1
|
Herr PM, Brantl V, Priglinger SG, Foerster P, Thurau S. Severe Visual Impairment Following CAR T-Cell Therapy in Two Individuals with Malignant Optic Nerve Infiltration. Ocul Immunol Inflamm 2024; 32:2280-2284. [PMID: 38579172 DOI: 10.1080/09273948.2024.2333393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
We report two patients who displayed evidence of localized ocular inflammation after CAR T-cell infusion. To manage the resulting severe visual impairment, systemic corticosteroids were administered to both patients. This treatment led to a reduction in local inflammation and restored vision in one of the patients.
Collapse
Affiliation(s)
| | - Victor Brantl
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Paul Foerster
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
2
|
Ladbury C, Hao C, Watkins WT, Sampath S, Wong J, Amini A, Sokolov K, Yeh J, Al Feghali KA, de Jong D, Maniyedath A, Shirvani S, Nikolaenko L, Mei M, Herrera A, Popplewell L, Budde LE, Dandapani S. Prognostic significance of fludeoxyglucose positron emission tomography delta radiomics following bridging therapy in patients with large B-cell lymphoma undergoing CAR T-cell therapy. Front Immunol 2024; 15:1419788. [PMID: 39411711 PMCID: PMC11473334 DOI: 10.3389/fimmu.2024.1419788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose/objectives Bridging radiation therapy (bRT) is increasingly being utilized prior to chimeric antigen receptor (CAR) T-cell therapy for large B-cell lymphoma (LBCL). It is unknown how the extent of cytoreduction during bRT impacts outcomes. Materials/methods We retrospectively reviewed patients with LBCL treated with bRT followed by CAR T-cell therapy. Metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax), SUVmean, and total lesion glycolysis (TLG) were extracted from F18-fluorodeoxyglucose positron emission tomography (PET) scans acquired prior to bRT and between completion of bRT and CAR T-cell infusion. Delta radiomics based on changes of these values were then calculated. The association between delta radiomics and oncologic outcomes [progression-free survival (PFS), freedom from distant progression (FFDP), and local control (LC)] were then examined. Results Thirty-three sites across 23 patients with LBCL were irradiated. All metabolically active disease was treated in 10 patients. Following bRT, median overall decreases (including unirradiated sites) in MTV, SUVmax, SUVmean, and TLG were 22.2 cc (63.1%), 8.9 (36.8%), 3.4 (31.1%), and 297.9 cc (75.8%), respectively. Median decreases in MTV, SUVmax, SUVmean, and TLG in irradiated sites were 15.6 cc (91.1%), 17.0 (74.6%), 6.8 (55.3%), and 157.0 cc (94.6%), respectively. Median follow-up was 15.2 months. A decrease in SUVmax of at least 54% was associated with improved PFS (24-month PFS: 83.3% vs. 28.1%; p = 0.037) and FFDP (24-month FFDP: 100% vs. 62.4%; p < 0.001). A decrease in MTV of at least 90% was associated with improved FFDP (24-month FFDP: 100% vs. 62.4%; p < 0.001). LC was improved in sites with decreases in SUVmax of at least 71% (24-month LC: 100% vs. 72.7%; p < 0.001). Decreases of MTV by at least 90% (100% vs. 53.3%; p = 0.038) and TLG by at least 95% (100% vs. 56.3%; p = 0.067) were associated with an improved complete response rate. Conclusion bRT led to substantial reductions in MTV, SUVmax, SUVmean, and TLG. The relative extent of these decreases correlated with improved outcomes after CAR T-cell infusion. Prospective cohorts should validate the value of interim PET following bRT for quantifying changes in disease burden and associated prognosis.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Claire Hao
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - William Tyler Watkins
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Sagus Sampath
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Karen Sokolov
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | - Jekwon Yeh
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| | | | | | | | | | - Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Matthew Mei
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Alex Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Leslie Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Lihua Elizabeth Budde
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, United States
| | - Savita Dandapani
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
3
|
Abenavoli EM, Linguanti F, Dercle L, Berti V, Lopci E. FDG-PET/CT Imaging in Chimeric Antigen Receptor-Engineered T-Cell Treatment in Patients with B-Cell Lymphoma: Current Evidence. PET Clin 2024; 19:505-513. [PMID: 38969565 DOI: 10.1016/j.cpet.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The Food and Drug Administration and the European Medicines Agency have recently approved chimeric antigen receptor-engineered (CAR) T cells to treat several refractory/relapsed B-cell lymphomas. This comprehensive review aims to demonstrate the pivotal role that [18F]-FDG PET/computed tomographic (CT) imaging can play to enhance the care of patients treated with CAR T-cell therapy. To this end, this review deciphers evidence showing the diagnostic, prognostic, predictive, and theragnostic value of [18F]-FDG PET/CT-derived parameters.
Collapse
Affiliation(s)
| | - Flavia Linguanti
- Nuclear Medicine Department, Ospedale San Donato, Via Pietro Nenni 20, Arezzo 52100, Italy; Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, New York, NY 10032, USA
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano CAP 20089, Italy.
| |
Collapse
|
4
|
Sheng LS, Shen R, Yan ZX, Wang C, Zheng X, Zhang YL, Yang HX, Wu W, Xu PP, Cheng S, Bachy E, Sesques P, Jacquet-Francillon N, Jiang XF, Zhao WL, Wang L. 18F-FDG PET/CT metrics-based stratification of large B-cell lymphoma receiving CAR-T cell therapy: immunosuppressive tumor microenvironment as a negative prognostic indicator in patients with high tumor burden. Biomark Res 2024; 12:104. [PMID: 39272132 PMCID: PMC11401356 DOI: 10.1186/s40364-024-00650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has greatly improved the prognosis of relapsed and refractory patients with large B-cell lymphoma (LBCL). Early identification and intervention of patients who may respond poorly to CAR-T cell therapy will help to improve the efficacy. Ninety patients from a Chinese cohort who received CAR-T cell therapy and underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans at the screening stage (median time to infusion 53.5 days, range 27-176 days), 1 month and 3 months after CAR-T cell infusion were analyzed, with RNA-sequencing conducted on 47 patients at the screening stage. Patients with maximum diameter of the largest lesion (Dmax) < 6 cm (N = 60) at screening stage showed significantly higher 3-month complete response rate (85.0% vs. 33.3%, P < 0.001), progression-free survival (HR 0.17; 95% CI 0.08-0.35, P < 0.001) and overall survival (HR 0.18; 95% CI 0.08-0.40, P < 0.001) than those with Dmax ≥ 6 cm (N = 30). Besides, at the screening stage, Dmax combined with extranodal involvement was more efficient in distinguishing patient outcomes. The best cut-off values for total metabolic tumor volume (tMTV) and total lesion glycolysis (tTLG) at the screening stage were 50cm3 and 500 g, respectively. A prediction model combining maximum standardized uptake value (SUVmax) at 1 month after CAR-T cell therapy (M1) and tTLG clearance rate was established to predict early progression for partial response/stable disease patients evaluated at M1 after CAR-T cell therapy and validated in Lyon cohort. Relevant association of the distance separating the two farthest lesions, standardized by body surface area to the severity of neurotoxicity (AUC = 0.74; P = 0.034; 95% CI, 0.578-0.899) after CAR-T cell therapy was found in patients received axicabtagene ciloleucel. In patients with Dmax ≥ 6 cm, RNA-sequencing analysis conducted at the screening stage showed enrichment of immunosuppressive-related biological processes, as well as increased M2 macrophages, cancer-associated fibroblasts, myeloid-derived suppressor cells, and intermediate exhausted T cells. Collectively, immunosuppressive tumor microenvironment may serve as a negative prognostic indicator in patients with high tumor burden who respond poorly to CAR-T cell therapy.
Collapse
Affiliation(s)
- Ling-Shuang Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Xun Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Lun Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao-Xu Yang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Emmanuel Bachy
- Department of Haematology, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sesques
- Department of Haematology, Hospices Civils de Lyon, Lyon, France
| | | | - Xu-Feng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Al-Ibraheem A, Abdlkadir AS, Al-Adhami DA, Sathekge M, Bom HHS, Ma’koseh M, Mansour A, Abdel-Razeq H, Al-Rabi K, Estrada-Lobato E, Al-Hussaini M, Matalka I, Abdel Rahman Z, Fanti S. The prognostic utility of 18F-FDG PET parameters in lymphoma patients under CAR-T-cell therapy: a systematic review and meta-analysis. Front Immunol 2024; 15:1424269. [PMID: 39286245 PMCID: PMC11402741 DOI: 10.3389/fimmu.2024.1424269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy has attracted considerable attention since its recent endorsement by the Food and Drug Administration, as it has emerged as a promising immunotherapeutic modality within the landscape of oncology. This study explores the prognostic utility of [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG PET) in lymphoma patients undergoing CAR T-cell therapy. Through meta-analysis, pooled hazard ratio (HR) values were calculated for specific PET metrics in this context. Methods PubMed, Scopus, and Ovid databases were explored to search for relevant topics. Dataset retrieval from inception until March 12, 2024, was carried out. The primary endpoints were impact of specific PET metrics on overall survival (OS) and progression-free survival (PFS) before and after treatment. Data from the studies were extracted for a meta-analysis using Stata 17.0. Results Out of 27 studies identified for systematic review, 15 met the criteria for meta-analysis. Baseline OS analysis showed that total metabolic tumor volume (TMTV) had the highest HR of 2.66 (95% CI: 1.52-4.66), followed by Total-body total lesion glycolysis (TTLG) at 2.45 (95% CI: 0.98-6.08), and maximum standardized uptake values (SUVmax) at 1.30 (95% CI: 0.77-2.19). TMTV and TTLG were statistically significant (p < 0.0001), whereas SUVmax was not (p = 0.33). For PFS, TMTV again showed the highest HR at 2.65 (95% CI: 1.63-4.30), with TTLG at 2.35 (95% CI: 1.40-3.93), and SUVmax at 1.48 (95% CI: 1.08-2.04), all statistically significant (p ≤ 0.01). The ΔSUVmax was a significant predictor for PFS with an HR of 2.05 (95% CI: 1.13-3.69, p = 0.015). Conclusion [18F]FDG PET parameters are valuable prognostic tools for predicting outcome of lymphoma patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Dhuha Ali Al-Adhami
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Henry Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School (CNUMS) and Hospital, Gwangju, Republic of Korea
| | - Mohammad Ma’koseh
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Kamal Al-Rabi
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Enrique Estrada-Lobato
- Nuclear Medicine and Diagnostic Section, Division of Human Health, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Maysaa Al-Hussaini
- Department of Pathology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Ismail Matalka
- Department of Pathology and Microbiology, King Abdullah University Hospital- Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Zaid Abdel Rahman
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Stephano Fanti
- Nuclear Medicine Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Liu L, Jin F, Fan H. Metabolic tumor volume and the survival of patients with Non-Hodgkin lymphoma treated with chimeric antigen receptor T cell therapy: a meta-analysis. Front Immunol 2024; 15:1433012. [PMID: 39267739 PMCID: PMC11390410 DOI: 10.3389/fimmu.2024.1433012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Chimeric antigen receptor T cell (CAR-T) is a promising treatment for aggressive Non-Hodgkin lymphoma (NHL). The aim of the meta-analysis was to determine the association between metabolic tumor volumes (MTV) derived on positron emission tomography before CAR-T infusion and the survival of patients with NHL. Methods Relevant observational studies pertaining to the purpose of the meta-analysis were obtained through a search of PubMed, Web of Science, and Embase from inception of the databases to April 1, 2024. The data was combined using a random-effects model that accounted for the potential influence of between-study heterogeneity. Results Fifteen observational studies were included. Pooled results showed that compared to those with a lower MTV, the NHL patients with a higher MTV before CAR-T infusion were associated with a poor progression-free survival (hazard ratio [HR]: 1.73, 95% confidence interval [CI]: 1.48 to 2.02, p < 0.001; I2 = 20%) and overall survival (HR: 2.11, 95% CI: 1.54 to 2.89, p < 0.001; I2 = 58%). Subgroup analysis showed that the association between MTV and survival of NHL patients after CAR-T was not significantly impacted by study design, methods for determination of MTV cutoff, or analytic models (univariate or multivariate, p for each subgroup all < 0.05). Subgroup analysis suggested a stronger association between MTV and poor survival outcomes in patients with median of lines of previous treatment of 2 or 3 as compared to those of 4 (p for subgroup difference < 0.05). Further meta-regression analyses suggested that the association between MTV and survival was not significantly affected by sample size, age, proportion of men, cutoff value of MTV, follow-up duration, or study quality scores (p all > 0.05). Conclusion A high MTV at baseline is associated with a poor survival of NHL patients after CAR-T. Systematic Review Registration https://inplasy.com/, identifier INPLASY (INPLASY202450069).
