerular function. In the past few decades, adult stem cells, such as mesenchymal stem cells (MSCs) with a regenerative and differentiative capacity have been extensively used in cell-based therapies. In addition to their capability for regeneration and differentiation, MSCs contributes to their milieu by paracrine action of a series of growth factors via antiapoptotic, mitogenic and other cytokine actions that actively participate in treatment of podocyte damage through prevention of podocyte effacement, detachment and apoptosis. It is hoped that novel stem cell-based therapies will be developed in the future to prevent podocyte injury, thereby reducing the burden of kidney disease.
Collapse
|
34
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
35
|
Lacava V, Pellicanò V, Ferrajolo C, Cernaro V, Visconti L, Conti G, Buemi M, Santoro D. Novel avenues for treating diabetic nephropathy: new investigational drugs. Expert Opin Investig Drugs 2017; 26:445-462. [PMID: 28277032 DOI: 10.1080/13543784.2017.1293039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Viviana Lacava
- Unit of Nephrology and Dialysis, University of Messina, Messina, Italy
| | | | - Carmen Ferrajolo
- Department of Experimental Medicine, Second University of Naples, Napoli, Italy
| | - Valeria Cernaro
- Unit of Nephrology and Dialysis, University of Messina, Messina, Italy
| | - Luca Visconti
- Unit of Nephrology and Dialysis, University of Messina, Messina, Italy
| | - Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, University of Messina, Messina, Italy
| |
Collapse
|
36
|
Stem cell therapy: An emerging modality in glomerular diseases. Cytotherapy 2017; 19:333-348. [PMID: 28089754 DOI: 10.1016/j.jcyt.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The kidney has been considered a highly terminally differentiated organ with low proliferative potential and thus unlikely to undergo regeneration. Glomerular disease progresses to end-stage renal disease (ESRD), which requires dialysis or renal transplantation for better quality of life for patients with ESRD. Because of the shortage of implantable kidneys and complications such as immune rejection, septicemia and toxicity of immunosuppression, kidney transplantation remains a challenge. Therapeutic options available for glomerular disease include symptomatic treatment and strategies to delay progression. In an attempt to develop innovative treatments by promoting the limited capability of regeneration and repair after kidney injury and overcome the progressive pathological process that is uncontrolled with conventional treatment modalities, stem cell-based therapy has emerged as novel intervention due to its ability to inhibit inflammation and promote regeneration. Recent developments in cell therapy have demonstrated promising therapeutic outcomes in terms of restoration of renal structure and function. This review focuses on stem cell therapy approaches for the treatment of glomerular disease, including the various cell sources used and recent advances in preclinical and clinical studies.
Collapse
|
37
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
38
|
Abstract
Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.
Collapse
|
39
|
Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N, Fujimiya M. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 2016; 6:34842. [PMID: 27721418 PMCID: PMC5056395 DOI: 10.1038/srep34842] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/18/2016] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have contributed to the improvement of diabetic nephropathy (DN); however, the actual mediator of this effect and its role has not been characterized thoroughly. We investigated the effects of MSC therapy on DN, focusing on the paracrine effect of renal trophic factors, including exosomes secreted by MSCs. MSCs and MSC-conditioned medium (MSC-CM) as renal trophic factors were administered in parallel to high-fat diet (HFD)-induced type 2 diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice. Both therapies showed approximately equivalent curative effects, as each inhibited the exacerbation of albuminuria. They also suppressed the excessive infiltration of BMDCs into the kidney by regulating the expression of the adhesion molecule ICAM-1. Proinflammatory cytokine expression (e.g., TNF-α) and fibrosis in tubular interstitium were inhibited. TGF-β1 expression was down-regulated and tight junction protein expression (e.g., ZO-1) was maintained, which sequentially suppressed the epithelial-to-mesenchymal transition of tubular epithelial cells (TECs). Exosomes purified from MSC-CM exerted an anti-apoptotic effect and protected tight junction structure in TECs. The increase of glomerular mesangium substrate was inhibited in HFD-diabetic mice. MSC therapy is a promising tool to prevent DN via the paracrine effect of renal trophic factors including exosomes due to its multifactorial action.
