1
|
Mahla RS. TLR7 signaling: a central nexus in autoimmunity and cGVHD. Blood Adv 2024; 8:3186-3188. [PMID: 38696714 PMCID: PMC11225663 DOI: 10.1182/bloodadvances.2024012598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Ranjeet Singh Mahla
- Kennedy Institute of Rheumatology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Tollemar V, Garming Legert K, Sugars RV. Perspectives on oral chronic graft-versus-host disease from immunobiology to morbid diagnoses. Front Immunol 2023; 14:1151493. [PMID: 37449200 PMCID: PMC10338056 DOI: 10.3389/fimmu.2023.1151493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic Graft-versus-Host Disease (cGVHD) is a major long-term complication, associated with morbidity and mortality in patients following allogenic hematopoietic cell transplantation (HCT) for immune hematopoietic disorders. The mouth is one of the most frequently affected organs after HCT (45-83%) and oral cGVHD, which may appear as the first visible sign. Manifestations present with mucosal lichenoid lesions, salivary gland dysfunction and limited oral aperture. Diagnosis of oral cGVHD severity is based on mucosal lesions with symptoms of sensitivity and pain and reduced oral intake. However, diagnostic difficulties arise due to subjective definitions and low specificity to cover the spectrum of oral cGVHD. In recent years there have been significant improvements in our understanding of the underlying oral cGVHD disease mechanisms. Drawing upon the current knowledge on the pathophysiology and biological phases of oral cGVHD, we address oral mucosa lichenoid and Sjogren's Syndrome-like sicca syndromes. We consider the response of alloreactive T-cells and macrophages to recipient tissues to drive the pathophysiological reactions and biological phases of acute inflammation (phase 1), chronic inflammation and dysregulated immunity (phase 2), and subsequent aberrant fibrotic healing (phase 3), which in time may be associated with an increased malignant transformation rate. When formulating treatment strategies, the pathophysiological spectrum of cGVHD is patient dependent and not every patient may progress chronologically through the biological stages. As such there remains a need to address and clarify personalized diagnostics and management to improve treatment descriptions. Within this review, we highlight the current state of the art knowledge on oral cGVHD pathophysiology and biological phases. We address knowledge gaps of oral cGVHD, with a view to facilitate clinical management and improve research quality on lichenoid biology and morbid forms of oral cGVHD.
Collapse
Affiliation(s)
| | | | - Rachael V. Sugars
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Sumii Y, Kondo T, Ikegawa S, Fukumi T, Iwamoto M, Nishimura MF, Sugiura H, Sando Y, Nakamura M, Meguri Y, Matsushita T, Tanimine N, Kimura M, Asada N, Ennishi D, Maeda Y, Matsuoka KI. Hematopoietic stem cell-derived Tregs are essential for maintaining favorable B cell lymphopoiesis following posttransplant cyclophosphamide. JCI Insight 2023; 8:162180. [PMID: 37092551 DOI: 10.1172/jci.insight.162180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
Posttransplant cyclophosphamide (PTCy) is associated with a low incidence of chronic graft-versus-host disease (cGVHD) following hematopoietic stem cell (HSC) transplantation. Previous studies have shown the important roles of B cell immunity in cGVHD development. Here, we investigated the long-term reconstitution of B lymphopoiesis after PTCy using murine models. We first demonstrated that the immune homeostatic abnormality leading to cGVHD is characterized by an initial increase in effector T cells in the bone marrow and subsequent B and Treg cytopenia. PTCy, but not cyclosporine A or rapamycin, inhibits the initial alloreactive T cell response, which restores intra-bone marrow B lymphogenesis with a concomitant vigorous increase in Tregs. This leads to profound changes in posttransplant B cell homeostasis, including decreased B cell activating factors, increased transitional and regulatory B cells, and decreased germinal center B cells. To identify the cells responsible for PTCy-induced B cell tolerance, we selectively depleted Treg populations that were graft or HSC derived using DEREG mice. Deletion of either Treg population without PTCy resulted in critical B cytopenia. PTCy rescued B lymphopoiesis from graft-derived Treg deletion. In contrast, the negative effect of HSC-derived Treg deletion could not be overcome by PTCy, indicating that HSC-derived Tregs are essential for maintaining favorable B lymphopoiesis following PTCy. These findings define the mechanisms by which PTCy restores homeostasis of the B cell lineage and reestablishes immune tolerance.
Collapse
Affiliation(s)
- Yuichi Sumii
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Takumi Kondo
- Department of Hematology, Oncology and Respiratory Medicine and
| | | | - Takuya Fukumi
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Miki Iwamoto
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Midori Filiz Nishimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Yasuhisa Sando
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Makoto Nakamura
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Yusuke Meguri
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Maiko Kimura
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine and
| | | |
Collapse
|
5
|
Lin C, DiCioccio RA, Haykal T, McManigle WC, Li Z, Anand SM, Poe JC, Bracken SJ, Jia W, Alyea EP, Cardones AR, Choi T, Gasparetto C, Grunwald MR, Hennig T, Kang Y, Long GD, Lopez R, Martin M, Minor KK, Quinones VLP, Sung AD, Wiggins K, Chao NJ, Horwitz ME, Rizzieri DA, Sarantopoulos S. A Phase I Trial of SYK Inhibition with Fostamatinib in the Prevention and Treatment of Chronic Graft-Versus-Host Disease. Transplant Cell Ther 2023; 29:179.e1-179.e10. [PMID: 36577483 PMCID: PMC10433369 DOI: 10.1016/j.jtct.2022.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022]
Abstract
Despite the exciting advancement of novel therapies, chronic graft-versus-host disease (cGVHD) remains the most common cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (HCT). Frontline treatment of cGVHD involves systemic steroids, which are associated with significant morbidities. We previously found that inhibition of spleen tyrosine kinase (SYK) with fostamatinib preferentially eradicated aberrantly activated B cells in both ex vivo studies of cGVHD patient B cells, as well as in vivo mouse studies. These and other preclinical studies implicated hyper-reactive B-cell receptor signaling and increased SYK expression in the pathogenesis of cGVHD and compelled this first in-human allogeneic HCT clinical trial. We investigated the safety and efficacy of the oral SYK inhibitor, fostamatinib, for both the prevention and treatment of cGVHD. The primary objective was to evaluate the safety of fostamatinib and determine its maximum tolerated dose in the post-HCT setting. Secondary objectives included assessing the efficacy of fostamatinib in preventing and treating cGVHD, as well as examining alterations in B-cell compartments with treatment. This was a single-institution phase I clinical trial that evaluated the use of fostamatinib in allogeneic HCT patients before the development of cGVHD or at the time of steroid-refractory cGVHD (SR-cGVHD). Patients received fostamatinib at one of three dose levels using a continual reassessment algorithm to determine the maximum tolerated dose. Multiparameter flow cytometry was used to evaluate changes in B cell subpopulations over the first year of treatment with fostamatinib. Nineteen patients were enrolled in this phase I trial, with 5 in the prophylaxis arm and 14 in the therapeutic arm. One patient (5%) required discontinuation of therapy for a dose-limiting toxicity. At a median follow-up of over 3 years, no patients had cancer relapse while on fostamatinib treatment, and recurrent malignancy was observed in 1 patient 2 years after the end of therapy. In the prophylaxis arm, 1 of 5 patients (20%) developed cGVHD while on fostamatinib. In the therapeutic arm, the overall response rate was 77%, with a complete response rate of 31%. The median duration of response was 19.3 months and the 12-month failure-free survival was 69% (95% confidence interval, 48-100). Patients were able to reduce their steroid dose by a median of 80%, with 73% remaining on a lower dose at 1 year compared to baseline. There was an early reduction in the proportion of IgD-CD38hi plasmablast-like cells with fostamatinib treatment, particularly in those SR-cGVHD patients who had an eventual response. B-cell reconstitution was not significantly impacted by fostamatinib therapy after allogeneic HCT. Fostamatinib featured a favorable safety profile in the post-HCT setting. Our data suggests an early efficacy signal that was associated with effects on expected cell targets in both the prophylaxis and treatment of cGVHD, providing rationale for a phase II investigation.