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The Forth Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hua Fan
- Department of Hematology, The Forth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Frank MJ, Baird JH, Kramer AM, Srinagesh HK, Patel S, Brown AK, Oak JS, Younes SF, Natkunam Y, Hamilton MP, Su YJ, Agarwal N, Chinnasamy H, Egeler E, Mavroukakis S, Feldman SA, Sahaf B, Mackall CL, Muffly L, Miklos DB. CD22-directed CAR T-cell therapy for large B-cell lymphomas progressing after CD19-directed CAR T-cell therapy: a dose-finding phase 1 study. Lancet 2024; 404:353-363. [PMID: 38996463 PMCID: PMC11329226 DOI: 10.1016/s0140-6736(24)00746-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Outcomes are poor for patients with large B-cell lymphoma who relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy (CAR19). CD22 is a nearly universally expressed B-cell surface antigen and the efficacy of a CD22-directed CAR T-cell therapy (CAR22) in large B-cell lymphoma is unknown, which was what we aimed to examine in this study. METHODS In this single centre, open-label, dose-escalation phase 1 trial, we intravenously administered CAR22 at two dose levels (1 million and 3 million CAR22-positive T cells per kg of bodyweight) to adult patients (aged ≥18 years) who relapsed after CAR19 or had CD19-negative large B-cell lymphoma. The primary endpoints were manufacturing feasibility, safety measured by the incidence and severity of adverse events and dose-limiting toxicities, and identification of the maximum tolerated dose (ie, the recommended phase 2 dose). This study is registered with ClinicalTrials.gov (NCT04088890) and is active, but closed for enrolment. FINDINGS From Oct 17, 2019, to Oct 19, 2022, a total of 41 patients were assessed for eligibility; however, one patient withdrew. 40 patients underwent leukapheresis and 38 (95%) had CAR T-cell products manufactured successfully. The median age was 65 years (range 25-84), 17 (45%) were women, 32 (84%) had elevated pretreatment lactate dehydrogenase, 11 (29%) had refractory disease to all previous therapies, and patients had received a median of four lines of previous therapy (range 3-8). Of the 38 patients treated, 37 (97%) had relapsed after previous CAR19. The identified maximum tolerated dose was 1 million CAR T cells per kg. Of 29 patients who received the maximum tolerated dose, no patients developed a dose-limiting toxicity or grade 3 or higher cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome. INTERPRETATION This trial identifies CD22 as an immunotherapeutic target in large B-cell lymphoma and demonstrates the durable clinical activity of CAR22 in patients with disease progression after CAR19 therapy. Although these findings are promising, it is essential to recognise that this is a phase 1 dose-finding study. Further investigations are warranted to establish the long-term efficacy and to delineate the patient subgroups that will derive the most benefit from this therapeutic approach. FUNDING National Cancer Institute, National Institutes of Health, Stanford Cancer Institute, Leukemia & Lymphoma Society, Parker Institute for Cancer Immunotherapy, Lymph & Co, and the European Hematology Association.
Collapse
Affiliation(s)
- Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - John H Baird
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Anne Marijn Kramer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Cancer Center Amsterdam, Department of Hematology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Hrishikesh K Srinagesh
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shabnum Patel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Annie Kathleen Brown
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jean S Oak
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheren F Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark P Hamilton
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yi-Jiun Su
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Neha Agarwal
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harshini Chinnasamy
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sharon Mavroukakis
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Lori Muffly
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David B Miklos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Quartuccio N, Ialuna S, Pulizzi S, D’Oppido D, Nicolosi S, Moreci AM. The Role of [ 18F]FDG PET/CT in Predicting Toxicity in Patients with NHL Treated with CAR-T: A Systematic Review. Tomography 2024; 10:869-879. [PMID: 38921943 PMCID: PMC11209510 DOI: 10.3390/tomography10060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
CAR-T-cell therapy, also referred to as chimeric antigen receptor T-cell therapy, is a novel method in the field of immunotherapy for the treatment of non-Hodgkin's lymphoma (NHL). In patients receiving CAR-T-cell therapy, fluorodeoxyglucose Positron Emission Tomography/Computer Tomography ([18F]FDG PET/CT) plays a critical role in tracking treatment response and evaluating the immunotherapy's overall efficacy. The aim of this study is to provide a systematic review of the literature on the studies aiming to assess and predict toxicity by means of [18F]FDG PET/CT in patients with NHL receiving CAR-T-cell therapy. PubMed/MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL) databases were interrogated by two investigators to seek studies involving the use of [18F]FDG PET/CT in patients with lymphoma undergoing CAR-T-cell therapy. The comprehensive computer literature search allowed 11 studies to be included. The risk of bias for the studies included in the systematic review was scored as low by using version 2 of the "Quality Assessment of Diagnostic Accuracy Studies" tool (QUADAS-2). The current literature emphasizes the role of [18F]FDG PET/CT in assessing and predicting toxicity in patients with NHL receiving CAR-T-cell therapy, highlighting the evolving nature of research in CAR-T-cell therapy. Additional studies are warranted to increase the collected evidence in the literature.
Collapse
Affiliation(s)
| | - Salvatore Ialuna
- Nuclear Medicine Unit, Ospedali Riuniti Villa Sofia—Cervello, 90146 Palermo, Italy; (N.Q.)
| | | | | | | | | |
Collapse
|
9
|
Al-Ibraheem A, Abdlkadir AS, Lopci E, Allouzi S, Paez D, Alkuwari M, Makoseh M, Novruzov F, Usmani S, Al-Rabi K, Mansour A. FDG-PET in Chimeric Antigen Receptor T-Cell (CAR T-Cell) Therapy Toxicity: A Systematic Review. Cancers (Basel) 2024; 16:1728. [PMID: 38730680 PMCID: PMC11083368 DOI: 10.3390/cancers16091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The utilization of chimeric antigen receptor (CAR) T-cell therapy to target cluster of differentiation (CD)19 in cancer immunotherapy has been a recent and significant advancement. Although this approach is highly specific and selective, it is not without complications. Therefore, a systematic review was conducted to assess the current state of positron emission tomography (PET) in evaluating the adverse effects induced by CAR T-cell therapy. A thorough search of relevant articles was performed in databases such as PubMed, Scopus, and Web of Science up until March 2024. Two reviewers independently selected articles and extracted data, which was then organized and categorized using Microsoft Excel. The risk of bias and methodological quality was assessed. In total, 18 articles were examined, involving a total of 753 patients, in this study. A wide range of utilities were analyzed, including predictive, correlative, and diagnostic utilities. While positive outcomes were observed in all the mentioned areas, quantitative analysis of the included studies was hindered by their heterogeneity and use of varying PET-derived parameters. This study offers a pioneering exploration of this promising field, with the goal of encouraging further and more focused research in upcoming clinical trials.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
| | - Sudqi Allouzi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (S.A.)
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, 1220 Vienna, Austria;
| | - Maryam Alkuwari
- Clinical Imaging Department, Hamad Medical Corporation, Doha 7GPR+3M9, Qatar;
| | - Mohammad Makoseh
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (M.M.); (K.A.-R.)
| | - Fuad Novruzov
- Department of Nuclear Medicine, The National Centre of Oncology, Ministry of Health of Azerbaijan Republic, Baku AZ1012, Azerbaijan;
| | - Sharjeel Usmani
- Sultan Qaboos Comprehensive Cancer Care and Research Centre, Muscat 5661, Oman;
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (M.M.); (K.A.-R.)
| | - Asem Mansour
- Department of Radiology, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan;
| |
Collapse
|
10
|
Voltin CA, Paccagnella A, Winkelmann M, Heger JM, Casadei B, Beckmann L, Herrmann K, Dekorsy FJ, Kutsch N, Borchmann P, Fanti S, Kunz WG, Subklewe M, Kobe C, Zinzani PL, Stelljes M, Roth KS, Drzezga A, Noppeney R, Rahbar K, Reinhardt HC, von Tresckow B, Seifert R, Albring JC, Blumenberg V, Farolfi A, Flossdorf S, Gödel P, Hanoun C. Multicenter development of a PET-based risk assessment tool for product-specific outcome prediction in large B-cell lymphoma patients undergoing CAR T-cell therapy. Eur J Nucl Med Mol Imaging 2024; 51:1361-1370. [PMID: 38114616 PMCID: PMC10957657 DOI: 10.1007/s00259-023-06554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The emergence of chimeric antigen receptor (CAR) T-cell therapy fundamentally changed the management of individuals with relapsed and refractory large B-cell lymphoma (LBCL). However, real-world data have shown divergent outcomes for the approved products. The present study therefore set out to evaluate potential risk factors in a larger cohort. METHODS Our analysis set included 88 patients, treated in four German university hospitals and one Italian center, who had undergone 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET) before CAR T-cell therapy with tisagenlecleucel or axicabtagene ciloleucel. We first determined the predictive value of conventional risk factors, treatment lines, and response to bridging therapy for progression-free survival (PFS) through forward selection based on Cox regression. In a second step, the additive potential of two common PET parameters was assessed. Their optimal dichotomizing thresholds were calculated individually for each CAR T-cell product. RESULTS Extra-nodal involvement emerged as the most relevant of the conventional tumor and patient characteristics. Moreover, we found that inclusion of metabolic tumor volume (MTV) further improves outcome prediction. The hazard ratio for a PFS event was 1.68 per unit increase of our proposed risk score (95% confidence interval [1.20, 2.35], P = 0.003), which comprised both extra-nodal disease and lymphoma burden. While the most suitable MTV cut-off among patients receiving tisagenlecleucel was 11 mL, a markedly higher threshold of 259 mL showed optimal predictive performance in those undergoing axicabtagene ciloleucel treatment. CONCLUSION Our analysis demonstrates that the presence of more than one extra-nodal lesion and higher MTV in LBCL are associated with inferior outcome after CAR T-cell treatment. Based on an assessment tool including these two factors, patients can be assigned to one of three risk groups. Importantly, as shown by our study, metabolic tumor burden might facilitate CAR T-cell product selection and reflect the individual need for bridging therapy.