Collapse
Affiliation(s)
- Kanna Nagaishi
- Second Department of Anatomy, Sapporo Medical University, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Japan
| | - Yuka Mizue
- Second Department of Anatomy, Sapporo Medical University, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Japan
| | - Takako Chikenji
- Second Department of Anatomy, Sapporo Medical University, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Japan
| | - Miho Otani
- Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Japan
| | - Masako Nakano
- Second Department of Anatomy, Sapporo Medical University, Japan
| | - Naoto Konari
- Second Department of Anatomy, Sapporo Medical University, Japan
| | - Mineko Fujimiya
- Second Department of Anatomy, Sapporo Medical University, Japan.,Department of Diabetic Cellular Therapeutics, Sapporo Medical University, Japan
| |
Collapse
|
40
|
Dong X, Zhang T, Liu Q, Zhu J, Zhao J, Li J, Sun B, Ding G, Hu X, Yang Z, Zhang Y, Li L. Beneficial effects of urine-derived stem cells on fibrosis and apoptosis of myocardial, glomerular and bladder cells. Mol Cell Endocrinol 2016; 427:21-32. [PMID: 26952874 DOI: 10.1016/j.mce.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Urine-derived stem cells (USCs) are isolated from voided urine and display high proliferative activity and multiple differentiation potentials. The applicability of USCs in the treatment of bladder dysfunction and in cell-based urological tissue engineering has been demonstrated. Whether they could serve as a potential stem cell source for the treatment of diabetes mellitus (DM) and its complications has not been investigated. Here, we report the repairing and protective effects of USCs on pancreatic islets, the myocardium, the renal glomerulus and the bladder detrusor in diabetic rat models. Type 2 diabetic rat models were induced by means of a high fat diet and intraperitoneal injection with streptozotocin. USCs isolated from voided urine were administered via tail veins. The functional changes of pancreatic islets, left ventricle, glomerulus and bladder micturition were assessed by means of insulin tolerance tests, echocardiography, urine biochemical indexes and cystometry. The histologic changes were evaluated by hematoxylin and eosin staining, Masson's trichrome staining and TUNEL staining. Treatment with USCs significantly alleviated the histological destruction and functional decline. Although the USC treatment did not decrease fasting blood glucose to a significantly different level, the fibrosis and apoptosis of the myocardium, glomerulus and detrusor were significantly inhibited. This study indicates that administration of USCs may be useful for the treatment of the complications of DM.
Collapse
Affiliation(s)
- Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Teng Zhang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jia Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Guolin Ding
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
41
|
Griffin TP, Martin WP, Islam N, O'Brien T, Griffin MD. The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease. Curr Diab Rep 2016; 16:42. [PMID: 27007719 DOI: 10.1007/s11892-016-0734-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.
Collapse
Affiliation(s)
- Tomás P Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - William Patrick Martin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
- Centre for Diabetes, Endocrinology and Metabolism, Galway University Hospitals, Saolta University Health Group, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
- Nephrology Services, Galway University Hospitals, Saolta University Health Group, Galway, Ireland.
| |
Collapse
|
42
|
Abstract
Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected by diabetes, as it can develop a microangiopathy and neuropathy similar to other body tissues. Neuropathy leads to impaired stem cell mobilization from marrow, the so-called mobilopathy. Here, we review the role of bone marrow-derived stem cells in diabetes: how they are affected by compromised bone marrow integrity, how they contribute to other diabetic complications, and how they can be used as a treatment for these. Eventually, we suggest new tactics to optimize stem cell therapy.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS28HW UK
| |
Collapse
|
43
|
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7:42. [PMID: 26983784 PMCID: PMC4793534 DOI: 10.1186/s13287-016-0299-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice. Methods Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry). Results MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization. Conclusions Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Cristhian A Urzua
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Scarleth Montecino
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Karla Leal
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile.
| |
Collapse
|
44
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
45
|
Yang G, Cheng Q, Liu S, Zhao J. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy. PLoS One 2015; 10:e0137245. [PMID: 26340671 PMCID: PMC4560440 DOI: 10.1371/journal.pone.0137245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.
