1
|
Yang Q, Zhang X, Zhang L, Cheng C, Zhao J. Exploring the influence of the DRD2 gene on mathematical ability: perspectives of gene association and gene-environment interaction. BMC Psychol 2024; 12:572. [PMID: 39425204 PMCID: PMC11488083 DOI: 10.1186/s40359-024-01997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Mathematical ability is influenced by genes and environment. This study focused on the effect of DRD2, a candidate gene for working memory, on mathematical ability. The results in child participants revealed associations between the DRD2 gene and mathematical ability. It was found that individual's mathematical ability was influenced by Single Nucleotide Polymorphisms (SNPs) in DRD2, both in the form of haplotypes and in the way of interaction with parental education. These findings suggest that dopaminergic genes are linked to mathematical ability. This study provides evidence for the genetic basis of mathematical ability and offers guidance for personalized intervention in mathematical education.
Collapse
Affiliation(s)
- Qing Yang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Ximiao Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Liming Zhang
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Chen Cheng
- School of Psychology, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, China
| | - Jingjing Zhao
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Apa Z, Gilsoul J, Dideberg V, Collette F. Association between executive functions and COMT Val108/158Met polymorphism among healthy younger and older adults: A preliminary study. PLoS One 2024; 19:e0303343. [PMID: 38739620 PMCID: PMC11090336 DOI: 10.1371/journal.pone.0303343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Genetic variability in the dopaminergic system could contribute to age-related impairments in executive control. In this study, we examined whether genetic polymorphism for catechol-O-methyltransferase (COMT Val158Met) is related to performance on updating, shifting and inhibition tasks. METHODS We administered a battery of executive tasks assessing updating, shifting and inhibition functions to 45 older and 55 younger healthy participants, and created composite z-scores associated to each function. Six groups were created based on genetic alleles (Val/Val, Val/Met, Met/Met) derived from the COMT gene and age (younger, older). Age and genotype effects were assessed with t-test and ANOVA (p<0.05). RESULTS A lower performance was observed in the older group for the three executive processes, and more particularly for inhibition. Moreover, older participants homozygous for the Val allele have a lower performance on the inhibition composite in comparison to younger Val/Val. CONCLUSIONS These results confirm presence of executive performance decrease in healthy aging. With regard to genetic effect, older participants seem particularly disadvantaged when they have a lower baseline dopamine level (i.e., Val/Val homozygous) that is magnified by aging, and when the executive measure emphasize the need of stable representations (as in inhibition task requiring to maintain active the instruction to not perform an automated process).
Collapse
Affiliation(s)
- Zoltan Apa
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | - Jessica Gilsoul
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | | | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| |
Collapse
|
3
|
Hartmann H, Janssen LK, Herzog N, Morys F, Fängström D, Fallon SJ, Horstmann A. Self-reported intake of high-fat and high-sugar diet is not associated with cognitive stability and flexibility in healthy men. Appetite 2023; 183:106477. [PMID: 36764221 DOI: 10.1016/j.appet.2023.106477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Animal studies indicate that a high-fat/high-sugar diet (HFS) can change dopamine signal transmission in the brain, which could promote maladaptive behavior and decision-making. Such diet-induced changes may also explain observed alterations in the dopamine system in human obesity. Genetic variants that modulate dopamine transmission have been proposed to render some individuals more prone to potential effects of HFS. The objective of this study was to investigate the association of HFS with dopamine-dependent cognition in humans and how genetic variations might modulate this potential association. Using a questionnaire assessing the self-reported consumption of high-fat/high-sugar foods, we investigated the association with diet by recruiting healthy young men that fall into the lower or upper end of that questionnaire (low fat/sugar group: LFS, n = 45; high fat/sugar group: HFS, n = 41) and explored the interaction of fat and sugar consumption with COMT Val158Met and Taq1A genotype. During functional magnetic resonance imaging (fMRI) scanning, male participants performed a working memory (WM) task that probes distractor-resistance and updating of WM representations. Logistic and linear regression models revealed no significant difference in WM performance between the two diet groups, nor an interaction with COMT Val158Met or Taq1A genotype. Neural activation in task-related brain areas also did not differ between diet groups. Independent of diet group, higher BMI was associated with lower overall accuracy on the WM task. This cross-sectional study does not provide evidence for diet-related differences in WM stability and flexibility in men, nor for a predisposition of COMT Val158Met or Taq1A genotype to the hypothesized detrimental effects of an HFS diet. Previously reported associations of BMI with WM seem to be independent of HFS intake in our male study sample.