Collapse
Affiliation(s)
- Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Andrea Paccagnella
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michael Winkelmann
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Jan-Michel Heger
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Beatrice Casadei
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Laura Beckmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Nadine Kutsch
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Peter Borchmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Stefano Fanti
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pier Luigi Zinzani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Matthias Stelljes
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Katrin S Roth
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Richard Noppeney
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - H Christian Reinhardt
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Jörn C Albring
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Viktoria Blumenberg
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Andrea Farolfi
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Sarah Flossdorf
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Gödel
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Christine Hanoun
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Keijzer K, de Boer JW, van Doesum JA, Noordzij W, Huls GA, van Dijk LV, van Meerten T, Niezink AGH. Reducing and controlling metabolic active tumor volume prior to CAR T-cell infusion can improve survival outcomes in patients with large B-cell lymphoma. Blood Cancer J 2024; 14:41. [PMID: 38448432 PMCID: PMC10917787 DOI: 10.1038/s41408-024-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Bridging therapy before CD19-directed chimeric antigen receptor (CAR) T-cell infusion is frequently applied in patients with relapsed or refractory Large B-cell lymphoma (r/r LBCL). This study aimed to assess the influence of quantified MATV and MATV-dynamics, between pre-apheresis (baseline) and pre-lymphodepleting chemotherapy (pre-LD) MATV, on CAR T-cell outcomes and toxicities in patients with r/r LBCL. MATVs were calculated semi-automatically at baseline (n = 74) and pre-LD (n = 68) in patients with r/r LBCL who received axicabtagene ciloleucel. At baseline, patients with a low MATV (< 190 cc) had a better time to progression (TTP) and overall survival (OS) compared to high MATV patients (p < 0.001). High MATV patients who remained stable or reduced upon bridging therapy showed a significant improvement in TTP (p = 0.041) and OS (p = 0.015), compared to patients with a high pre-LD MATV (> 480 cc). Furthermore, high MATV baseline was associated with severe cytokine release syndrome (CRS, p = 0.001). In conclusion, patients with low baseline MATV had the best TTP/OS and effective reduction or controlling MATV during bridging improved survival outcomes in patients with a high baseline MATV, providing rationale for the use of more aggressive bridging regimens.
Collapse
Affiliation(s)
- Kylie Keijzer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Janneke W de Boer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Jaap A van Doesum
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Gerwin A Huls
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Lisanne V van Dijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Tom van Meerten
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Anne G H Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| |
Collapse
|
12
|
Murad V, Kohan A, Ortega C, Prica A, Veit-Haibach P, Metser U. Role of FDG PET/CT in Patients With Lymphoma Treated With Chimeric Antigen Receptor T-Cell Therapy: Current Concepts. AJR Am J Roentgenol 2024; 222:e2330301. [PMID: 38054958 DOI: 10.2214/ajr.23.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a cellular therapy in which the patient's T cells are enhanced to recognize and bind to specific tumor antigens. CAR T-cell therapy was initially developed for the treatment of leukemia, but its current main indication is the treatment of relapsed or refractory non-Hodgkin lymphoma. FDG PET/CT plays a fundamental role in the diagnosis, staging, therapy response assessment, and recurrence evaluation of patients with metabolically active lymphoma. Consistent with the examination's role in lymphoma management, FDG PET/CT is also the imaging modality of choice to evaluate patients before and after CAR T-cell therapy, and evidence supporting its utility in this setting continues to accumulate. In this article, we review current concepts in CAR T-cell therapy in patients with lymphoma, emphasizing the critical role of FDG PET/CT before and after therapy. A framework is presented that entails performing FDG PET/CT at four time points over the course of CAR T-cell therapy: pretherapy at baseline at the time of decision to administer CAR T-cell therapy and after any bridging therapies and posttherapy 1 and 3 months after infusion. PET parameters assessed at these time points predict various patient outcomes.
Collapse
Affiliation(s)
- Vanessa Murad
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Anca Prica
- Department of Hematology, Mount Sinai Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
13
|
Rojek AE, Kline JP, Feinberg N, Appelbaum DE, Pu Y, Derman BA, Jakubowiak A, Kosuri S, Liu H, Nawas MT, Smith SM, Bishop MR, Riedell PA. Optimization of Metabolic Tumor Volume as a Prognostic Marker in CAR T-Cell Therapy for Aggressive Large B-cell NHL. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:83-93. [PMID: 37827881 DOI: 10.1016/j.clml.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has become a standard of care in relapsed/refractory (R/R) aggressive large B-cell non-Hodgkin lymphomas (B-NHL) though the majority of recipients do not receive durable disease benefit, prompting the need to better define risk factors for relapse/progression. OBJECTIVES We performed a single-center, retrospective analysis of patients treated with commercial CAR T-cell therapy to evaluate the impact of tumor burden, as measured by whole-body metabolic tumor volume (MTV) from 18F fluorodeoxyglucose PET imaging, on treatment outcomes. STUDY DESIGN Sixty-one patients treated with CAR T-cell therapy for R/R B-NHL between May 2016 and November 2021 were included. RESULTS Using a receiver operating characteristic curve-based MTV optimization cutoff of 450 mL, 1-year progression-free survival (PFS) was 22% for high MTV versus 54% for low MTV (P < .01), and 1-year overall survival (OS) was 37% and 73%, respectively (P = .01). In a subset of 46 patients, residual MTV of less than 106 mL at the day 30 (D30) disease assessment was associated with significantly improved outcomes (1-year OS 85% vs. 13%, P < .01). Incorporation of pretreatment MTV to the International Prognostic Index (IPI) scoring system significantly distinguished 2-year PFS and OS outcomes by 3 risk groups. CONCLUSIONS Our findings suggest that both pretreatment and D30 MTV are predictive of outcomes among R/R B-NHL patients treated with CAR T-cell therapy. These data indicate that efforts to reduce pretreatment tumor burden may improve longitudinal clinical outcomes. Furthermore, D30 postinfusion MTV quantification may aid clinicians in optimally identifying patients at high-risk for progression, and in whom closer disease monitoring should be considered. MTV also adds prognostic value to patients with high-risk IPI and holds promise for incorporation in novel risk scoring systems which can identify patients prior to CAR T-cell therapy at highest risk of adverse outcomes.
Collapse
Affiliation(s)
- Alexandra E Rojek
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | - Justin P Kline
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Nicholas Feinberg
- Department of Radiology, Section of Nuclear Medicine, University of Chicago, Chicago, IL
| | - Daniel E Appelbaum
- Department of Radiology, Section of Nuclear Medicine, University of Chicago, Chicago, IL
| | - Yonglin Pu
- Department of Radiology, Section of Nuclear Medicine, University of Chicago, Chicago, IL
| | - Benjamin A Derman
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Andrzej Jakubowiak
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Satyajit Kosuri
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Hongtao Liu
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Mariam T Nawas
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Sonali M Smith
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL
| | - Michael R Bishop
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Peter A Riedell
- Department of Medicine, Section of Hematology-Oncology, University of Chicago, Chicago, IL; David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL.
| |
Collapse
|
14
|
Winkelmann M, Blumenberg V, Rejeski K, Quell C, Bücklein VL, Ingenerf M, Unterrainer M, Schmidt C, Dekorsy FJ, Bartenstein P, Ricke J, von Bergwelt-Baildon M, Subklewe M, Kunz WG. Predictive value of pre-infusion tumor growth rate for the occurrence and severity of CRS and ICANS in lymphoma under CAR T-cell therapy. Ann Hematol 2024; 103:259-268. [PMID: 37861736 DOI: 10.1007/s00277-023-05507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Chimeric antigen receptor T-cell therapy (CART) can be administered outpatient yet requires management of potential side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The pre-infusion tumor burden is associated with CRS, yet there is no data on the relevance of pre-infusion tumor growth rate (TGR). Our objective was to investigate TGR for the occurrence and severity of CRS and ICANS. Consecutive patients with available pre-baseline and baseline (BL) imaging before CART were included. TGR was determined as both absolute (abs) and percentage change (%) of Lugano criteria-based tumor burden in relation to days between exams. CRS and ICANS were graded according to ASTCT consensus criteria. Clinical metadata was collected including the international prognostic index (IPI), patient age, ECOG performance status, and LDH. Sixty-two patients were included (median age: 62 years, 40% female). The median pre-BL TGR [abs] and pre-BL TGR [%] was 7.5 mm2/d and 30.9%/d. Pre-BL TGR [abs] and pre-BL TGR [%] displayed a very weak positive correlation with the grade of CRS (r[abs] = 0.14 and r[%] = 0.13) and no correlation with ICANS (r[abs] = - 0.06 and r[%] = - 0.07). There was a weak positive correlation between grade of CRS and grade of ICANS (r = 0.35; p = 0.005) whereas there was no significant correlation of CRS or ICANS to any other of the examined parameters. The pre-infusion TGR before CART was weakly associated with the occurrence of CRS, but not the severity, whereas there were no significant differences in the prediction of ICANS. There was no added information when compared to pre-infusion tumor burden alone. Outpatient planning and toxicity management should not be influenced by the pre-infusion TGR.
Collapse
Affiliation(s)
- Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Viktoria Blumenberg
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kai Rejeski
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christina Quell
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU), LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU), LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU), LMU Munich, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU), LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany.
- Comprehensive Cancer Center München-LMU (CCCM LMU), LMU Munich, Munich, Germany.
| |
Collapse
|
15
|
Ababneh HS, Ng AK, Abramson JS, Soumerai JD, Takvorian RW, Frigault MJ, Patel CG. Metabolic parameters predict survival and toxicity in chimeric antigen receptor T-cell therapy-treated relapsed/refractory large B-cell lymphoma. Hematol Oncol 2024; 42:e3231. [PMID: 37795759 DOI: 10.1002/hon.3231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment for patients with relapsed/refractory large B-cell lymphoma (LBCL). However, data available concerning the impact of the prognostic value of quantitative 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) parameters on the CAR T-related outcomes and toxicities are limited. Therefore, we aimed to evaluate the predictive value of pre- and post-CAR T metabolic parameters on survival and toxicities following CAR T-cell therapy. Fifty-nine patients with PET/CT scans done pre-and post-CAR T infusion were retrospectively identified and analyzed in a single institution database of LBCL patients treated with commercial CD19-targeted CAR T-cell therapy. The median follow-up was 10.7 months [interquartile range (IQR): 2.6-25.5 months]. The overall response (complete response-CR and partial response) and CR rates post-CAR T were 76% (n = 45) and 53% (n = 31), respectively. On univariate analysis, low pre-CAR T total lesion glycolysis (TLG) and metabolic tumor volume (MTV) predicted improved overall response post-CAR T (OR = 4.7, p = 0.01, OR = 9.5, p = 0.03, respectively) and CR post-CAR T (OR = 12.4, p = 0.0004, OR = 10.9, p = 0.0001, respectively). High TLG pre-CAR T was correlated with cytokine release syndrome (CRS, OR = 3.25, p = 0.04). High MTV pre-CAR T was correlated with developing immune effector cell neurotoxicity syndrome (ICANS) events (OR = 4.3, p = 0.01), and high SUV pre-CAR T was associated with grade 3-4 neurological events (OR = 12, p = 0.01). High MTV/TLG/SUVmax post-CAR T were significantly associated with inferior Overall survival (OS). On multivariate analysis, high TLG pre-CAR T (HR = 2.4, p = 0.03), age ≥60 (HR = 2.7, p = 0.03), and bulky disease (≥5 cm) at the time of apheresis (HR = 2.5, p = 0.02) were identified to be independent prognostic factors for inferior PFS. High MTV post-CAR T was identified as the most prognostic factor associated with inferior OS.