Collapse
Affiliation(s)
- Chenyu Lin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Rachel A DiCioccio
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tarek Haykal
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - William C McManigle
- Division of Pulmonary and Critical Care, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Sarah M Anand
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan C Poe
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Sonali J Bracken
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Wei Jia
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Edwin P Alyea
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Adela R Cardones
- Division of Dermatology, Department of Internal Medicine, University of Kansas Medical Center, Lawrence, Kansas
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Therese Hennig
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Gwynn D Long
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Richard Lopez
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Melissa Martin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kerry K Minor
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristi Wiggins
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Mitchell E Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
6
|
Verlaat L, Riesner K, Kalupa M, Jung B, Mertlitz S, Schwarz C, Mengwasser J, Fricke C, Penack O. Novel pre-clinical mouse models for chronic Graft-versus-Host Disease. Front Immunol 2023; 13:1079921. [PMID: 36761159 PMCID: PMC9902926 DOI: 10.3389/fimmu.2022.1079921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 01/26/2023] Open
Abstract
Despite considerable progress in allogeneic hematopoietic cell transplantation (allo-HCT) has been achieved over the past years, chronic Graft-versus-Host Disease (cGvHD) still contributes to high morbidity rates, thus remaining a major hurdle in allo-HCT patients. To understand the complex pathophysiology of cGvHD and to develop refined prophylaxis and treatment strategies, improved pre-clinical models are needed. In this study, we developed two murine cGvHD models, which display high long-term morbidity but low mortality and depict the heterogeneous clinical manifestations of cGvHD seen in patients. We established a haploidentical C57BL/6→B6D2F1 allo-HCT model that uses myeloablative radiation and G-CSF-mobilized splenocytes as stem cell source and a sub-lethally irradiated Xenograft model, which utilizes the transfer of human peripheral blood mononuclear cells (PBMCs) into NOD scid gamma (NSG)-recipients. We characterized both mouse models to exhibit diverse clinical and histopathological signs of human cGvHD as extensive tissue damage, fibrosis/sclerosis, inflammation and B cell infiltration in cGvHD target organs skin, liver, lung and colon and found a decelerated immune cell reconstitution in the late phase after HCT. Our pre-clinical models can help to gain a deeper understanding of the target structures and mechanisms of cGvHD pathology and may enable a more reliable translation of experimental findings into the human setting of allo-HCT.
Collapse
|
7
|
Jeon Y, Lim JY, Im KI, Kim N, Cho SG. BAFF blockade attenuates acute graft-versus-host disease directly via the dual regulation of T- and B-cell homeostasis. Front Immunol 2022; 13:995149. [PMID: 36561743 PMCID: PMC9763883 DOI: 10.3389/fimmu.2022.995149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction B-cell-activating factor (BAFF) is associated with donor-specific antibodies and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the effects of BAFF on T-cell physiological function have not been fully elucidated in acute GVHD. Methods We examined the effects of belimumab, a monoclonal antibody targeting BAFF, for the treatment of acute GVHD. We examined the effects of T cells and B cells separately when inducing GVHD in mouse model. Results Therapeutic functional manipulation of endogenous BAFF can improve acute GVHD during the early post-transplant period. In this study, BAFF was shown to increase the proportions of CD4+IL-17+, CD4+IL-6+ Th17, and CD4+IFN-γ+ Th1 cells and to reduce the proportion of regulatory T (Treg) cells. Furthermore, the belimumab therapy group showed increased B220+IgD+IgM+ mature B cells but decreased B220+IgD-IgM- memory B cells, B220+Fas+GL-7+ germinal center formation, and B220+IgD-CD138+ plasma cells. These results indicate that BAFF can alleviate acute GVHD by simultaneously regulating T and B cells. Interestingly, the BAFF level was higher in patients with acute GVHD after HSCT compared with patients receiving chemotherapy. Conclusion This study suggests that BAFF blockade might modulate CD4 +T-cell-induced acute GVHD early after allo-HSCT and the possibility of simultaneously controlling chronic GVHD, which may appear later after allo-HSCT.
Collapse
Affiliation(s)
- Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Yeon Lim
- Department of Biomedical Laboratory Science, Inje University, Kimhae, South Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Seok-Goo Cho,
| |
Collapse
|
8
|
Milosevic E, Babic A, Iovino L, Markovic M, Grce M, Greinix H. Use of the NIH consensus criteria in cellular and soluble biomarker research in chronic graft-versus-host disease: A systematic review. Front Immunol 2022; 13:1033263. [DOI: 10.3389/fimmu.2022.1033263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesChronic graft-versus-host disease (cGvHD) is the most frequent cause of late non-relapse mortality after allogeneic haematopoietic stem cell transplantation (alloHCT). Nevertheless, established biomarkers of cGvHD are still missing. The National Institutes of Health (NIH) Consensus Development Project on Criteria for Clinical Trials in cGvHD provided recommendations for biomarker research. We evaluated to which extent studies on cellular and soluble biomarkers in cGvHD published in the last 10 years complied with these recommendations. Also, we highlight the most promising biomarker candidates, verified in independent cohorts and/or repeatedly identified by separate studies.MethodsWe searched Medline and EMBASE for “cGvHD”, “biomarkers”, “soluble” and “cells” as MeSH terms or emtree subject headings, and their variations on July 28th, 2021, limited to human subjects, English language and last ten years. Reviews, case reports, conference abstracts and single nucleotide polymorphism studies were excluded. Criteria based on the set of recommendations from the NIH group for biomarker research in cGvHD were used for scoring and ranking the references.ResultsA total of 91 references encompassing 15,089 participants were included, 54 prospective, 17 retrospective, 18 cross-sectional, and 2 studies included both prospective and retrospective cohorts. Thirty-five papers included time-matched controls without cGvHD and 20 studies did not have any control subjects. Only 9 studies were randomized, and 8 were multicentric. Test and verification cohorts were included in 11 studies. Predominantly, diagnostic biomarkers were explored (n=54). Assigned scores ranged from 5-34. None of the studies fulfilled all 24 criteria (48 points). Nevertheless, the scores improved during the last years. Three cell subsets (CXCR3+CD56bright NK cells, CD19+CD21low and BAFF/CD19+ B cells) and several soluble factors (BAFF, IL-15, CD163, DKK3, CXCL10 and the panel of ST2, CXCL9, MMP3 and OPN) had the highest potential as diagnostic and/or prognostic biomarkers in cGvHD.ConclusionDespite several limitations of this review (limited applicability for paediatric population, definition of verification, missing data on comorbidities), we identified promising candidate biomarkers for further evaluation in multicentre collaborative studies. This review confirms the importance of the NIH consensus group criteria for improving the quality and reproducibility of cGvHD biomarker research.