Collapse
Affiliation(s)
- Hendrik Hartmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Lieneke K Janssen
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | - Filip Morys
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Daniel Fängström
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annette Horstmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Miranda GG, Rodrigue KM, Kennedy KM. Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Struct Funct 2021; 226:121-136. [PMID: 33179159 PMCID: PMC7855542 DOI: 10.1007/s00429-020-02169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA.
| |
Collapse
|
5
|
Vaughn KA, Hernandez AE. Becoming a balanced, proficient bilingual: Predictions from age of acquisition & genetic background. JOURNAL OF NEUROLINGUISTICS 2018; 46:69-77. [PMID: 30038460 PMCID: PMC6054315 DOI: 10.1016/j.jneuroling.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic variants related to dopamine functioning (e.g., the ANKK1/TaqIa polymorphism within the DRD2 gene and the Val158Met polymorphism within the COMT gene) have previously been shown to predict cognitive flexibility and learning (e.g., Colzato et al., 2010; Stelzel et al., 2010). Additionally, researchers have found that these genetic variants may also predict second language learning (Mamiya et al., 2016), although this relationship may change across the lifespan (Sugiura et al., 2011). The current study examined the role of the ANKK1/TaqIa and Val158Met polymorphisms along with age of second language acquisition (AoA) in order to predict levels of bilingual proficiency in Spanish-English bilinguals. Results indicated a three-way interaction such that the relationship between the genetic variants and bilingual proficiency depended on AoA. At earlier AoAs, having the genetic variant associated with higher levels of subcortical dopamine (A1+) predicted the highest levels of bilingual proficiency. At later AoAs, individuals with the genetic variant associated with cortical dopamine levels that are balanced between stability and flexibility (Val/Met) predicted the highest levels of bilingual proficiency. These results fit with theories about the development of language as a subcortical process early in life and as a cortical process later in life (Hernandez & Li, 2007), as well as the importance of both stability and flexibility in bilingual language development (Green & Abutalebi, 2013). Finally, this study raises questions about the direction of causality between bilingualism and cognitive control, which is central to the debate over the "bilingual advantage."
Collapse
|
6
|
Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S. The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 2017; 128:262-282. [PMID: 28950734 DOI: 10.1080/00207454.2017.1385614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic system plays a key role in perception, which is an important executive function of the brain. Modulation in dopaminergic system forms an important biochemical underpinning of neural mechanisms of time perception in a very wide range, from milliseconds to seconds to longer daily rhythms. Distinct types of temporal experience are poorly understood, and the relationship between processing of different intervals by the brain has received little attention. A comprehensive understanding of interval timing functions should be sought within a wider context of temporal processing, involving genetic aspects, pharmacological models, cognitive aspects, motor control and the neurological diseases with impaired dopaminergic system. Particularly, an unexplored question is whether the role of dopamine in interval timing can be integrated with the role of dopamine in non-interval timing temporal components. In this review, we explore a wider perspective of dopaminergic system, involving genetic polymorphisms, pharmacological models, executive functions and neurological diseases on the time perception. We conclude that the dopaminergic system has great participation in impact on time perception and neurobiological basis of the executive functions and neurological diseases.