Collapse
Affiliation(s)
- Hazim S Ababneh
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea K Ng
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy S Abramson
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob D Soumerai
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald W Takvorian
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chirayu G Patel
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Singh SB, Bhandari S, Siwakoti S, Kumar M, Singh R, Bhusal S, Sharma K, Bhandari S, Khanal K. PET/CT in the Evaluation of CAR-T Cell Immunotherapy in Hematological Malignancies. Mol Imaging 2024; 23:15353508241257924. [PMID: 38952399 PMCID: PMC11208886 DOI: 10.1177/15353508241257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 07/03/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell-based immunotherapy has emerged as a path-breaking strategy for certain hematological malignancies. Assessment of the response to CAR-T therapy using quantitative imaging techniques such as positron emission tomography/computed tomography (PET/CT) has been broadly investigated. However, the definitive role of PET/CT in CAR-T therapy remains to be established. [18F]FDG PET/CT has demonstrated high sensitivity and specificity for differentiating patients with a partial and complete response after CAR-T therapy in lymphoma. The early therapeutic response and immune-related adverse effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome can also be detected on [18F]FDG PET images. In otherwise asymptomatic lymphoma patients with partial response following CAR-T therapy, the only positive findings could be abnormal PET/CT results. In multiple myeloma, a negative [18F]FDG PET/CT after receiving B-cell maturation antigen-directed CAR-T therapy has been associated with a favorable prognosis. In leukemia, [18F]FDG PET/CT can detect extramedullary metastases and treatment responses after therapy. Hence, PET/CT is a valuable imaging tool for patients undergoing CAR-T therapy for pretreatment evaluation, monitoring treatment response, assessing safety, and guiding therapeutic strategies. Developing guidelines with standardized cutoff values for various PET parameters and tumor cell-specific tracers may improve the efficacy and safety of CAR-T therapy.
Collapse
Affiliation(s)
| | | | - Shisir Siwakoti
- Kathmandu University School of Medical Sciences, Kavre, Nepal
| | - Manoj Kumar
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wala JA, Hanna GJ. Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors. Hematol Oncol Clin North Am 2023; 37:1149-1168. [PMID: 37353377 DOI: 10.1016/j.hoc.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We review chimeric antigen receptor (CAR) T-cell therapy for solid tumors. We discuss patient selection factors and aspects of clinical management. We describe challenges including physical and molecular barriers to trafficking CAR-Ts, an immunosuppressive tumor microenvironment, and difficulty finding cell surface target antigens. The application of new approaches in synthetic biology and cellular engineering toward solid tumor CAR-Ts is described. Finally, we summarize reported and ongoing clinical trials of CAR-T therapies for select disease sites such as head and neck (including thyroid cancer), lung, central nervous system (glioblastoma, neuroblastoma, glioma), sarcoma, genitourinary (prostate, renal, bladder, kidney), breast and ovarian cancer.
Collapse
Affiliation(s)
- Jeremiah A Wala
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building 2nd Floor, Room 2-140, Boston, MA 02215, USA
| | - Glenn J Hanna
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana Building 2nd Floor, Room 2-140, Boston, MA 02215, USA.
| |
Collapse
|
18
|
de Boer JW, Pennings ERA, Kleinjan A, van Doesum JA, Spanjaart AM, Mutsaers PGNJ, Jak M, van der Poel MWM, Kuipers MT, Adam JA, Diepstra A, Koens L, van Dorp S, Vermaat JSP, Niezink AGH, Kersten MJ, van Meerten T. Inflammatory reactions mimic residual or recurrent lymphoma on [18F]FDG-PET/CT after CD19-directed CAR T-cell therapy. Blood Adv 2023; 7:6710-6716. [PMID: 37639324 PMCID: PMC10641469 DOI: 10.1182/bloodadvances.2023010665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Janneke W de Boer
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Elise R A Pennings
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, The Netherlands
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Ankie Kleinjan
- Department of Internal Medicine, Rivierenland Hospital, Tiel, The Netherlands
| | - Jaap A van Doesum
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne M Spanjaart
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, The Netherlands
| | - Pim G N J Mutsaers
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margot Jak
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein W M van der Poel
- Department of Internal Medicine, Division of Hematology, GROW school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maria T Kuipers
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Judit A Adam
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne Koens
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne van Dorp
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne G H Niezink
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, The Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Ligero M, Simó M, Carpio C, Iacoboni G, Balaguer‐Montero M, Navarro V, Sánchez‐Salinas MA, Bobillo S, Marín‐Niebla A, Iraola‐Truchuelo J, Abrisqueta P, Sala‐Llonch R, Bosch F, Perez‐Lopez R, Barba P. PET-based radiomics signature can predict durable responses to CAR T-cell therapy in patients with large B-cell lymphoma. EJHAEM 2023; 4:1081-1088. [PMID: 38024636 PMCID: PMC10660117 DOI: 10.1002/jha2.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising treatment option for relapsed or refractory (R/R) large B-cell lymphoma (LBCL). However, only a subset of patients will present long-term benefit. In this study, we explored the potential of PET-based radiomics to predict treatment outcomes with the aim of improving patient selection for CAR T-cell therapy. We conducted a single-center study including 93 consecutive R/R LBCL patients who received a CAR T-cell infusion from 2018 to 2021, split in training set (73 patients) and test set (20 patients). Radiomics features were extracted from baseline PET scans and clinical benefit was defined based on median progression-free survival (PFS). Cox regression models including the radiomics signature, conventional PET biomarkers and clinical variables were performed for most relevant outcomes. A radiomics signature including 4 PET-based parameters achieved an AUC = 0.73 for predicting clinical benefit in the test set, outperforming the predictive value of conventional PET biomarkers (total metabolic tumor volume [TMTV]: AUC = 0.66 and maximum standardized uptake value [SUVmax]: AUC = 0.59). A high radiomics score was also associated with longer PFS and OS in the multivariable analysis. In conclusion, the PET-based radiomics signature predicted efficacy of CAR T-cell therapy and outperformed conventional PET biomarkers in our cohort of LBCL patients.
Collapse
Affiliation(s)
- Marta Ligero
- Radiomics GroupVall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Barcelona Hospital Campus (VHUH)BarcelonaSpain
| | - Marc Simó
- Nuclear Medicine DepartmentVall d'Hebron University Hospital, Autonomous University of BarcelonaBarcelonaSpain
| | - Cecilia Carpio
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Gloria Iacoboni
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Maria Balaguer‐Montero
- Radiomics GroupVall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Barcelona Hospital Campus (VHUH)BarcelonaSpain
| | - Victor Navarro
- Oncology Data Science (ODysSey) GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Mario Andres Sánchez‐Salinas
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Sabela Bobillo
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Ana Marín‐Niebla
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Josu Iraola‐Truchuelo
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Pau Abrisqueta
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Roser Sala‐Llonch
- Faculty of MedicineDepartment of BiomedicineInstitute of Neurosciences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)BarcelonaSpain
| | - Francesc Bosch
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| | - Raquel Perez‐Lopez
- Radiomics GroupVall d'Hebron Institute of Oncology (VHIO)Vall d'Hebron Barcelona Hospital Campus (VHUH)BarcelonaSpain
| | - Pere Barba
- Department of HematologyExperimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University HospitalBarcelonaBarcelonaSpain
| |
Collapse
|
20
|
Huang S, de Jong D, Das JP, Widemon RS, Braumuller B, Paily J, Deng A, Liou C, Roa T, Huang A, Ma H, D'Souza B, Leb J, L'Hereaux J, Nguyen P, Luk L, Francescone M, Yeh R, Maccarrone V, Dercle L, Salvatore MM, Capaccione KM. Imaging the Side Effects of CAR T Cell Therapy: A Primer for the Practicing Radiologist. Acad Radiol 2023; 30:2712-2727. [PMID: 37394411 DOI: 10.1016/j.acra.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a revolutionary form of immunotherapy that has proven to be efficacious in the treatment of many hematologic cancers. CARs are modified T lymphocytes that express an artificial receptor specific to a tumor-associated antigen. These engineered cells are then reintroduced to upregulate the host immune responses and eradicate malignant cells. While the use of CAR T cell therapy is rapidly expanding, little is known about how common side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) present radiographically. Here we provide a comprehensive review of how side effects present in different organ systems and how they can be optimally imaged. Early and accurate recognition of the radiographic presentation of these side effects is critical to the practicing radiologist and their patients so that these side effects can be promptly identified and treated.
Collapse
Affiliation(s)
- Sophia Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Dorine de Jong
- Department of Immunology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (D.J.)
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Reginald Scott Widemon
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jacienta Paily
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, North Carolina 28117 (A.D.)
| | - Connie Liou
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Alice Huang
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Jade L'Hereaux
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Pamela Nguyen
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mark Francescone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065 (J.D., R.Y.)
| | - Valerie Maccarrone
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.)
| | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168th Street, New York, New York 10032 (S.H., R.S.W., B.B., J.P., C.L., T.R., A.H., H.M., B.D.S., J.L., J.L.H., P.N., L.L., M.F., V.M., L.D., M.S., K.M.C.).
| |
Collapse
|
21
|
Morbelli S, Gambella M, Raiola AM, Ghiggi C, Bauckneht M, Raimondo TD, Lapucci C, Sambuceti G, Inglese M, Angelucci E. Brain FDG-PET findings in chimeric antigen receptor T-cell therapy neurotoxicity for diffuse large B-cell lymphoma. J Neuroimaging 2023; 33:825-836. [PMID: 37291470 DOI: 10.1111/jon.13135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Chimeric antigen receptor (CAR) T-cell therapy is potentially associated with treatment-related toxicities mainly consisting of cytokine release syndrome (CRS) and immune-effector cell-associated neurotoxicity syndrome (ICANS). We evaluated brain metabolic correlates of CRS with and without ICANS in diffuse large B-cell lymphoma patients treated with CAR-T. METHODS Twenty-one refractory DLCBLs underwent whole-body and brain [18 F]-fluorodeoxyglucose (FDG) PET before and 30 days after treatment with CAR-T. Five patients did not develop inflammatory-related side effects, 11 patients developed CRS, while in 5 patients CRS evolved in ICANS. Baseline and post-CAR-T brain FDG-PET were compared with a local controls dataset to identify hypometabolic patterns both at single-patient and group levels (p < .05 after correction for family-wise error [FWE). Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were computed on baseline FDG-PET and compared between patients' subgroups (t-test). RESULTS ICANS showed an extended and bilateral hypometabolic pattern mainly involving the orbitofrontal cortex, frontal dorsolateral cortex, and anterior cingulate (p < .003 FWE-corrected). CRS without ICANS showed significant hypometabolism in less extended clusters mainly involving bilateral medial and lateral temporal lobes, posterior parietal lobes, anterior cingulate, and cerebellum (p < .002 FWE-corrected). When compared, ICANS showed a more prominent hypometabolism in the orbitofrontal and frontal dorsolateral cortex in both hemispheres than CRS (p < .002 FWE-corrected). Mean baseline MTV and TLG were significantly higher in ICANS than CRS (p < .02). CONCLUSIONS Patients with ICANS are characterized by a frontolateral hypometabolic signature coherently with the hypothesis of ICANS as a predominant frontal syndrome and with the more prominent susceptibility of frontal lobes to cytokine-induced inflammation.