Collapse
|
9
|
Bidgoli A, DePriest BP, Saatloo MV, Jiang H, Fu D, Paczesny S. Current Definitions and Clinical Implications of Biomarkers in Graft-versus-Host Disease. Transplant Cell Ther 2022; 28:657-666. [PMID: 35830932 PMCID: PMC9547856 DOI: 10.1016/j.jtct.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Hematopoietic cell transplantation (HCT) is a potentially curative treatment for many hematologic and nonhematologic disorders. Graft-versus-host-disease (GVHD) in its acute or chronic form remains the most important nonrelapse post-HCT complication. Biomarkers offer objective, unbiased information on systemic disorders, and significant attention has focused on identifying biomarkers for GVHD. Ideally, a GVHD biomarker is actionable, with the results of biomarker testing used to guide clinical management of disease and clinical trial design. Although many GVHD biomarkers have been identified, none have been properly qualified for clinical use. The National Institutes of Health (NIH) and Food and Drug Administration (FDA) have provided biomarker subtype definitions; however, confusion remains about the proper definition and application of these subtypes in the HCT field. The 2014 NIH consensus development project provided a framework for the development of biomarkers for clinical practice. This review aims to clarify the biomarker subtype definitions and reemphasize the developmental framework. Armed with this knowledge, clinicians can properly translate GVHD biomarkers for clinical use.
Collapse
Affiliation(s)
- Alan Bidgoli
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Brittany Paige DePriest
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Maedeh Vakili Saatloo
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hua Jiang
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Denggang Fu
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Sophie Paczesny
- Departments of (1)Microbiology and Immunology and (2)Pediatrics, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
10
|
Jarduli-Maciel LR, de Azevedo JTC, Clave E, Costa TCDM, Arruda LCM, Fournier I, Palma PVB, Lima KC, Elias JB, Stracieri ABP, Pieroni F, Cunha R, Darrigo-Júnior LG, Grecco CES, Covas DT, Silva-Pinto AC, De Santis GC, Simões BP, Oliveira MC, Toubert A, Malmegrim KCR. Allogeneic haematopoietic stem cell transplantation resets T- and B-cell compartments in sickle cell disease patients. Clin Transl Immunology 2022; 11:e1389. [PMID: 35474905 PMCID: PMC9035210 DOI: 10.1002/cti2.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). Here, we comprehensively evaluated the reconstitution of T- and B-cell compartments in 29 SCD patients treated with allo-HSCT and how it correlated with the development of acute graft-versus-host disease (aGvHD). Methods T-cell neogenesis was assessed by quantification of signal-joint and β-chain TCR excision circles. B-cell neogenesis was evaluated by quantification of signal-joint and coding-joint K-chain recombination excision circles. T- and B-cell peripheral subset numbers were assessed by flow cytometry. Results Before allo-HSCT (baseline), T-cell neogenesis was normal in SCD patients compared with age-, gender- and ethnicity-matched healthy controls. Following allo-HSCT, T-cell neogenesis declined but was fully restored to healthy control levels at one year post-transplantation. Peripheral T-cell subset counts were fully restored only at 24 months post-transplantation. Occurrence of acute graft-versus-host disease (aGvHD) transiently affected T- and B-cell neogenesis and overall reconstitution of T- and B-cell peripheral subsets. B-cell neogenesis was significantly higher in SCD patients at baseline than in healthy controls, remaining high throughout the follow-up after allo-HSCT. Notably, after transplantation SCD patients showed increased frequencies of IL-10-producing B-regulatory cells and IgM+ memory B-cell subsets compared with baseline levels and with healthy controls. Conclusion Our findings revealed that the T- and B-cell compartments were normally reconstituted in SCD patients after allo-HSCT. In addition, the increase of IL-10-producing B-regulatory cells may contribute to improve immune regulation and homeostasis after transplantation.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli-Maciel
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Thalita Cristina de Mello Costa
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Isabelle Fournier
- Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Keli Cristina Lima
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | | | | | - Fabiano Pieroni
- Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Renato Cunha
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | | | | | - Dimas Tadeu Covas
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Ana Cristina Silva-Pinto
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Antoine Toubert
- Université de Paris INSERM UMR 1160 IRSL Paris France.,Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Department of Clinical Analysis, Toxicology and Food Sciences School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
11
|
Socié G, Kean LS, Zeiser R, Blazar BR. Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease. J Clin Invest 2021; 131:149296. [PMID: 34101618 PMCID: PMC8203454 DOI: 10.1172/jci149296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a result of impressive increases in our knowledge of rodent and human immunology, the understanding of the pathophysiologic mechanisms underlying graft-versus-host disease (GVHD) has dramatically improved in the past 15 years. Despite improved knowledge, translation to clinical care has not proceeded rapidly, and results from experimental models have been inconsistent in their ability to predict the clinical utility of new therapeutic agents. In parallel, new tools in immunology have allowed in-depth analyses of the human system and have recently been applied in the field of clinical GVHD. Notwithstanding these advances, there is a relative paucity of mechanistic insights into human translational research, and this remains an area of high unmet need. Here we review selected recent advances in both preclinical experimental transplantation and translational human studies, including new insights into human immunology, the microbiome, and regenerative medicine. We focus on the fact that both approaches can interactively improve our understanding of both acute and chronic GVHD biology and open the door to improved therapeutics and successes.
Collapse
Affiliation(s)
- Gérard Socié
- Hematology-Transplantation, Assistance Publique–Hôpitaux de Paris (APHP), Hospital Saint Louis, Paris, France
- INSERM UMR 976 (Team Insights) and University of Paris, Paris, France
| | - Leslie S. Kean
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
BAFF promotes heightened BCR responsiveness and manifestations of chronic GVHD after allogeneic stem cell transplantation. Blood 2021; 137:2544-2557. [PMID: 33534893 PMCID: PMC8109011 DOI: 10.1182/blood.2020008040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic graft-versus-host disease (cGVHD) have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major histocompatibility complex-mismatched model with cGVHD-like manifestations, we first examined B-lymphopenic μMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B-cell number. Mice that later developed cGVHD had significantly increased numbers of recipient fibroblastic reticular cells with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD, because BAFF transcript in CD4+ T cells from diseased mice and patients was increased. cGVHD manifestations in mice were associated with high BAFF/B-cell ratios and persistence of B-cell receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR responsiveness to surrogate antigen and NOTCH ligand. BAFF Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR activation or when alloantigen was present in vivo. Using T cell-depleted (BM only) BAFF Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells, and alloantibody production. We demonstrate that pathologic production of BAFF promotes an altered B-cell compartment and augments BCR responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in patients with cGVHD.