Collapse
Affiliation(s)
- Victor Marinho
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Thomaz Oliveira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil.,b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Kaline Rocha
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Jéssica Ribeiro
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Francisco Magalhães
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Thalys Bento
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Giovanny R Pinto
- b Genetics and Molecular Biology Laboratory, Federal University of Piauí , Parnaíba , Brazil
| | - Bruna Velasques
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Pedro Ribeiro
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Luiza Di Giorgio
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Marco Orsini
- c Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,d Rehabilitation Science Program, Analysis of Human Movement Laboratory, Augusto Motta University Center (UNISUAM) , Rio de Janeiro , Brazil
| | - Daya S Gupta
- e Department of Biology , Camden County College , Blackwood , NJ , USA
| | - Juliana Bittencourt
- f Biomedical Engineering Program (COPPE), Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro , Brazil
| | - Victor Hugo Bastos
- g Brain Mapping and Functionality Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| | - Silmar Teixeira
- a Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI) , Parnaíba , Brazil
| |
Collapse
|
7
|
Garcia-Garcia M, Via M, Zarnowiec K, SanMiguel I, Escera C, Clemente IC. COMT and DRD2/ANKK-1 gene-gene interaction account for resetting of gamma neural oscillations to auditory stimulus-driven attention. PLoS One 2017; 12:e0172362. [PMID: 28222164 PMCID: PMC5319755 DOI: 10.1371/journal.pone.0172362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Attention capture by potentially relevant environmental stimuli is critical for human survival, yet it varies considerably among individuals. A large series of studies has suggested that attention capture may depend on the cognitive balance between maintenance and manipulation of mental representations and the flexible switch between goal-directed representations and potentially relevant stimuli outside the focus of attention; a balance that seems modulated by a prefrontostriatal dopamine pathway. Here, we examined inter-individual differences in the cognitive control of attention through studying the effects of two single nucleotide polymorphisms regulating dopamine at the prefrontal cortex and the striatum (i.e., COMTMet108/158Val and ANKK1/DRD2TaqIA) on stimulus-driven attention capture. Healthy adult participants (N = 40) were assigned to different groups according to the combination of the polymorphisms COMTMet108/158Val and ANKK1/DRD2TaqIA, and were instructed to perform on a well-established distraction protocol. Performance in individuals with a balance between prefrontal dopamine display and striatal receptor density was slowed down by the occurrence of unexpected distracting events, while those with a rather unbalanced dopamine activity were able maintain task performance with no time delay, yet at the expense of a slightly lower accuracy. This advantage, associated to their distinct genetic profiles, was paralleled by an electrophysiological mechanism of phase-resetting of gamma neural oscillation to the novel, distracting events. Taken together, the current results suggest that the epistatic interaction between COMTVal108/158Met and ANKK1/DRD2 TaqIa genetic polymorphisms lies at the basis of stimulus-driven attention capture.
Collapse
Affiliation(s)
- Manuel Garcia-Garcia
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Marc Via
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Katarzyna Zarnowiec
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Carles Escera
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- * E-mail:
| | - Immaculada C. Clemente
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| |
Collapse
|
8
|
Vai B, Riberto M, Poletti S, Bollettini I, Lorenzi C, Colombo C, Benedetti F. Catechol-O-methyltransferase Val(108/158)Met polymorphism affects fronto-limbic connectivity during emotional processing in bipolar disorder. Eur Psychiatry 2017; 41:53-59. [PMID: 28049082 DOI: 10.1016/j.eurpsy.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) inactivates catecholamines, Val/Val genotype was associated to an increased amygdala (Amy) response to negative stimuli and can influence the symptoms severity and the outcome of bipolar disorder, probably mediated by the COMT polymorphism (rs4680) interaction between cortical and subcortical dopaminergic neurotransmission. The aim of this study is to explore how rs4680 and implicit emotional processing of negative emotional stimuli could interact in affecting the Amy connectivity in bipolar depression. Forty-five BD patients (34 Met carriers vs. 11 Val/Val) underwent fMRI scanning during implicit processing of fearful and angry faces. We explore the effect of rs4680 on the strength of functional connectivity from the amygdalae to whole brain. Val/Val and Met carriers significantly differed for the connectivity between Amy and dorsolateral prefrontal cortex (DLPFC) and supramarginal gyrus. Val/Val patients showed a significant positive connectivity for all of these areas, where Met carriers presented a significant negative one for the connection between DLPFC and Amy. Our findings reveal a COMT genotype-dependent difference in corticolimbic connectivity during affective regulation, possibly identifying a neurobiological underpinning of clinical and prognostic outcome of BD. Specifically, a worse antidepressant recovery and clinical outcome previously detected in Val/Val patients could be associated to a specific increased sensitivity to negative emotional stimuli.