Collapse
Affiliation(s)
- Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genova, Italy
| | - Massimiliano Gambella
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Anna Maria Raiola
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Ghiggi
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genova, Italy
| | - Tania Di Raimondo
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genova, Italy
| | - Caterina Lapucci
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genova, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genova, Italy
| | - Matilde Inglese
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), IRCCS Ospedale Policlinico San Martino, University of Genoa, Genova, Italy
| | - Emanuele Angelucci
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
22
|
Breen WG, Young JR, Hathcock MA, Kowalchuk RO, Thorpe MP, Bansal R, Khurana A, Bennani NN, Paludo J, Bisneto JV, Wang Y, Ansell SM, Peterson JL, Johnston PB, Lester SC, Lin Y. Metabolic PET/CT analysis of aggressive Non-Hodgkin lymphoma prior to Axicabtagene Ciloleucel CAR-T infusion: predictors of progressive disease, survival, and toxicity. Blood Cancer J 2023; 13:127. [PMID: 37591834 PMCID: PMC10435575 DOI: 10.1038/s41408-023-00895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
PET/CT is used to evaluate relapsed/refractory non-Hodgkin lymphoma (NHL) prior to chimeric antigen receptor T-cell (CAR-T) infusion at two time points: pre-leukapheresis (pre-leuk) and pre-lymphodepletion chemotherapy (pre-LD). We hypothesized that changes in PET/CT between these time points predict outcomes after CAR-T. Metabolic tumor volume (MTV), total lesion glycolysis (TLG), and other metrics were calculated from pre-leuk and pre-LD PET/CT scans in patients with NHL who received axicabtagene ciloleucel, and assessed for association with outcomes. Sixty-nine patients were analyzed. While single time point PET/CT characteristics were not associated with risk of PD or death, increases from pre-leuk to pre-LD in parenchymal MTV, nodal MTV, TLG of the largest lesion, and total number of lesions were associated with increased risk of death (p < 0.05 for all). LASSO analysis identified increasing extranodal MTV and increasing TLG of the largest lesion as strong predictors of death (AUC 0.74). Greater pre-LD total MTV was associated with higher risk of grade 3+ immune effector cell-associated neurotoxicity syndrome (ICANS) (p = 0.042). Increasing metabolic disease burden during CAR-T manufacturing is associated with increased risk of progression and death. A two variable risk score stratifies prognosis prior to CAR-T infusion and may inform risk-adapted strategies.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jason R Young
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew A Hathcock
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Radhika Bansal
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yucai Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Patrick B Johnston
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Winkelmann M, Blumenberg V, Rejeski K, Bücklein VL, Ingenerf M, Unterrainer M, Schmidt C, Dekorsy FJ, Bartenstein P, Ricke J, von Bergwelt-Baildon M, Subklewe M, Kunz WG. Staging of lymphoma under chimeric antigen receptor T-cell therapy: reasons for discordance among imaging response criteria. Cancer Imaging 2023; 23:44. [PMID: 37189191 PMCID: PMC10184388 DOI: 10.1186/s40644-023-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma. Discrepancies among different response criteria for lymphoma under CART were recently shown. Our objective was to evaluate reasons for discordance among different response criteria and their relation to overall survival. METHODS Consecutive patients with baseline and follow-up imaging at 30 (FU1) and 90 days (FU2) after CART were included. Overall response was determined based on Lugano, Cheson, response evaluation criteria in lymphoma (RECIL) and lymphoma response to immunomodulatory therapy criteria (LYRIC). Overall response rate (ORR) and rates of progressive disease (PD) were determined. For each criterion reasons for PD were analyzed in detail. RESULTS 41 patients were included. ORR was 68%, 68%, 63%, and 68% at FU2 by Lugano, Cheson, RECIL, and LYRIC, respectively. PD rates differed among criteria with 32% by Lugano, 27% by Cheson, 17% by RECIL, and 17% by LYRIC. Dominant reasons for PD according to Lugano were target lesion (TL) progression (84.6%), new appearing lesions (NL; 53.8%), non-TL progression (27.3%), and progressive metabolic disease (PMD; 15.4%). Deviations among the criteria for defining PD were largely explained by PMD of preexisting lesions that are defined as PD only by Lugano and non-TL progression, which is not defined as PD by RECIL and in some cases classified as indeterminate response by LYRIC. CONCLUSIONS Following CART, lymphoma response criteria show differences in imaging endpoints, especially in defining PD. The response criteria must be considered when interpreting imaging endpoints and outcomes from clinical trials.
Collapse
Affiliation(s)
- Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria Blumenberg
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kai Rejeski
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany.
| |
Collapse
|
25
|
Zhang Q, Zu C, Jing R, Feng Y, Zhang Y, Zhang M, Lv Y, Cui J, Zhou L, Meng Y, Wang L, Cen Z, Chang AH, Hu Y, Huang H. Incidence, clinical characteristics and prognosis of tumor lysis syndrome following B-cell maturation antigen-targeted chimeric antigen receptor-T cell therapy in relapsed/refractory multiple myeloma. Front Immunol 2023; 14:1125357. [PMID: 37215107 PMCID: PMC10192732 DOI: 10.3389/fimmu.2023.1125357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Background aims B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor-T cell (CAR-T) therapy is used for refractory or relapsed multiple myeloma (r/r MM). However, CAR-T-related tumor lysis syndrome (TLS) has been observed. We aimed to elucidate the incidence, clinical and laboratory characteristics, and prognosis of CAR-T cell-related TLS. Methods Patients (n=105) with r/r MM treated with BCMA-targeted CAR-T cell therapy were included. Patient characteristics, laboratory parameters, and clinical outcomes were assessed. Results Eighteen (17.1%) patients developed TLS after BCMA-targeted CAR-T cell therapy. The median time till TLS onset was 8 days. Patients with TLS had steep rise in uric acid (UA), creatinine, and lactate dehydrogenase (LDH) within 6 days following CAR-T cell infusion and presented earlier and persistent escalation of cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-γ [IFN-γ], and ferritin levels). All 18 patients had cytokine release syndrome (CRS), of which 13 (72.2%) developed grade 3-4 CRS. Three of 18 patients (16.7%) developed immune effector cell-associated neurotoxicity syndrome (ICANS): two patients with grade 1 ICANS and one with grade 2 ICANS. TLS development had a negative effect on the objective response rate (77.8% in the TLS group vs. 95.4% in the non-TLS group, p<0.01). During the median follow-up of 15.1 months, the median PFS was poorer of patients with TLS (median: 3.4 months in the TLS group vs. 14.7 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.5 [95% confidence interval [CI] 1.5-8.5]). Also, TLS development exhibited significant effects on OS (median: 5.0 months in the TLS group vs. 39.8 months in the non-TLS group, p<0.001, hazard ratio [HR]=3.7 [95% CI 1.3-10.3]). TLS was associated with a higher tumor burden, elevated baseline creatinine and UA levels, severe CRS, pronounced CAR-T cell expansion, and corticosteroid use. Conclusion TLS is a frequently observed CAR-T therapy complication and negatively influences clinical response and prognosis. Close monitoring for TLS should be implemented during CAR-T cell therapy, especially for those at high TLS risk.
Collapse
Affiliation(s)
- Qiqi Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Cheng Zu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruirui Jing
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Youqin Feng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yanlei Zhang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yuqi Lv
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Linhui Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ye Meng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zenan Cen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Alex H. Chang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
26
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Winkelmann M, Blumenberg V, Rejeski K, Quell C, Bücklein VL, Ingenerf M, Unterrainer M, Schmidt C, Dekorsy FJ, Bartenstein P, Ricke J, von Bergwelt-Baildon M, Subklewe M, Kunz WG. Prognostic value of pre-infusion tumor growth rate for patients with lymphoma receiving chimeric antigen receptor T-cell therapy. Cytotherapy 2023:S1465-3249(23)00069-5. [PMID: 37055322 DOI: 10.1016/j.jcyt.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AIMS Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma, yet its efficacy is affected by the tumor burden. The relevance of tumor kinetics before infusion is unknown. We aimed to study the prognostic value of the pre-infusion tumor growth rate (TGRpre-BL) for progression-free (PFS) and overall survival (OS). METHODS Consecutive patients with available pre-baseline (pre-BL) and baseline (BL) computed tomography or positron emission tomography/computed tomography scan before CART were included. TGR was determined as change of Lugano criteria-based tumor burden between pre-BL, BL and follow-up examinations (FU) in relation to days between imaging exams. Overall response rate (ORR), depth or response (DoR) and PFS were determined based on Lugano criteria. Multivariate regression analysis studied association of TGR with ORR and DoR. Proportional Cox regression analysis studied association of TGR with PFS and OS. RESULTS In total, 62 patients met the inclusion criteria. The median TGRpre-BL was 7.5 mm2/d (interquartile range -14.6 mm2/d to 48.7 mm2/d); TGRpre-BL was positive (TGRpre-BL POS) in 58% of patients and negative (TGRpre-BL NEG, indicating tumor shrinkage) in 42% of patients. Patients who were TGRpre-BL POS had a 90-day (FU2) ORR of 62%, a DoR of -86% and a median PFS of 124 days. Patients who were TGRpre-BL NEG had a 90-day ORR of 44%, DoR of -47% and a median PFS of 105 days. ORR and DoR were not associated with slower TGR (P = 0.751, P = 0.198). Patients with an increase of TGR from pre-BL over BL to 30-day FU (FU1) ≥100% (TGRpre-BL-to-FU1≥100%) showed a significant association with shorter median PFS (31 days versus 343 days, P = 0.002) and shorter median OS after CART (93 days versus not reached, P < 0.001), compared with patients with TGRpre-BL-to-FU1<100%. CONCLUSIONS In the context of CART, differences in pre-infusion tumor kinetics showed minor differences in ORR, DoR, PFS and OS, whereas the change of the TGR from pre-BL to 30-day FU significantly stratified PFS and OS. In this patient population of refractory or relapsed lymphomas, TGR is readily available based on pre-BL imaging, and its change throughout CART should be explored as a potential novel imaging biomarker of early response.
Collapse
Affiliation(s)
- Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Viktoria Blumenberg
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany; German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kai Rejeski
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany; German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christina Quell
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany; German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center München-LMU (CCCMLMU), LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center München-LMU (CCCMLMU), LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center München-LMU (CCCMLMU), LMU Munich, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany; German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Comprehensive Cancer Center München-LMU (CCCMLMU), LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany; Comprehensive Cancer Center München-LMU (CCCMLMU), LMU Munich, Munich, Germany.
| |
Collapse
|
28
|
Hubbeling H, Silverman EA, Michaud L, Tomas AA, Shouval R, Flynn J, Devlin S, Wijetunga NA, Tringale KR, Batlevi C, Dahi P, Giralt S, Lin R, Park J, Scordo M, Sauter C, Shah G, Hajj C, Salles G, Schoder H, Palomba ML, Perales MA, Yahalom J, Imber BS. Bridging Radiation Rapidly and Effectively Cytoreduces High-Risk Relapsed/Refractory Aggressive B Cell Lymphomas Prior to Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2023; 29:259.e1-259.e10. [PMID: 36587744 PMCID: PMC10089652 DOI: 10.1016/j.jtct.2022.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Greater tumor burden before CD19-targeted chimeric antigen receptor T cell (CAR-T) therapy predicts lower complete response rate and shorter overall survival (OS) in patients with aggressive non-Hodgkin lymphoma (NHL). Recent patterns of failure studies have identified lesion characteristics, including size, standard uptake value (SUV), and extranodal location, as associated with post-CAR-T therapy failure. Here we analyzed the effect of bridging radiation-containing treatment (BRT) on pre-CAR-T therapy lesion- and patient-level characteristics and post-CAR-T therapy outcomes, including patterns of failure. Consecutive NHL patients who received radiation therapy from 30 days before leukapheresis until CAR T cell infusion were reviewed. Metabolic tumor volume (MTV) was contoured with a threshold SUV of 4. The first post-CAR-T therapy failures were categorized as preexisting/new/mixed with respect to pre-CAR-T therapy disease and in-field/marginal/distant with respect to BRT. Forty-one patients with diffuse large B cell lymphoma (DLBCL; n = 33), mantle cell lymphoma (n = 7), or Burkitt lymphoma (n = 1) were identified. BRT significantly improved established high-risk parameters of post-CAR-T therapy progression, including in-field median MTV (45.5 cc to .2 cc; P < .001), maximum SUV (18.1 to 4.4; P < .001), diameter (5.5 cm to 3.2 cm; P < .001), and lactate dehydrogenase (LDH; 312 to 232; P = .025). DLBCL patients with lower LDH levels post-BRT had improved progression-free survival (PFS; P = .001). In DLBCL, first failures were new in 7 of 19 patients, preexisting in 5 of 19, and mixed in 7 of 19; with respect to BRT, 4 of 19 were in-field and 4 of 19 were marginal. Post-CAR-T therapy survival was similar in patients with initially low MTV and those with newly low MTV post-BRT using a statistically determined threshold of 16 cc (PFS, 26 months versus 31 months; OS unreached for both). BRT produced significant cytoreductions in diameter, SUV, MTV, and LDH, all predictors of poor post-CAR-T therapy outcomes. Similar PFS and OS in patients with initially low MTV and those who achieved newly low MTV after BRT suggest that BRT may "convert" poor-risk patients to better risk. In the future, the response to BRT may allow for risk stratification and individualization of bridging strategies.