Collapse
Affiliation(s)
- Guang Yang
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| | - Qingli Cheng
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
- * E-mail:
| | - Sheng Liu
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| | - Jiahui Zhao
- Department of Geriatric Nephrology, Chinese People’s Liberation Army General Hospital, State Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
46
|
Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164703. [PMID: 26167475 PMCID: PMC4475763 DOI: 10.1155/2015/164703] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.
Collapse
|
47
|
Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells 2015; 7:408-417. [PMID: 25815124 PMCID: PMC4369496 DOI: 10.4252/wjsc.v7.i2.408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells (MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes (i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. This article reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration.
Collapse
|
48
|
Papazova DA, Oosterhuis NR, Gremmels H, van Koppen A, Joles JA, Verhaar MC. Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis. Dis Model Mech 2015; 8:281-93. [PMID: 25633980 PMCID: PMC4348565 DOI: 10.1242/dmm.017699] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-based therapy is a promising strategy for treating chronic kidney disease (CKD) and is currently the focus of preclinical studies. We performed a systematic review and meta-analysis to evaluate the efficacy of cell-based therapy in preclinical (animal) studies of CKD, and determined factors affecting cell-based therapy efficacy in order to guide future clinical trials. In total, 71 articles met the inclusion criteria. Standardised mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcome parameters including plasma urea, plasma creatinine, urinary protein, blood pressure, glomerular filtration rate, glomerulosclerosis and interstitial fibrosis. Sub-analysis for each outcome measure was performed for model-related factors (species, gender, model and timing of therapy) and cell-related factors (cell type, condition and origin, administration route and regime of therapy). Overall, meta-analysis showed that cell-based therapy reduced the development and progression of CKD. This was most prominent for urinary protein (SMD, 1.34; 95% CI, 1.00–1.68) and urea (1.09; 0.66–1.51), both P<0.001. Changes in plasma urea were associated with changes in both glomerulosclerosis and interstitial fibrosis. Sub-analysis showed that cell type (bone-marrow-derived progenitors and mesenchymal stromal cells being most effective) and administration route (intravenous or renal artery injection) were significant predictors of therapeutic efficacy. The timing of therapy in relation to clinical manifestation of disease, and cell origin and dose, were not associated with efficacy. Our meta-analysis confirms that cell-based therapies improve impaired renal function and morphology in preclinical models of CKD. Our analyses can be used to optimise experimental interventions and thus support both improved preclinical research and development of cell-based therapeutic interventions in a clinical setting.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
49
|
Li W, Wang C, Peng J, Liang J, Jin Y, Liu Q, Meng Q, Liu K, Sun H. α-Lipoic acid protects HAECs from high glucose-induced apoptosis via decreased oxidative stress, ER stress and mitochondrial injury. RSC Adv 2015. [DOI: 10.1039/c5ra09460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
α-Lipoic acid (LA) has a wide range of benefits in treating diabetes mellitus (DM) and DM vascular diseases, however, the specific mechanisms are not clearly understood.
Collapse
Affiliation(s)
- Wenshuang Li
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Changyuan Wang
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Jinyong Peng
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Jing Liang
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Yue Jin
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Qi Liu
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Qiang Meng
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Kexin Liu
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Huijun Sun
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
50
|
Haidara MA, Assiri AS, Youssef MA, Mahmoud MM, Ahmed M S E, Al-Hakami A, Chandramoorthy HC. Differentiated mesenchymal stem cells ameliorate cardiovascular complications in diabetic rats. Cell Tissue Res 2014; 359:565-575. [PMID: 25413785 DOI: 10.1007/s00441-014-2034-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/14/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdullah S Assiri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Cardiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mary A Youssef
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Mahmoud
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eajaz Ahmed M S
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|