Collapse
Affiliation(s)
- B Vai
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy; Department of Human Studies, Libera Università Maria Ss. Assunta, Roma, Italy.
| | - M Riberto
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - S Poletti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - I Bollettini
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - C Lorenzi
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - C Colombo
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - F Benedetti
- IRCCS Ospedale San Raffaele, Department of Clinical Neurosciences, Milan, Italy; CERMAC (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
9
|
Impact of DRD2/ANKK1 and COMT Polymorphisms on Attention and Cognitive Functions in Schizophrenia. PLoS One 2017; 12:e0170147. [PMID: 28085950 PMCID: PMC5235377 DOI: 10.1371/journal.pone.0170147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cognitive deficits such as poor selective attention and executive functions decline have been reported in patients with schizophrenia. Many studies have emphasized the role of dopamine in regulating cognitive functions in the general population as well as in schizophrenia. However, the relationship between cognitive processes, schizophrenia and dopaminergic candidate genes is an original approach given interesting results. The purpose of the current exploratory study was to examine the interaction of dopaminergic genes (coding for dopamine receptor D2, DRD2, and for Catecholamine-O-Methyl-Transferase, COMT) with the diagnostic of schizophrenia in (i) the executive control of attention, (ii) selective attention, and (iii) executive functions. METHODS AND RESULTS We recruited 52 patients with schizophrenia and 53 healthy controls who performed the Stroop Color-Word Test, the Attention Network Test and the Wisconsin Card Sorting test. Four single nucleotide polymorphisms (SNPs) in the DRD2 gene (rs6275, rs6277, rs2242592 and rs1800497) and two SNPs in the COMT gene (rs4680 and rs165599) have been genotyped. Patients with schizophrenia performed significantly worse than controls in all cognitive performance, taking into account demographic variables. A significant gene by disease interaction was found for the Stroop interference (p = 0.002) for rs6275 of the DRD2 gene. The COMT Val/Val genotype and schizophrenia were associated with increased number of perseverative errors (p = 0.01). CONCLUSIONS In our study, the DRD2 gene is involved in attention while the COMT gene is implicated in executive functions in patients with schizophrenia.