Collapse
Affiliation(s)
- Harper Hubbeling
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily A Silverman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laure Michaud
- Department of Radiology, Molecular Imaging, and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ana Alarcon Tomas
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roni Shouval
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Flynn
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Devlin
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Connie Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Parastoo Dahi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Lin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jae Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Scordo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Craig Sauter
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunjan Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schoder
- Department of Radiology, Molecular Imaging, and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - M Lia Palomba
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joachim Yahalom
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
29
|
Th17.1 cell driven sarcoidosis-like inflammation after anti-BCMA CAR T cells in multiple myeloma. Leukemia 2023; 37:650-658. [PMID: 36720972 PMCID: PMC9888347 DOI: 10.1038/s41375-023-01824-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.
Collapse
|
30
|
Sortais C, Cordeil S, Bourbon E, Idlhaj M, Ferrant E, Safar V, Golfier C, Lazareth A, Bouafia-Sauvy F, Tordo J, Ghesquières H, Sesques P, Bachy E. Flare-up phenomenon or pseudoprogression after CAR T-cell infusion in non-Hodgkin aggressive lymphomas. Leuk Lymphoma 2023; 64:707-711. [PMID: 36573418 DOI: 10.1080/10428194.2022.2161304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Clara Sortais
- Department of Hematology, CHU de Nantes, Nantes, France
| | - Stéphanie Cordeil
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Estelle Bourbon
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Maryam Idlhaj
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Emmanuelle Ferrant
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Violaine Safar
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Camille Golfier
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Anne Lazareth
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Fadhela Bouafia-Sauvy
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Jérémie Tordo
- Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Hervé Ghesquières
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Lymphoma Immuno-biology (LIB) Research Unit, Claude Bernard Lyon 1 University, Lyon, France
| | - Pierre Sesques
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Lymphoma Immuno-biology (LIB) Research Unit, Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
31
|
Butt OH, Zhou AY, Ances BM, DiPersio JF, Ghobadi A. A systematic framework for predictive biomarkers in immune effector cell-associated neurotoxicity syndrome. Front Neurol 2023; 14:1110647. [PMID: 36860569 PMCID: PMC9969296 DOI: 10.3389/fneur.2023.1110647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the management of several life-threatening malignancies, often achieving durable sustained responses. The number of patients treated with this new class of cell-based therapy, along with the number of Food and Drug Association (FDA) approved indications, are growing significantly. Unfortunately Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) can often occur after treatment with CAR-T cells, and severe ICANS can be associated with significant morbidity and mortality. Current standard treatments are mainly steroids and supportive care, highlighting the need for early identification. In the last several years, a range of predictive biomarkers have been proposed to distinguish patients at increased risk for developing ICANS. In this review, we discuss a systematic framework to organize potential predictive biomarkers that builds on our current understanding of ICANS.
Collapse
Affiliation(s)
- Omar H. Butt
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Alice Y. Zhou
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| | - Armin Ghobadi
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, United States
| |
Collapse
|
32
|
Al-Ibraheem A, Abdlkadir AS, Juweid ME, Al-Rabi K, Ma’koseh M, Abdel-Razeq H, Mansour A. FDG-PET/CT in the Monitoring of Lymphoma Immunotherapy Response: Current Status and Future Prospects. Cancers (Basel) 2023; 15:1063. [PMID: 36831405 PMCID: PMC9954669 DOI: 10.3390/cancers15041063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer immunotherapy has been extensively investigated in lymphoma over the last three decades. This new treatment modality is now established as a way to manage and maintain several stages and subtypes of lymphoma. The establishment of this novel therapy has necessitated the development of new imaging response criteria to evaluate and follow up with cancer patients. Several FDG PET/CT-based response criteria have emerged to address and encompass the various most commonly observed response patterns. Many of the proposed response criteria are currently being used to evaluate and predict responses. The purpose of this review is to address the efficacy and side effects of cancer immunotherapy and to correlate this with the proposed criteria and relevant patterns of FDG PET/CT in lymphoma immunotherapy as applicable. The latest updates and future prospects in lymphoma immunotherapy, as well as PET/CT potentials, will be discussed.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center, Al-Jubeiha, Amman 11941, Jordan
| | - Malik E. Juweid
- Department of Radiology and Nuclear Medicine, Division of Nuclear Medicine, University of Jordan, Amman 11942, Jordan
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Mohammad Ma’koseh
- Department of Medical Oncology, King Hussein Cancer Center, Amman 11941, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Internal Medicine, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
33
|
Prognostic value of baseline and early response FDG-PET/CT in patients with refractory and relapsed aggressive B-cell lymphoma undergoing CAR-T cell therapy. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04587-4. [PMID: 36662305 PMCID: PMC10356653 DOI: 10.1007/s00432-023-04587-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells are a viable treatment option for patients with relapsed or refractory (r/r) aggressive B-cell lymphomas. The prognosis of patients who relapse after CAR-T cell treatment is dismal and factors predicting outcomes need to be identified. Our aim was to assess the value of FDG-PET/CT in terms of predicting patient outcomes. METHODS Twenty-two patients with r/r B-cell lymphoma who received CAR-T cell treatment with tisagenlecleucel (n = 17) or axicabtagene ciloleucel (n = 5) underwent quantitative FDG-PET/CT before (PET-0) and 1 month after infusion of CAR-T cells (PET-1). PET-1 was classified as complete metabolic response (CMR, Deauville score 1-3) or non-CMR (Deauville score 4-5). RESULTS At the time of PET-1, 12/22 (55%) patients showed CMR, ten (45%) patients non-CMR. 7/12 (58%) CMR patients relapsed after a median of 223 days, three of them (25%) died. 9/10 (90%) non-CMR patients developed relapse or progressive disease after a median of 91 days, eight of them (80%) died. CMR patients demonstrated a significantly lower median total metabolic tumor volume (TMTV) in PET-0 (1 ml) than non-CMR patients (225 ml). CONCLUSION Our results confirm the prognostic value of PET-1. 42% of all CMR patients are still in remission 1 year after CAR T-cell treatment. 90% of the non-CMR patients relapsed, indicating the need for early intervention. Higher TMTV before CAR-T cell infusion was associated with lower chances of CMR.
Collapse
|
34
|
Clinical and Radiographic Predictors of Progression and Survival in Relapsed/Refractory Lymphoma Patients Receiving Anti-CD19 CAR T-cell Therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:49-56. [PMID: 36335021 DOI: 10.1016/j.clml.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of relapsed/refractory (R/R) B-cell lymphomas, though certain patients do not respond to treatment or relapse afterwards. The purpose of this study is to determine patient variables that are predictive of response to CAR-T therapy. METHODS We conducted a retrospective review of 59 R/R B-cell non-Hodgkin lymphoma patients who received anti-CD19 CAR T-cell therapy. Risk factors for progression free survival (PFS) and overall survival (OS) were identified and multivariate logistic regression models for PFS and OS at 1 year were created using stepwise selection. The final multivariate logistic regression models were used to estimate the area under the receiver operating curve (AUROC). RESULTS At median follow up of 25.6 months, median overall survival was not reached, and median progression free survival was 5.7 months. Stage IV disease (odds ratio (OR) 9.335, P = .025) was identified as a predictive variable for progression at day 365 with an AUC of 0.7922 (P < .001). IPI (OR 2.828, P = .014), ALC ≥ 0.50 at collection (OR 0.183, P = .043), CRP ≥ 11 (OR 6.177, P = .019), and tocilizumab administration (OR 0.062, P = .005) as predictors for death at day 365 with an AUC 0.8626 (P < .001). CONCLUSION Clinical variables identify R/R lymphoma patients who are at risk for progression and poor overall survival after CAR T-cell therapy. IPI, CRP, ALC, and tocilizumab administration may be predictors of survival.
Collapse
|
35
|
Khalatbari H, Shulkin BL, Parisi MT. Emerging Trends in Radionuclide Imaging of Infection and Inflammation in Pediatrics: Focus on FDG PET/CT and Immune Reactivity. Semin Nucl Med 2023; 53:18-36. [PMID: 36307254 DOI: 10.1053/j.semnuclmed.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The most common indication for 18F-FDG PET/CT is tumor imaging, which may be performed for initial diagnosis, staging, therapeutic response monitoring, surveillance, or suspected recurrence. In the routine practice of pediatric nuclear medicine, most infectious, inflammatory, and autoimmune processes that are detected on 18F-FDG PET/CT imaging - except for imaging in fever or inflammation of unknown origin - are coincidental and not the main indication for image acquisition. However, interpreting these "coincidental" findings is of utmost importance to avoid erroneously attributing these findings to a neoplastic process. We review the recent literature on fever of unknown origin as well as inflammation of unknown origin in pediatrics and then focus on the 18F FDG PET/CT imaging findings seen in two specific entities with increased immune reactivity: hemophagocytic lymphohistiocytosis syndrome and the immune-related adverse events associated with checkpoint inhibitors. We will subsequently close with two sections highlighting related topics and relevant references for further reading.
Collapse
Affiliation(s)
- Hedieh Khalatbari
- Department of Radiology, Seattle Children's Hospital, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Barry L Shulkin
- Department of Diagnostic Radiology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Marguerite T Parisi
- Department of Radiology, Seattle Children's Hospital, Seattle, WA; Department of Radiology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
36
|
Hernani R, Benzaquén A, Solano C. Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev 2022; 111:102479. [DOI: 10.1016/j.ctrv.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
37
|
Yu Q, Zhang X, Wang N, Li C, Zhang Y, Zhou J, Wang G, Cao Y. Radiation prior to chimeric antigen receptor T-cell therapy is an optimizing bridging strategy in relapsed/refractory aggressive B-cell lymphoma. Radiother Oncol 2022; 177:53-60. [PMID: 36309153 DOI: 10.1016/j.radonc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE We aimed to analyze the safety and efficacy of a radiation bridging regimen with or without chemotherapy compared with chemotherapy alone prior to CAR T-cell treatment for relapsed/refractory aggressive B-cell lymphoma (r/r ABL). METHODS AND MATERIALS In this study, 45 out of 105 patients enrolled in CD19/22 CAR T-cell "cocktail" clinical trial were excluded, including 34 patients without bridging treatment. Total 60 patients receiving CAR T-cell therapies with bridging regimens as chemotherapy alone (C-CAR-T group, n = 31), and radiotherapy with or without chemotherapy (R-CAR-T group, n = 29) between February 2017 and October 2020 were retrospectively analyzed. RESULTS No significant toxicities were identified in the R-CAR-T group, and no patients in either group experienced CAR-T-related deaths. However, the R-CAR-T group showed a lower incidence of cytokine release syndrome (CRS) of grade ≥ 3 relative to the C-CAR-T group (0% vs 19.4%, P = 0.036). The incidence of neurological toxicity was 9.9% and 6.9% in the C-CAR-T group and R-CAR-T group, respectively (P = 0.697). The R-CAR-T group achieved a higher overall response rate (ORR) at the day 30 assessment (82.8% vs 45.2%, P = 0.0025). Further analyzing the outcomes, the R-CAR-T group presented a better 1-year progression-free survival (PFS) rate than the C-CAR-T group (46.9% vs 22.6%, P = 0.0356). Intriguingly, the bridging radiation regimen extremely improved the 6-month PFS (50.8% vs 16. 7%, P = 0.0369) and 1-year overall survival (OS) (56.3% vs 33.3%, P = 0.0236) rates in patients with bulky disease. The study also found that conducting radiotherapy as a bridging regimen was an independent factor that predicted better PFS (HR: 0.534, 95% CI: 0.289-0.987, P = 0.045). CONCLUSIONS Our results provide and strengthen novel insights that the use of radiotherapy as a bridging strategy was demonstrated to reduce the incidence of severe CRS and improve the PFS of patients. In subgroup analysis, it was confirmed that radiotherapy can improve PFS and OS in patients with bulky disease. These findings open new avenues to improve the efficacy and safety of CAR T-cell therapy.