Collapse
|
13
|
Williams KM, Inamoto Y, Im A, Hamilton B, Koreth J, Arora M, Pusic I, Mays JW, Carpenter PA, Luznik L, Reddy P, Ritz J, Greinix H, Paczesny S, Blazar BR, Pidala J, Cutler C, Wolff D, Schultz KR, Pavletic SZ, Lee SJ, Martin PJ, Socie G, Sarantopoulos S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplant Cell Ther 2021; 27:452-466. [PMID: 33877965 DOI: 10.1016/j.jtct.2021.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Preventing chronic graft-versus-host disease (GVHD) remains challenging because the unique cellular and molecular pathways that incite chronic GVHD are poorly understood. One major point of intervention for potential prevention of chronic GVHD occurs at the time of transplantation when acute donor anti-recipient immune responses first set the events in motion that result in chronic GVHD. After transplantation, additional insults causing tissue injury can incite aberrant immune responses and loss of tolerance, further contributing to chronic GVHD. Points of intervention are actively being identified so that chronic GVHD initiation pathways can be targeted without affecting immune function. The major objective in the field is to continue basic studies and to translate what is learned about etiopathology to develop targeted prevention strategies that decrease the risk of morbid chronic GVHD without increasing the risks of cancer relapse or infection. Development of strategies to predict the risk of developing debilitating or deadly chronic GVHD is a high research priority. This working group recommends further interrogation into the mechanisms underpinning chronic GVHD development, and we highlight considerations for future trial design in prevention trials.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Annie Im
- Division of Hematology Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - John Koreth
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Iskra Pusic
- BMT and Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline W Mays
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pavan Reddy
- Divsion of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Corey Cutler
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kirk R Schultz
- Pediatric Oncology, Hematology, and Bone Marrow Transplant, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Gerard Socie
- Hematology Transplantation, Saint Louis Hospital, AP-HP, and University of Paris, INSERM U976, Paris, France.
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina.
| |
Collapse
|
14
|
Wang B, Liang Z, Liu W, Sun Y, Cen X, Dong Y, Ren H. The predictive value of serum free light chain level early after allogeneic hematopoietic stem cell transplantation for chronic graft-versus-host disease, a preliminary study. Clin Transplant 2020; 34:e13865. [PMID: 32242991 DOI: 10.1111/ctr.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Serum free light chain (FLC) level is closely associated with the functional state of B lymphocytes, and many studies have shown that delayed reconstitution of B lymphocytes contributed to chronic graft-versus-host disease (cGVHD). This study assessed the predictive value of FLC levels in serum collected early after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for cGVHD. METHODS Sixty-two patients who had undergone allo-HSCT were retrospectively reviewed. The correlations between the FLC levels and the development of cGVHD were explored. RESULTS Of the 62 patients, 33 cases developed cGVHD, with the prevalence of 53.2%. With Seattle classification, 19 cases had limited cGVHD while 14 cases contracted extensive cGVHD. While with NIH classification, 17 cases had mild cGVHD, 6 cases moderate cGVHD, and 10 cases severe cGVHD. Multivariant statistical analysis showed that the FLC levels were not associated with all severities of cGVHD but were correlated with the development of extensive or moderate to severe cGVHD (P = .01 and .038, respectively). CONCLUSIONS Serum FLC levels early after HSCT may reflect the functional state of B-cell reconstitution. Patients with low serum FLC Level early post-allo-HSCT tend to develop extensive cGVHD or moderate to severe cGVHD.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yuhua Sun
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Xi'nan Cen
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Yehudai-Ofir D, Henig I, Zuckerman T. Aberrant B cells, autoimmunity and the benefit of targeting B cells in chronic graft-versus-host disease. Autoimmun Rev 2020; 19:102493. [DOI: 10.1016/j.autrev.2020.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
|
16
|
Mankarious M, Matthews NC, Snowden JA, Alfred A. Extracorporeal Photopheresis (ECP) and the Potential of Novel Biomarkers in Optimizing Management of Acute and Chronic Graft vs. Host Disease (GvHD). Front Immunol 2020; 11:81. [PMID: 32082329 PMCID: PMC7005102 DOI: 10.3389/fimmu.2020.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the use of hematopoietic stem cell transplantation (HSCT) has become a more widespread and effective treatment for hematological malignant and non-malignant conditions, the need to minimize the harmful effects of graft- vs.-host disease (GvHD) has become more important in achieving good outcomes. With diagnosis of GvHD reliant on its clinical manifestations, research into biomarkers for the diagnosis, progression, and even for the prediction of disease, is imperative to combating the high levels of morbidity and mortality post-HSCT. Despite the development of novel treatment approaches to GvHD, corticosteroids remain the standard first-line treatment, with immunosuppressant therapies as second-line options. These strategies however have significant limitations and associated complications. Extracorporeal Photopheresis (ECP) has shown to be effective and safe in treating patients with symptomatic GvHD. ECP has been shown to have varied effects on multiple parts of the immune system and does not appear to increase the risk of relapse or infection in the post HSCT setting. Even so, ECP can be logistically more complex to organize and requires patients to be sufficiently stable. This review aims to summarize the potential role of biomarkers to help guide individualized treatment decisions in patients with acute and chronic GvHD. In relation to ECP, robust biomarkers of GvHD will be highly useful in informing patient selection, intensity and duration of the ECP schedule, monitoring of response and other treatment decisions alongside the concurrent administration of other GvHD therapies. Further research is warranted to establish how GvHD biomarkers are best incorporated into ECP treatment pathways with the goal of tailoring ECP to the needs of individual patients and maximizing benefit.
Collapse
Affiliation(s)
- Matthew Mankarious
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Nick C Matthews
- Department of Photopheresis, The Rotherham NHS Foundation Trust, Rotherham, United Kingdom
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Arun Alfred
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom.,Department of Photopheresis, The Rotherham NHS Foundation Trust, Rotherham, United Kingdom
| |
Collapse
|
17
|
Shih T, De S, Barnes BJ. RNAi Transfection Optimized in Primary Naïve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Front Immunol 2019; 10:1652. [PMID: 31396212 PMCID: PMC6664017 DOI: 10.3389/fimmu.2019.01652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Upon antigen recognition, naïve B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs), called plasma cells. Increased circulating plasma cells are reported in patients with B cell-associated malignancies, chronic graft-vs.-host disease, and autoimmune disorders. Our aim was to optimize an RNAi-based method that efficiently and reproducibly knocks-down genes of interest in human primary peripheral B cells for the targeted analysis of ASC differentiation. The unique contributions of transcriptional diversity in species-specific regulatory networks and the mechanisms of gene function need to be approached directly in human B cells with tools to hone our basic inferences from animal models to human biology. To date, methods for gene knockdown in human primary B cells, which tend to be more refractory to transfection than immortalized B cell lines, have been limited by losses in cell viability and ineffective penetrance. Our single-step siRNA nucleofector-based approach for human primary naïve B cells demonstrates reproducible knockdown efficiency (~40–60%). We focused on genes already known to play key roles in murine ASC differentiation, such as interferon regulatory factor 4 (IRF4) and AID. This study reports a validated non-viral method of siRNA delivery into human primary B cells that can be applied to study gene regulatory networks that control human ASC differentiation.