Collapse
|
10
|
Xu J, Qin W, Li Q, Li W, Liu F, Liu B, Jiang T, Yu C. Prefrontal Volume Mediates Effect ofCOMTPolymorphism on Interference Resolution Capacity in Healthy Male Adults. Cereb Cortex 2016; 27:5211-5221. [DOI: 10.1093/cercor/bhw301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
|
11
|
Cade BE, Gottlieb DJ, Lauderdale DS, Bennett DA, Buchman AS, Buxbaum SG, De Jager PL, Evans DS, Fülöp T, Gharib SA, Johnson WC, Kim H, Larkin EK, Lee SK, Lim AS, Punjabi NM, Shin C, Stone KL, Tranah GJ, Weng J, Yaffe K, Zee PC, Patel SR, Zhu X, Redline S, Saxena R. Common variants in DRD2 are associated with sleep duration: the CARe consortium. Hum Mol Genet 2016; 25:167-79. [PMID: 26464489 PMCID: PMC4690488 DOI: 10.1093/hmg/ddv434] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Sleep duration is implicated in the etiologies of chronic diseases and premature mortality. However, the genetic basis for sleep duration is poorly defined. We sought to identify novel genetic components influencing sleep duration in a multi-ethnic sample. Meta-analyses were conducted of genetic associations with self-reported, habitual sleep duration from seven Candidate Gene Association Resource (CARe) cohorts of over 25 000 individuals of African, Asian, European and Hispanic American ancestry. All individuals were genotyped for ∼50 000 SNPs from 2000 candidate heart, lung, blood and sleep genes. African-Americans had additional genome-wide genotypes. Four cohorts provided replication. A SNP (rs17601612) in the dopamine D2 receptor gene (DRD2) was significantly associated with sleep duration (P = 9.8 × 10(-7)). Conditional analysis identified a second DRD2 signal with opposite effects on sleep duration. In exploratory analysis, suggestive association was observed for rs17601612 with polysomnographically determined sleep latency (P = 0.002). The lead DRD2 signal was recently identified in a schizophrenia GWAS, and a genetic risk score of 11 additional schizophrenia GWAS loci genotyped on the IBC array was also associated with longer sleep duration (P = 0.03). These findings support a role for DRD2 in influencing sleep duration. Our work motivates future pharmocogenetics research on alerting agents such as caffeine and modafinil that interact with the dopaminergic pathway and further investigation of genetic overlap between sleep and neuro-psychiatric traits.
Collapse
Affiliation(s)
- Brian E Cade
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA,
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Diane S Lauderdale
- Department of Health Studies, The University of Chicago, Chicago, IL 60637, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sarah G Buxbaum
- School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Philip L De Jager
- Department of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Tibor Fülöp
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary and Critical Care Medicine and
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Hyun Kim
- Institute of Human Genomic Study, Korea University Ansan Medical Center, Ansan 425-707, Republic of Korea
| | - Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seung Ku Lee
- Institute of Human Genomic Study, Korea University Ansan Medical Center, Ansan 425-707, Republic of Korea
| | - Andrew S Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Naresh M Punjabi
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chol Shin
- Institute of Human Genomic Study, Korea University Ansan Medical Center, Ansan 425-707, Republic of Korea, Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan 425-707, Republic of Korea
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Jia Weng
- Division of Sleep and Circadian Disorders and
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA 94107, USA, San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Phyllis C Zee
- Department of Neurology and Sleep Medicine Center, Northwestern University, Chicago, IL 60611, USA
| | - Sanjay R Patel
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA, Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Xu J, Qin W, Liu B, Jiang T, Yu C. Interactions of genetic variants reveal inverse modulation patterns of dopamine system on brain gray matter volume and resting-state functional connectivity in healthy young adults. Brain Struct Funct 2015; 221:3891-3901. [PMID: 26498330 PMCID: PMC5065899 DOI: 10.1007/s00429-015-1134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Different genotypic combinations of COMT and DRD2 can generate multiple subgroups with different levels of dopamine signaling. Its modulations on brain properties can be investigated by analyzing the combined gene effects of COMT and DRD2. However, the inherent association between modulation patterns of the dopamine system on structural and functional properties of the brain remains unknown. In 294 healthy young adults, we investigated both additive and non-additive interactions of COMT and DRD2 on gray matter volume (GMV) and resting-state functional connectivity (rsFC) using a voxel-based analysis. We found a significant non-additive COMT × DRD2 interaction in the right dorsal anterior cingulate cortex (dACC), exhibiting an inverted U-shape modulation by dopamine signaling. We also found a significant non-additive COMT × DRD2 interaction in the rsFC between the right dACC and precuneus, displaying a U-shape modulation by dopamine signaling. Moreover, this rsFC was negatively correlated with the GMV of the right dACC. Although the additive interaction did not pass corrections for multiple comparisons, we also found a trend towards an inverse modulation pattern and a negative correlation between the GMV and rsFC of the right inferior frontal gyrus. No genotypic differences were detected in any assessments of the cognition, mood and personality. These findings suggest that healthy young adults without optimal dopamine signaling may maintain their normal behavioral performance via a functional compensatory mechanism in response to structural deficit due to genetic variation.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
14
|
Markett S, Montag C, Heeren B, Saryiska R, Lachmann B, Weber B, Reuter M. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network. Brain Struct Funct 2015; 221:2755-65. [PMID: 26025199 DOI: 10.1007/s00429-015-1069-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Sebastian Markett
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany.