Collapse
Affiliation(s)
- Qiuxia Yu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Chunrui Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
38
|
Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy. Cancers (Basel) 2022; 14:cancers14194700. [PMID: 36230629 PMCID: PMC9562671 DOI: 10.3390/cancers14194700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Chimeric antigen receptor–engineered T cells are an innovative therapy in hematologic malignancies, especially in patients with refractory/relapsed B-cell lymphomas. Few studies have analyzed the role of [18F]FDG PET/CT in this field; this review aims to illustrate the literature data and the major findings related to [18F]FDG PET/CT use during CAR-T cell therapy in B-cell lymphomas, focusing on the prognostic value of metabolic parameters, as well as on response assessment. Furthermore, this work shows in detail the specific adverse events during CAR-T cell therapy and the role of [18F]FDG PET/CT imaging in their occurrence. Abstract Chimeric antigen receptor–engineered (CAR) T cells are emerging powerful therapies for patients with refractory/relapsed B-cell lymphomas. [18F]FDG PET/CT plays a key role during staging and response assessment in patients with lymphoma; however, the evidence about its utility in CAR-T therapies for lymphomas is limited. This review article aims to provide an overview of the role of PET/CT during CAR-T cell therapy in B-cell lymphomas, focusing on the prognostic value of metabolic parameters, as well as on response assessment. Data from the literature report on the use of [18F]FDG PET/CT at the baseline with two scans performed before treatment started focused on the time of decision (TD) PET/CT and time of transfusion (TT) PET/CT. Metabolic tumor burden is the most studied parameter associated with disease progression and overall survival, making us able to predict the occurrence of adverse effects. Instead, for post-therapy evaluation, 1 month (M1) PET/CT seems the preferable time slot for response assessment and in this setting, the Deauville 5-point scale (DS), volumetric analyses, SUVmax, and its variation between different time points (∆SUVmax) have been evaluated, confirming the usefulness of M1 PET/CT, especially in the case of pseudoprogression. Additionally, an emerging role of PET/CT brain scans is reported for the evaluation of neurotoxicity related to CAR-T therapies. Overall, PET/CT results to be an accurate method in all phases of CAR-T treatment, with particular interest in assessing treatment response. Moreover, PET parameters have been reported to be reliable predictors of outcome and severe toxicity.
Collapse
|
39
|
Chimeric Antigen Receptor T-cell Therapy: Imaging Response Criteria and Relation to Progression-free and Overall Survival. Hemasphere 2022; 6:e781. [PMID: 36187874 PMCID: PMC9519142 DOI: 10.1097/hs9.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
|
40
|
Kiamanesh Z, Ayati N, Sadeghi R, Hawkes E, Lee ST, Scott AM. The value of FDG PET/CT imaging in outcome prediction and response assessment of lymphoma patients treated with immunotherapy: a meta-analysis and systematic review. Eur J Nucl Med Mol Imaging 2022; 49:4661-4676. [PMID: 35932329 DOI: 10.1007/s00259-022-05918-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Treatment strategies of lymphoid malignancies have been revolutionized by immunotherapy. Because of the inherent property of Hodgkin lymphoma and some subtypes of non-Hodgkin lymphoma as a highly FDG-avid tumor, functional 18F-FDG PET/CT imaging is already embedded in their routine care. Nevertheless, the question is whether it is still valuable in the context of these tumors being treated with immunotherapy. Herein, we will review the value of 18F-FDG PET/CT imaging lymphoid tumors treated with immunotherapy regimens. METHODS A comprehensive literature search of the PubMed database was conducted on the value of the 18F-FDG PET/CT for immunotherapy response monitoring of patients with malignant lymphoma. The articles were considered eligible if they met all of the following inclusion criteria: (a) clinical studies on patients with different types of malignant lymphoma, (b) treatment with anti-CD20 antibodies, immune checkpoint inhibitors or immune cell therapies, (c) and incorporated PET/CT with 18F-FDG as the PET tracer. RESULTS From the initial 1488 papers identified, 91 were ultimately included in our study. In anti-CD20 therapy, the highest pooled hazard ratios (HRs) of baseline, early, and late response monitoring parameters for progression-free survival (PFS) belong to metabolic tumor volume (MTV) (3.19 (95%CI: 2.36-4.30)), maximum standardized uptake value (SUVmax) (3.25 (95%CI: 2.08-5.08)), and Deauville score (DS) (3.73 (95%CI: 2.50-5.56)), respectively. These measurements for overall survival (OS) were MTV (4.39 (95%CI: 2.71-7.08)), DS (3.23 (95%CI: 1.87-5.58)), and DS (3.64 (95%CI: 1.40-9.43)), respectively. Early and late 18F-FDG PET/CT response assessment in immune checkpoint inhibitors (ICI) and immune cell therapy might be an effective tool for prediction of clinical outcome. CONCLUSION For anti-CD20 therapy of lymphoma, the MTV as a baseline 18F-FDG PET/CT-derived parameter has the highest HRs for PFS and OS. The DS as visual criteria in early and late response assessment has higher HRs for PFS and OS compared to the international harmonization project (IHP) visual criteria in anti-CD20 therapy. Early changes in 18F-FDG PET parameters may be predictive of response to ICIs and cell therapy in lymphoma patients.
Collapse
Affiliation(s)
- Zahra Kiamanesh
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narjess Ayati
- Department of Nuclear Medicine, Ultrasound & PET, Sydney Westmead Hospital, Sydney, NSW, Australia.,Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eliza Hawkes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Medical Oncology & Clinical Haematology, Austin Health, Heidelberg, VIC, Australia.,School of Public Health & Preventative Medicine, Monash University, Melbourne, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Victoria, Australia. .,Department of Medicine, University of Melbourne, Victoria, Australia. .,Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
41
|
Caballero AC, Escribà-Garcia L, Alvarez-Fernández C, Briones J. CAR T-Cell Therapy Predictive Response Markers in Diffuse Large B-Cell Lymphoma and Therapeutic Options After CART19 Failure. Front Immunol 2022; 13:904497. [PMID: 35874685 PMCID: PMC9299440 DOI: 10.3389/fimmu.2022.904497] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Immunotherapy with T cells genetically modified with chimeric antigen receptors (CARs) has shown significant clinical efficacy in patients with relapsed/refractory B-cell lymphoma. Nevertheless, more than 50% of treated patients do not benefit from such therapy due to either absence of response or further relapse. Elucidation of clinical and biological features that would predict clinical response to CART19 therapy is of paramount importance and eventually may allow for selection of those patients with greater chances of response. In the last 5 years, significant clinical experience has been obtained in the treatment of diffuse large B-cell lymphoma (DLBCL) patients with CAR19 T cells, and major advances have been made on the understanding of CART19 efficacy mechanisms. In this review, we discuss clinical and tumor features associated with response to CART19 in DLBCL patients as well as the impact of biological features of the infusion CART19 product on the clinical response. Prognosis of DLBCL patients that fail CART19 is poor and therapeutic approaches with new drugs are also discussed.
Collapse
Affiliation(s)
- Ana Carolina Caballero
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Escribà-Garcia
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Carmen Alvarez-Fernández
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Javier Briones
- Hematology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Laboratory of Experimental Hematology-IIB, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Campus Sant Pau, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Breen WG, Hathcock MA, Young JR, Kowalchuk RO, Bansal R, Khurana A, Bennani NN, Paludo J, Villasboas Bisneto JC, Wang Y, Ansell SM, Peterson JL, Johnston PB, Lester SC, Lin Y. Metabolic characteristics and prognostic differentiation of aggressive lymphoma using one-month post-CAR-T FDG PET/CT. J Hematol Oncol 2022; 15:36. [PMID: 35346315 PMCID: PMC8962609 DOI: 10.1186/s13045-022-01256-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND F-18 fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) is used to assess response of non-Hodgkin lymphoma (NHL) to chimeric antigen receptor T cell (CAR-T) therapy. We sought to describe metabolic and volumetric PET prognostic factors at one month post-CAR-T and identify which patients with partial response (PR) or stable disease (SD) are most likely to subsequently achieve complete response (CR), and which will develop progressive disease (PD) and death. METHODS Sixty-nine patients with NHL received axicabtagene ciloleucel CAR-T therapy. One-month post-CAR-T infusion and PET/CT scans were segmented with a fixed absolute SUV maximum (SUVMax) threshold of 2.5 using a semiautomated workflow with manual modification to exclude physiologic uptake as needed. Metabolic tumor volume (MTV), total lesion glycolysis (TLG), SUVMax, and other lesion characteristics were calculated and associated with risk of PD and death. RESULTS Patients with total MTV > 180 cc, presence of bone or parenchymal disease, SUVMax > 10, single lesion TLG > 245 g, or > 2 total lesions had increased risk of death. Patients with total MTV > 55 cc, total TLG > 250 cc, SUV Max > 10, or > 2 total lesions had increased risk of PD. For the subset of 28 patients with PR/SD, higher SUVMax was associated with increased risk of subsequent PD and death. While 86% of patients who had SUVMax ≥ 10 eventually had PD (HR 3.63, 1.13-11.66, p = 0.03), only 36% of those with SUVMax < 10 had PD. CONCLUSIONS Higher SUVMax at one month post-CAR-T is associated with higher risk of PD and death. SUVMax ≥ 10 may be useful in guiding early salvage treatment decisions in patients with SD/PR at one month.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew A Hathcock
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jason R Young
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Radhika Bansal
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arushi Khurana
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jose C Villasboas Bisneto
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yucai Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Patrick B Johnston
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
43
|
Lymphoma pseudoprogression observed on [18F]FDG PET-CT scan 15 days after CAR-T infusion. Eur J Nucl Med Mol Imaging 2022; 49:2447-2449. [PMID: 35146579 DOI: 10.1007/s00259-022-05722-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 11/04/2022]
|
44
|
Zhou Y, Li J, Zhang X, Jia T, Zhang B, Dai N, Sang S, Deng S. Prognostic Value of Radiomic Features of 18F-FDG PET/CT in Patients With B-Cell Lymphoma Treated With CD19/CD22 Dual-Targeted Chimeric Antigen Receptor T Cells. Front Oncol 2022; 12:834288. [PMID: 35198451 PMCID: PMC8858981 DOI: 10.3389/fonc.2022.834288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveIn the present study, we aimed to evaluate the prognostic value of PET/CT-derived radiomic features for patients with B-cell lymphoma (BCL), who were treated with CD19/CD22 dual-targeted chimeric antigen receptor (CAR) T cells. Moreover, we explored the relationship between baseline radiomic features and the occurrence probability of cytokine release syndrome (CRS).MethodsA total of 24 BCL patients who received 18F-FDG PET/CT before CAR T-cell infusion were enrolled in the present study. Radiomic features from PET and CT images were extracted using LIFEx software, and the least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful predictive features of progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic curves, Cox proportional hazards model, and Kaplan-Meier curves were conducted to assess the potential prognostic value.ResultsContrast extracted from neighbourhood grey-level different matrix (NGLDM) was an independent predictor of PFS (HR = 15.16, p = 0.023). MYC and BCL2 double-expressor (DE) was of prognostic significance for PFS (HR = 7.02, p = 0.047) and OS (HR = 10.37, p = 0.041). The combination of NGLDM_ContrastPET and DE yielded three risk groups with zero (n = 7), one (n = 11), or two (n = 6) factors (p < 0.0001 and p = 0.0004, for PFS and OS), respectively. The PFS was 85.7%, 63.6%, and 0%, respectively, and the OS was 100%, 90.9%, and 16.7%, respectively. Moreover, there was no significant association between PET/CT variables and CRS.ConclusionsIn conclusion, radiomic features extracted from baseline 18F-FDG PET/CT images in combination with genomic factors could predict the survival outcomes of BCL patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Changshu No. 2 People’s Hospital, Changshu, China
| | - Tongtong Jia
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Dai
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| | - Shengming Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Shengming Deng, ; Shibiao Sang,
| |
Collapse
|
45
|
Boursier C, Perrin M, Bordonne M, Campidelli A, Verger A. Early 18F-FDG PET Flare-up Phenomenon After CAR T-Cell Therapy in Lymphoma. Clin Nucl Med 2022; 47:e152-e153. [PMID: 34406181 DOI: 10.1097/rlu.0000000000003870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT 18F-FDG PET/CT imaging series were acquired on a 64-year-old woman with refractory diffuse large B lymphoma to monitor chimeric antigen receptor (CAR) T-cell therapy. Because of a clinical deterioration, 18F-FDG PET/CT performed 8 days after CAR T-cell therapy suggested an early flare-up phenomenon with new lymph node involvement, lymph node progression while a decrease in metabolic tumor volume. The 18F-FDG PET/CT 1 month after CAR T-cell therapy confirmed this hypothesis. Pseudoprogression in solid tumors treated by immunotherapy has generally been reported later after treatment.