Collapse
Affiliation(s)
- Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Saurav De
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Graduate School of Biomedical Sciences Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, Northwell Health, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| |
Collapse
|
18
|
Bender Ignacio RA, Dasgupta S, Stevens-Ayers T, Kula T, Hill JA, Lee SJ, Mielcarek M, Duerr A, Elledge SJ, Boeckh M. Comprehensive viromewide antibody responses by systematic epitope scanning after hematopoietic cell transplantation. Blood 2019; 134:503-514. [PMID: 31186276 PMCID: PMC6688428 DOI: 10.1182/blood.2019897405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Further insight into humoral viral immunity after hematopoietic cell transplantation (HCT) could have potential impact on donor selection or monitoring of patients. Currently, estimation of humoral immune recovery is inferred from lymphocyte counts or immunoglobulin levels and does not address vulnerability to specific viral infections. We interrogated the viral antibody repertoire before and after HCT using a novel serosurvey (VirScan) that detects immunoglobulin G responses to 206 viruses. We performed VirScan on cryopreserved serum from pre-HCT and 30, 100, and 365 days after myeloablative HCT from 37 donor-recipient pairs. We applied ecologic metrics (α- and β-diversity) and evaluated predictors of metrics and changes over time. Donor age and donor/recipient cytomegalovirus (CMV) serostatus and receipt systemic glucocorticoids were most strongly associated with VirScan metrics at day 100. Other clinical characteristics, including pre-HCT treatment and conditioning, did not affect antiviral repertoire metrics. The recipient repertoire was most similar (pairwise β-diversity) to that of donor at day 100, but more similar to pre-HCT self by day 365. Gain or loss of epitopes to common viruses over the year post-HCT differed by donor and recipient pre-HCT serostatus, with highest gains in naive donors to seropositive recipients for several human herpesviruses and adenoviruses. We used VirScan to highlight contributions of donor and recipient to antiviral humoral immunity and evaluate longitudinal changes. This work builds a foundation to test whether such systematic profiling could serve as a biomarker of immune reconstitution, predict clinical events after HCT, or help refine selection of optimal donors.
Collapse
Affiliation(s)
- Rachel A Bender Ignacio
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sayan Dasgupta
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Joshua A Hill
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine
| | - Marco Mielcarek
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine
| | - Ann Duerr
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, and
- Department Global Health, University of Washington, Seattle, WA
| | | | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
19
|
Qin F, Shi L, Li Q, Zhang Z, Liu L, Li J, Yang G, Lai YR. Immune recovery after in vivo T-cell depletion myeloablative conditioning hematopoietic stem cell transplantation in severe beta-thalassemia children. Eur J Haematol 2019; 103:342-350. [PMID: 31276236 DOI: 10.1111/ejh.13289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The clinical outcome of hematopoietic stem cell transplantation (HSCT) in those with severe beta-thalassemia (β-TM) is closely related to post-transplantation immune reconstitution (IR). However, the data on the IR in these settings are scarce. METHODS A prospective analysis of the clinical outcome and IR in 47 children with severe β-TM who underwent in vivo T-cell depletion myeloablative conditioning and matched sibling donor HSCT was performed. Immune reconstitution, including immune cell subset counts, as well as the generation of new T and B cells assays after HSCT, was measured. RESULTS In the first year after HSCT, bacterial infections and cytomegalovirus (CMV) reactivation were observed in 70.2% and 36.2% of the patients, respectively. In the same period, poor CD4+ T-cell recovery was observed. The B cells recovered within 6 months. Natural killer (NK) cells recovered as early as 1 month, but their function was defective. Cord blood and bone marrow (CB + BM) group had slower T-cell recovery, and higher B cells and NK cells in comparison with peripheral blood and bone marrow (PB + BM) group. CONCLUSIONS The high incidence of infection within 1 year after in vivo T-cell depletion myeloablative conditioning HSCT in severe β-TM was consistent with poor IR.
Collapse
Affiliation(s)
- Fang Qin
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Shi
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongming Zhang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lianjin Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaohui Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong-Rong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
McManigle W, Youssef A, Sarantopoulos S. B cells in chronic graft-versus-host disease. Hum Immunol 2019; 80:393-399. [PMID: 30849450 DOI: 10.1016/j.humimm.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHCT) is the definitive therapy for numerous otherwise incurable hematologic malignancies and non-malignant diseases. The genetic disparity between donor and recipient both underpins therapeutic effects and confers donor immune system-mediated damage in the recipient, called graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) is a major cause of late post-transplant morbidity and mortality. B cells have a substantiated role in cGVHD pathogenesis, as first demonstrated by clinical response to the anti-CD20 monoclonal antibody, rituximab. Initiation of CD20 blockade is met at times with limited therapeutic success that has been associated with altered peripheral B cell homeostasis and excess B Cell Activating Factor of the TNF family (BAFF). Increased BAFF to B cell ratios are associated with the presence of circulating, constitutively activated B cells in patients with cGVHD. These cGVHD patient B cells have increased survival capacity and signal through both BAFF-associated and B Cell Receptor (BCR) signaling pathways. Proximal BCR signaling molecules, Syk and BTK, appear to be hyper-activated in cGVHD B cells and can be targeted with small molecule inhibitors. Murine studies have confirmed roles for Syk and BTK in development of cGVHD. Emerging evidence has prompted investigation of several small molecule inhibitors in an attempt to restore B cell homeostasis and potentially target rare, pathologic B cell populations.
Collapse
Affiliation(s)
- William McManigle
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Ayman Youssef
- Adult Hematology and Bone Marrow Transplantation, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Stefanie Sarantopoulos
- Department of Medicine, Duke University, Durham, NC, USA; Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC, USA; Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Hillhouse EE, Thiant S, Moutuou MM, Lombard-Vadnais F, Parat R, Delisle JS, Ahmad I, Roy DC, Guimond M, Roy J, Lesage S. Double-Negative T Cell Levels Correlate with Chronic Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2019; 25:19-25. [DOI: 10.1016/j.bbmt.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
|
22
|
Borhis G, Trovato M, Chaoul N, Ibrahim HM, Richard Y. B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Front Immunol 2017; 8:1338. [PMID: 29163465 PMCID: PMC5663724 DOI: 10.3389/fimmu.2017.01338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
With the goal to design effective HIV vaccines, intensive studies focused on broadly neutralizing antibodies, which arise in a fraction of HIV-infected people. Apart from identifying new vulnerability sites in the viral envelope proteins, these studies have shown that a fraction of these antibodies are produced by self/poly-reactive B-cells. These findings prompted us to revisit the B-cell differentiation and selection process during HIV/SIV infection and to consider B-cells as active players possibly shaping the helper T-cell program within germinal centers (GCs). In this context, we paid a particular attention to B-cell-activating factor (BAFF), a key cytokine in B-cell development and immune response that is overproduced during HIV/SIV infection. As it does in autoimmune diseases, BAFF excess might contribute to the abnormal rescue of self-reactive B-cells at several checkpoints of the B-cell development and impair memory B-cell generation and functions. In this review, we first point out what is known about the functions of BAFF/a proliferation-inducing ligand and their receptors [B-cell maturation, transmembrane activator and CAML interactor (TACI), and BAFF-R], in physiological and pathophysiological settings, in mice and humans. In particular, we highlight recent results on the previously underappreciated regulatory functions of TACI and on the highly regulated production of soluble TACI and BAFF-R that act as decoy receptors. In light of recent data on BAFF, TACI, and BAFF-R, we then revisit the altered phenotypes and functions of B-cell subsets during the acute and chronic phase of HIV/SIV infection. Given the atypical phenotype and reduced functions of memory B-cells in HIV/SIV infection, we particularly discuss the GC reaction, a key checkpoint where self-reactive B-cells are eliminated and pathogen-specific memory B-cells and plasmablasts/cells are generated in physiological settings. Through its capacity to differentially bind and process BAFF-R and TACI on GC B-cells and possibly on follicular helper T-cells, BAFF appears as a key regulator of the physiological GC reaction. Its local excess during HIV/SIV infection could play a key role in B-cell dysregulations.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Maria Trovato
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Nada Chaoul
- Commissariat à l’Energie Atomique, Institut des maladies Emergentes et Thérapies innovantes, Service d’Immuno-Virologie, Fontenay-aux Roses, France
| | - Hany M. Ibrahim
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Yolande Richard
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| |
Collapse
|
23
|
Saliba RM, Sarantopoulos S, Kitko CL, Pawarode A, Goldstein SC, Magenau J, Alousi AM, Churay T, Justman H, Paczesny S, Reddy P, Couriel DR. B-cell activating factor (BAFF) plasma level at the time of chronic GvHD diagnosis is a potential predictor of non-relapse mortality. Bone Marrow Transplant 2017; 52:1010-1015. [PMID: 28481353 DOI: 10.1038/bmt.2017.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/14/2017] [Accepted: 01/25/2017] [Indexed: 01/19/2023]
Abstract
Biological markers for risk stratification of chronic GvHD (cGvHD) could improve the care of patients undergoing allogeneic hematopoietic stem cell transplantation. Increased plasma levels of B-cell activating factor (BAFF), chemokine (C-X-C motif) ligand 9 (CXCL9) and elafin have been associated with the diagnosis, but not with outcome in patients with cGvHD. We evaluated the association between levels of these soluble proteins, measured by ELISA at the time of cGvHD diagnosis and before the initiation of therapy, with non-relapse-mortality (NRM). Based on the log-transformed values, factor levels were divided into tertiles defined respectively as low, intermediate, and high levels. On univariable analysis, BAFF levels were significantly associated with NRM, whereas CXCL9 and elafin levels were not. Both low (⩽2.3 ng/mL, hazard ratio (HR)=5.8, P=0.03) and high (>5.7 ng/mL, HR=5.4, P=0.03) BAFF levels were associated with a significantly higher NRM compared with intermediate BAFF level. The significant effect of high or low BAFF levels persisted in multivariable analysis. A subset of cGvHD patients had persistently low BAFF levels. In conclusion, our data show that BAFF levels at the time of cGvHD diagnosis are associated with NRM, and also are potentially useful for risk stratification. These results warrant confirmation in larger studies.
Collapse
Affiliation(s)
- R M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Duke Cancer Institute, Duke University Durham, NC, USA
| | - C L Kitko
- Department of Pediatrics, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Pawarode
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - S C Goldstein
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - J Magenau
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - A M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Churay
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - H Justman
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - S Paczesny
- Department of Pediatrics, Microbiology and Immunology, Indiana University School of Medicine, Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - P Reddy
- Adult Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
| | - D R Couriel
- Blood and Marrow Transplantation Program, Huntsman Cancer Institute, University of Utah Hospital, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Hakim FT, Memon S, Jin P, Imanguli MM, Wang H, Rehman N, Yan XY, Rose J, Mays JW, Dhamala S, Kapoor V, Telford W, Dickinson J, Davis S, Halverson D, Naik HB, Baird K, Fowler D, Stroncek D, Cowen EW, Pavletic SZ, Gress RE. Upregulation of IFN-Inducible and Damage-Response Pathways in Chronic Graft-versus-Host Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3490-3503. [PMID: 27694491 PMCID: PMC5101132 DOI: 10.4049/jimmunol.1601054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022]
Abstract
Although chronic graft-versus-host disease (CGVHD) is the primary nonrelapse complication of allogeneic transplantation, understanding of its pathogenesis is limited. To identify the main operant pathways across the spectrum of CGVHD, we analyzed gene expression in circulating monocytes, chosen as in situ systemic reporter cells. Microarrays identified two interrelated pathways: 1) IFN-inducible genes, and 2) innate receptors for cellular damage. Corroborating these with multiplex RNA quantitation, we found that multiple IFN-inducible genes (affecting lymphocyte trafficking, differentiation, and Ag presentation) were concurrently upregulated in CGVHD monocytes compared with normal subjects and non-CGVHD control patients. IFN-inducible chemokines were elevated in both lichenoid and sclerotic CGHVD plasma and were linked to CXCR3+ lymphocyte trafficking. Furthermore, the levels of the IFN-inducible genes CXCL10 and TNFSF13B (BAFF) were correlated at both the gene and the plasma levels, implicating IFN induction as a factor in elevated BAFF levels in CGVHD. In the second pathway, damage-/pathogen-associated molecular pattern receptor genes capable of inducing type I IFN were upregulated. Type I IFN-inducible MxA was expressed in proportion to CGVHD activity in skin, mucosa, and glands, and expression of TLR7 and DDX58 receptor genes correlated with upregulation of type I IFN-inducible genes in monocytes. Finally, in serial analyses after transplant, IFN-inducible and damage-response genes were upregulated in monocytes at CGVHD onset and declined upon therapy and resolution in both lichenoid and sclerotic CGVHD patients. This interlocking analysis of IFN-inducible genes, plasma analytes, and tissue immunohistochemistry strongly supports a unifying hypothesis of induction of IFN by innate response to cellular damage as a mechanism for initiation and persistence of CGVHD.
Collapse
Affiliation(s)
- Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Sarfraz Memon
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Matin M Imanguli
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huan Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Najibah Rehman
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiao-Yi Yan
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacqueline W Mays
- Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Susan Dhamala
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - William Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John Dickinson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sean Davis
- Cancer Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Halverson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Haley B Naik
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin Baird
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Edward W Cowen
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood 2016; 128:1346-61. [PMID: 27439912 DOI: 10.1182/blood-2016-01-695122] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.