Collapse
Affiliation(s)
- Caroline Boursier
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | - Mathieu Perrin
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | - Manon Bordonne
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | | | | |
Collapse
|
46
|
Bailly C, Carlier T, Tessoulin B, Gastinne T, Kraeber-Bodere F, Le Gouill S, Bodet-Milin C. Prognostic value of FDG-PET response for patient selection before CAR-T-cells therapy in non-Hodgkin lymphoma. Hematol Oncol 2022; 40:796-800. [PMID: 35044695 DOI: 10.1002/hon.2965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CD19-targeting chimeric antigen receptor (CAR)-T-cells have changed the landscape of immunotherapy in relapsed or refractory (R/R) B-cell non-Hodgkin's lymphoma (NHL). The selection of candidates for this therapy remains essential and 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (FDG-PET/CT) role is still to be defined. Forty patients with R/R NHL treated with CAR-T-cells, who underwent FDG-PET/CT imaging, at the time of enrollment, showing R/R disease (FDG-PET/CTbaseline ) and before CAR-T-cells injection (FDG-PET/CTpre-infusion ) were retrospectively reviewed. All patients had active disease on FDG-PET/CTbaseline . Patients achieving objective response (complete or partial response) according to Lugano Criteria on FDG-PET/CTpre-infusion had significantly longer Event Free Survival (EFS) in comparison to other patients (median EFS: not reached vs 2.1 months; p=0.0001). Although significant higher SUVmax, whole-body functional volume (MTV) and whole-body total lesion glycolysis (TLG) were observed in non-responding patients, FDG-PET/CTpre-infusion response appeared as the main prognostic factor on multivariate logistic regression outweighing PET metrics or clinico-biological biomarkers. These results underlie the need to integrate FDG-PET/CT results into patient selection for CAR-T-cells treatment to improve disease management in identifying patients who might not benefit from this therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Clément Bailly
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Thomas Carlier
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Benoit Tessoulin
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Haematology Department, University Hospital, 44093, Nantes, France
| | - Thomas Gastinne
- Haematology Department, University Hospital, 44093, Nantes, France
| | - Françoise Kraeber-Bodere
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| | - Steven Le Gouill
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Haematology Department, University Hospital, 44093, Nantes, France
| | - Caroline Bodet-Milin
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, F-44000 Nantes, France.,Nuclear Medicine Unit, University Hospital, 44093, Nantes, France
| |
Collapse
|
47
|
Results of a UK real world study of polatuzumab vedotin, bendamustine, and rituximab for relapsed/refractory large B-cell lymphoma. Blood Adv 2022; 6:2920-2926. [PMID: 35020818 PMCID: PMC9092410 DOI: 10.1182/bloodadvances.2021005953] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/12/2021] [Indexed: 11/20/2022] Open
Abstract
The addition of polatuzumab vedotin to bendamustine and rituximab (Pola-BR) has been shown to improve overall survival (OS) in stem cell transplant (SCT)-ineligible patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). It is also increasingly used as bridging to CAR T-cell therapy (CAR-T). We retrospectively analysed the efficacy of Pola-BR in 133 patients at 28 UK institutions. Treatment intent was bridging to CAR-T for N=40, re-induction with planned SCT for N=13 and stand-alone treatment for N=78. The overall response rate (ORR) was 57.0% (complete response (CR) 32.8%). After median 7.7 months follow-up, median PFS and OS were 4.8 months and 8.2 months respectively. For stand-alone treatment shortened PFS was associated with bulk disease (>7.5cm) (HR 2.32 (95% CI 1.23-4.38), p=0.009), >1 prior treatment (HR 2.17 (95% CI 1.19-3.95), p=0.01) and refractoriness to the last treatment (HR 3.48 (95% CI 1.79-6.76), p<0.001). For CAR-T bridging the ORR was 42.1% (CR 18.4%) and for treatment after CAR-T failure the ORR was 43.8% (CR 18.8%). These data demonstrate efficacy for Pola-BR as a treatment for SCT-ineligible patients with R/R DLBCL, help to delineate which patients may benefit most, and provide preliminary evidence of efficacy as bridging to CAR-T and after CAR-T failure.
Collapse
|
48
|
de Groot PM, Arevalo O, Shah K, Strange CD, Shroff GS, Ahuja J, Truong MT, de Groot JF, Vlahos I. Imaging Primer on Chimeric Antigen Receptor T-Cell Therapy for Radiologists. Radiographics 2022; 42:176-194. [PMID: 34990326 DOI: 10.1148/rg.210065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a recently approved breakthrough treatment that has become a new paradigm in treatment of recurrent or refractory B-cell lymphomas and pediatric or adult acute lymphoid leukemia. CAR T cells are a type of cellular immunotherapy that artificially enhances T cells to boost eradication of malignancy through activation of the native immune system. The CAR construct is a synthetically created functional cell receptor grafted onto previously harvested patient T cells, which bind to preselected tumor-associated antigens and thereby activate host immune signaling cascades to attack tumor cells. Advantages include a single treatment episode of 2-3 weeks and durable disease elimination, with remission rates of over 80%. Responses to therapy are more rapid than with conventional chemotherapy or immunotherapy, with intervening short-interval edema. CAR T-cell administration is associated with therapy-related toxic effects in a large percentage of patients, notably cytokine release syndrome, immune effect cell-associated neurotoxicity syndrome, and infections related to immunosuppression. Knowledge of the expected evolution of therapy response and potential adverse events in CAR T-cell therapy and correlation with the timeline of treatment are important to optimize patient care. Some toxic effects are radiologically evident, and familiarity with their imaging spectrum is key to avoiding misinterpretation. Other clinical toxic effects may be occult at imaging and are diagnosed on the basis of clinical assessment. Future directions for CAR T-cell therapy include new indications and expanded tumor targets, along with novel ways to capture T-cell activation with imaging. An invited commentary by Ramaiya and Smith is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Patricia M de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Octavio Arevalo
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Komal Shah
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Chad D Strange
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Girish S Shroff
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Jitesh Ahuja
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Mylene T Truong
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - John F de Groot
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| | - Ioannis Vlahos
- From the Departments of Thoracic Imaging (P.M.d.G., C.D.S., G.S.S., J.A., M.T.T., I.V.), Neuroradiology (O.A., K.S.), and Neuro-oncology (J.F.d.G.), University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1478, Houston, TX 77030
| |
Collapse
|
49
|
Gu T, Hu K, Si X, Hu Y, Huang H. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment. WIREs Mech Dis 2022; 14:e1576. [PMID: 35871757 PMCID: PMC9787013 DOI: 10.1002/wsbm.1576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptor T-cell (CAR-T) treatment has revolutionized the landscape of cancer therapy with significant efficacy on hematologic malignancy, especially in relapsed and refractory B cell malignancies. However, unexpected serious toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) still hamper its broad application. Clinical trials using CAR-T cells targeting specific antigens on tumor cell surface have provided valuable information about the characteristics of ICANS. With unclear mechanism of ICANS after CAR-T treatment, unremitting efforts have been devoted to further exploration. Clinical findings from patients with ICANS strongly indicated existence of overactivated peripheral immune response followed by endothelial activation-induced blood-brain barrier (BBB) dysfunction, which triggers subsequent central nervous system (CNS) inflammation and neurotoxicity. Several animal models have been built but failed to fully replicate the whole spectrum of ICANS in human. Hopefully, novel and powerful technologies like single-cell analysis may help decipher the precise cellular response within CNS from a different perspective when ICANS happens. Moreover, multidisciplinary cooperation among the subjects of immunology, hematology, and neurology will facilitate better understanding about the complex immune interaction between the peripheral, protective barriers, and CNS in ICANS. This review elaborates recent findings about ICANS after CAR-T treatment from bed to bench, and discusses the potential cellular and molecular mechanisms that may promote effective management in the future. This article is categorized under: Cancer > Biomedical Engineering Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Tianning Gu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Kejia Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaohui Si
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Yongxian Hu
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - He Huang
- Bone Marrow Transplantation Centerthe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiang310003China,Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina,Institute of HematologyZhejiang UniversityHangzhou310058China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
50
|
Minson A, Hofman M, Dickinson M. A PET in a time of need: toward early PET-adapted therapy in DLBCL in first relapse. Leuk Lymphoma 2021; 63:1-4. [PMID: 34915805 DOI: 10.1080/10428194.2021.2015345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Salvage chemotherapy and autologous stem cell transplant remain a standard of care in the management of diffuse large B cell lymphoma (DLBCL) at first relapse. However, this paradigm is increasingly being challenged by novel immunotherapies, such as chimeric antigen receptor T-cells (CART-cells). Traditional positron emission tomography-based (PET) prognostication takes place after salvage and before autologous stem cell transplant (ASCT), and while useful, for many patients this information comes too late and at the expense of unnecessary toxicity. In this edition of Leukemia & Lymphoma, two groups present their findings on the use of early quantitative PET markers and the correlation with outcomes in patients embarking on second line salvage chemotherapy. These approaches have the potential to better identify patients who are destined for treatment failure and help guide appropriate sequencing of alternative therapies or the development of PET-adapted clinical trials.
Collapse
Affiliation(s)
- Adrian Minson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Hofman
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|