Collapse
|
26
|
Lei M, Liu L, Wu D. [Progress of chronic graft-versus-host disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:79-82. [PMID: 26876262 PMCID: PMC7342310 DOI: 10.3760/cma.j.issn.0253-2727.2016.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Chasset F, de Masson A, Le Buanec H, Xhaard A, de Fontbrune FS, Robin M, Rybojad M, Parquet N, Brignier AC, Coman T, Bengoufa D, Bergeron A, Peffault de Latour R, Bagot M, Bensussan A, Socié G, Bouaziz JD. APRIL levels are associated with disease activity in human chronic graft-versus-host disease. Haematologica 2016; 101:e312-5. [PMID: 26992945 DOI: 10.3324/haematol.2016.145409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- François Chasset
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité Dermatology Department, Saint-Louis Hospital, Paris
| | - Adèle de Masson
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité Dermatology Department, Saint-Louis Hospital, Paris
| | - Hélène Le Buanec
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité
| | - Aliénor Xhaard
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris
| | - Flore Sicre de Fontbrune
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris
| | - Marie Robin
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris
| | - Michel Rybojad
- University Paris Diderot, Sorbonne Paris Cité Dermatology Department, Saint-Louis Hospital, Paris
| | - Nathalie Parquet
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris Therapeutic Apheresis Unit, Saint-Louis Hospital, Paris
| | - Anne C Brignier
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris Therapeutic Apheresis Unit, Saint-Louis Hospital, Paris
| | - Tereza Coman
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris
| | - Djaouida Bengoufa
- University Paris Diderot, Sorbonne Paris Cité Immunobiology Department, Saint-Louis Hospital, Paris
| | - Anne Bergeron
- University Paris Diderot, Sorbonne Paris Cité Pneumology Department, Saint-Louis Hospital, Paris
| | - Régis Peffault de Latour
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris
| | - Martine Bagot
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité Dermatology Department, Saint-Louis Hospital, Paris
| | - Armand Bensussan
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité
| | - Gérard Socié
- University Paris Diderot, Sorbonne Paris Cité Hematology and Transplantation, Saint-Louis Hospital, Paris INSERM and UMRS1160, France
| | - Jean-David Bouaziz
- INSERM and UMRS 976, Laboratory of Onco dermatology, Immunology, and Cutaneous Stem cells, F-75739 Paris University Paris Diderot, Sorbonne Paris Cité Dermatology Department, Saint-Louis Hospital, Paris
| |
Collapse
|
28
|
Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood 2016; 127:2489-97. [PMID: 26944544 DOI: 10.1182/blood-2015-12-688895] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a major late complication of allogeneic hematopoietic stem cell transplantation (HSCT). Previous studies have established that both donor B and T cells contribute to immune pathology in cGVHD but the mechanisms responsible for coordinated B- and T-cell responses directed against recipient antigens have not been understood. T follicular helper cells (TFH) play an important role in the regulation of B-cell immunity. We performed extensive phenotypic and functional analysis of circulating TFH (cTFH) and B cells in 66 patients after HSCT. Patients with active cGVHD had a significantly lower frequency of cTFH compared with patients without cGVHD. This was associated with higher CXCL13 plasma levels suggesting increased homing of TFH to secondary lymphoid organs. In patients with active cGVHD, cTFH phenotype was skewed toward a highly activated profile with predominance of T helper 2 (Th2)/Th17 subsets. Activated cTFH in patients with cGVHD demonstrated increased functional ability to promote B-cell immunoglobulin secretion and maturation. Moreover, the activation signature of cTFH was highly correlated with increased B-cell activation and plasmablast maturation in patients after transplant. These studies provide new insights into the immune pathogenesis of human cGVHD and identify TFH as a key coordinating element supporting B-cell involvement in this disease.
Collapse
|
29
|
Prenc E, Pulanic D, Pucic-Bakovic M, Pezer M, Desnica L, Vrhovac R, Nemet D, Pavletic SZ. Potential of glycosylation research in graft versus host disease after allogeneic hematopoietic stem cell transplantation. Biochim Biophys Acta Gen Subj 2016; 1860:1615-22. [PMID: 26923767 DOI: 10.1016/j.bbagen.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glycans, complex oligosaccharides, are directly involved in almost every biological process, have a fundamental role in the immune system, and are probably involved in nearly every human disease. However, glycosylation has been greatly ignored in the area of allogeneic hematopoietic stem cell transplantation (alloHSCT) and graft versus host disease (GVHD). Both acute and chronic GVHD are multisystemic debilitating immunological disturbances arising after alloHSCT. SCOPE OF REVIEW In this paper, we review the glycosylation research already done in the field of alloHSCT and GVHD and evaluate further potential of glycan analysis in GVHD by looking into resembling inflammatory and autoimmune conditions. MAJOR CONCLUSIONS Glycan research could bring significant improvement in alloHSCT procedure with reduction in following complications, such as GVHD. Identifying glycan patterns that induce self-tolerance and the ones that cause the auto- and allo-immune response could lead to innovative and tissue-specific immunomodulative therapy instead of the current immunosuppressive treatment, enabling preservation of the graft-versus-tumor effect. Moreover, improved glycan pattern analyses could offer a more complete assessment and greatly needed dynamic biomarkers for GVHD. GENERAL SIGNIFICANCE This review is written with a goal to encourage glycan research in the field of alloHSCT and GVHD as a perspective tool leading to improved engraftment, discovery of much needed biomarkers for GVHD, enabling an appropriate therapy and improved monitoring of therapeutic response. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ema Prenc
- Croatian Cooperative Group for Hematologic Diseases, Zagreb, Croatia
| | - Drazen Pulanic
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia; Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia.
| | | | - Marija Pezer
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Lana Desnica
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Radovan Vrhovac
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia
| | - Damir Nemet
- Division of Haematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia; Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Steven Z Pavletic
- Graft-versus-Host and Autoimmunity Section, Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Solomon SR, Sizemore CA, Ridgeway M, Zhang X, Smith J, Brown S, Holland HK, Morris LE, Bashey A. Corticosteroid-Free Primary Treatment of Chronic Extensive Graft-versus-Host Disease Incorporating Rituximab. Biol Blood Marrow Transplant 2015; 21:1576-82. [DOI: 10.1016/j.bbmt.2015.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 11/17/2022]
|
31
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. Reprint of: B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:S11-8. [PMID: 25620647 DOI: 10.1016/j.bbmt.2014.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Castiello MC, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, Sereni L, van der Burg M, Ottaviano G, Albert MH, Grazia Roncarolo M, Naldini L, Aiuti A, Villa A, Bosticardo M. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2015; 136:692-702.e2. [PMID: 25792466 PMCID: PMC4559137 DOI: 10.1016/j.jaci.2015.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
Abstract
Background Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene–corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. Objective Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. Methods We evaluated B-cell counts, B-cell subset distribution, B cell–activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. Results After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19+CD21−CD35− and CD21low B cells and a reduction in B cell–activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. Conclusions We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Pala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giorgio Ottaviano
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael H Albert
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; IRGB CNR, Milan Unit, Milan, Italy.
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Abstract
Recent studies have compelled further interest in the potential pathological role of B cells in chronic graft-versus-host disease (cGVHD). In patients with cGVHD, B cells are activated and primed for survival via B-cell activating factor and B-cell receptor-associated pathways. Understanding the signaling pathways that drive immune pathology in cGVHD will facilitate the development of new strategies to selectively target aberrantly activated B cells and restore normal B-cell homeostasis after allogeneic stem cell transplantation.
Collapse
|
34
|
CD24(hi)CD27⁺ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood 2015; 125:1830-9. [PMID: 25605369 DOI: 10.1182/blood-2014-09-599159] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interleukin 10 (IL-10)-producing B cells (regulatory B cells [Bregs]) regulate autoimmunity in mice and humans, and a regulatory role of IL-10-producing plasma cells has been described in mice. Dysfunction of B cells that maintain homeostasis may play a role in the pathogenesis of chronic graft-versus-host disease (cGVHD) after allogeneic stem cell transplantation. Here, we found a relation between decreased Breg frequencies and cGVHD severity. An impaired ability of B cells to produce IL-10, possibly linked to poor signal transducer and activator of transcription 3 and extracellular signal-regulated kinase phosphorylation, was found in patients with active cGVHD. IL-10 production was not confined to a single B-cell subset, but enriched in both the CD24(hi)CD27(+) and CD27(hi)CD38(hi) plasmablast B-cell compartments. In vitro plasmablast differentiation increased the frequency of IL-10-producing B cells. We confirmed that allogeneic transplant recipients had an impaired reconstitution of the memory B-cell pool. cGVHD patients had less CD24(hi)CD27(+) B cells and IL-10-producing CD24(hi)CD27(+) B cells. Patients with cGVHD had increased plasmablast frequencies but decreased IL-10-producing plasmablasts. These results suggest a role of CD24(hi)CD27(+) B-cell and plasmablast-derived IL-10 in the regulation of human cGVHD.
Collapse
|
35
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:16-23. [PMID: 25452031 PMCID: PMC4295503 DOI: 10.1016/j.bbmt.2014.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Wang M, Wang W, Abeywardane A, Adikarama M, McLornan D, Raj K, de Lavallade H, Devereux S, Mufti GJ, Pagliuca A, Potter VT, Mijovic A. Autoimmune hemolytic anemia after allogeneic hematopoietic stem cell transplantation: analysis of 533 adult patients who underwent transplantation at King's College Hospital. Biol Blood Marrow Transplant 2014; 21:60-6. [PMID: 25262883 DOI: 10.1016/j.bbmt.2014.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
Abstract
Autoimmune hemolytic anemia (AIHA) is a recognized complication of hematopoietic stem cell transplantation (HSCT); it is often refractory to treatment and carries a high mortality. To improve understanding of the incidence, risk factors, and clinical outcome of post-transplantation AIHA, we analyzed 533 patients who received allogeneic HSCT, and we identified 19 cases of AIHA after HSCT (overall incidence, 3.6%). The median time to onset, from HSCT to AIHA, was 202 days. AIHA was associated with HSCT from unrelated donors (hazard ratio [HR], 5.28; 95% confidence interval [CI], 1.22 to 22.9; P = .026). In the majority (14 of 19; 74%) of AIHA patients, multiple agents for treatment were required, with only 9 of 19 (47%) patients achieving complete resolution of AIHA. Patients with post-transplantation AIHA had a higher overall mortality (HR, 2.48; 95% CI, 1.33 to 4.63; P = .004), with 36% (4 of 11 cases) of deaths attributable to AIHA.
Collapse
Affiliation(s)
- Meng Wang
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom.
| | - Wenjia Wang
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
| | - Ayesha Abeywardane
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Malinthi Adikarama
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Donal McLornan
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Kavita Raj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Hugues de Lavallade
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Stephen Devereux
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Victoria T Potter
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| | - Aleksandar Mijovic
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, and King's College London, London, United Kingdom
| |
Collapse
|
37
|
Abstract
Chronic graft-versus-host disease (cGVHD) following allogeneic hematopoietic stem cell transplantation (HSCT) has emerged as a predominant complication following HSCT and has a distinct etiology. We and others have previously demonstrated that bortezomib, a proteasome inhibitor, can prevent but not treat acute GVHD in mice. To assess the effects of bortezomib on cGVHD, a mouse minor histocompatibility antigen-mismatched strain combination was used to mimic clinical cGVHD sclerodermatous pathogenesis and phenotype. Treatment of ongoing cGVHD with bortezomib ameliorated cutaneous lesions, which were also associated with a reduction in total numbers of germinal center B cells and lower B-cell activating factor gene expression levels in cutaneous tissues. Importantly, lymphoma-bearing mice receiving allogeneic HSCT with bortezomib preserved graft-versus-tumor (GVT) effects. Based on these animal studies, we initiated an intrapatient dose escalation clinical trial in patients with extensive steroid-intolerant, dependent, or resistant cGVHD. Marked clinical improvement was observed in patients, which was also associated with reductions of peripheral B cells and minimal toxicity. These results indicate that bortezomib can be of significant use in the treatment of cGVHD and may also allow for maintenance of GVT. This trial was registered at www.clinicaltrials.gov as #NCT01672229.
Collapse
|
38
|
Johnston HF, Xu Y, Racine JJ, Cassady K, Ni X, Wu T, Chan A, Forman S, Zeng D. Administration of anti-CD20 mAb is highly effective in preventing but ineffective in treating chronic graft-versus-host disease while preserving strong graft-versus-leukemia effects. Biol Blood Marrow Transplant 2014; 20:1089-103. [PMID: 24796279 DOI: 10.1016/j.bbmt.2014.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 12/15/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome, and donor B cells play important roles in augmenting its pathogenesis. B cell-depleting anti-CD20 mAb has been administered before or after cGVHD onset for preventing or treating cGVHD in the clinic. Although administration before onset appeared to be more effective, the effect is variable and sometimes minimal. Here, we used 2 mouse cGVHD models to evaluate the preventive and therapeutic effect of anti-CD20 mAb. With the model of DBA/2 donor to MHC-matched BALB/c recipient, 1 intravenous injection of anti-CD20 mAb (40 mg/kg) the following day or on day 7 after hematopoietic cell transplantation when serum autoantibodies were undetectable effectively prevented induction of cGVHD and preserved a strong graft-versus-leukemia (GVL) effect. The separation of GVL effect from GVHD was associated with a significant reduction of donor CD4(+) T cell proliferation and expansion and protection of host thymic medullary epithelial cells. Anti-CD20 mAb administration also prevented expansion of donor T cells and induction of cGVHD in another mouse model of C57BL/6 donor to MHC-mismatched BALB/c recipients. In contrast, administration of anti-CD20 mAb after GVHD onset was not able to effectively deplete donor B cells or ameliorate cGVHD in either model. These results indicate that administration of anti-CD20 mAb before signs of cGVHD can prevent induction of autoimmune-like cGVHD while preserving a GVL effect; there is little effect if administered after cGVHD onset. This provides new insights into clinical prevention and therapy of cGVHD with B cell-depleting reagents.
Collapse
Affiliation(s)
- Heather F Johnston
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Yajing Xu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jeremy J Racine
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Kaniel Cassady
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Xiong Ni
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Tao Wu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Andrew Chan
- Department of Research Biology, Genentech, San Francisco, California
| | - Stephen Forman
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Defu Zeng
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California.
| |
Collapse
|