| | | | - Behrend Heeren
- Institute for Numerical Simulation, University of Bonn, Bonn, Germany
| | - Rayna Saryiska
- Department of Psychology, University of Ulm, Ulm, Germany
| | - Bernd Lachmann
- Department of Psychology, University of Ulm, Ulm, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Life and Brain Center Bonn, Bonn, Germany
- Department of Epileptology, University Clinics Bonn, Bonn, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Weaver SM, Portelli JN, Chau A, Cristofori I, Moretti L, Grafman J. Genetic polymorphisms and traumatic brain injury: the contribution of individual differences to recovery. Brain Imaging Behav 2015; 8:420-34. [PMID: 22878895 DOI: 10.1007/s11682-012-9197-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recovery after Traumatic Brain Injury (TBI) is variable, even for patients with similar severity of brain injury. Recent research has highlighted the contribution that genetic predisposition plays in determining TBI outcome. This review considers the potential for genetic polymorphisms to influence recovery of cognitive and social processes following TBI. Limitations and considerations that researchers should make when assessing the potential impact of polymorphisms on TBI outcome are also discussed. Understanding the genetic factors that support neuroplasticity will contribute to an understanding of the variation in outcome following injury and help to identify potential targets for rehabilitation.
Collapse
Affiliation(s)
- Starla M Weaver
- Traumatic Brain Injury Research Laboratory, Kessler Foundation Research Center, 1199 Pleasant Valley Way, West Orange, NJ, 07052, USA,
| | | | | | | | | | | |
Collapse
|
16
|
Ji W, Li N, Ju K, Zheng H, Yang C, Xu P, Chen S, Cao A, Chen X, Guo L. Association of Catechol-O-methyltransferase val/met polymorphism with cognitive function in Gilles de la Tourette syndrome patients. Neurol Sci 2015; 36:561-70. [PMID: 25367405 DOI: 10.1007/s10072-014-1992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Gilles de la Tourette syndrome (GTS) is a kind of neuropsychiatric disorder with childhood onset. The cognitive dysfunction caused by GTS could affect the growth and learning of children and adolescents. The mechanism of cognitive functions was associated with dopaminergic system, thus we access the associations between polymorphism of some dopaminergic system-related genes including Catechol-O-methyltransferase (COMT) met/val, Dopamine receptor D4 (DRD4) exon III 48 bp VNTR (variable number of tandem repeats), Interleukin 1 (IL-1) Ra 86 bp and IL-1β exon 5, and cognitive functions in GTS patients. Genotyping analysis was performed through polymerase chain reaction (PCR). Test for cognitive functions of GTS patients included modified wisconsin card sorting test (WCST), trail making test, visual reproduction test, stroop test and verbal fluency test. The patients with COMT met/met genotype showed less perseverative errors in modified WCST test compared with patients with COMT val/val genotype (P < 0.05). Meanwhile, patients without allele val had better delayed memory in visual reproduction test, less errors in the stroop test and less perseverative errors in modified WCST test compared with patients with allele val (P < 0.05). However, no significant difference was found in cognitive functions among patients with different genotypes or alleles of polymorphisms of DRD4 exon III 48 bp VNTR, IL-1 Ra 86 bp and IL-1β exon 5 (P > 0.05). Polymorphism of COMT met/val was correlated with cognitive functions in GTS patients. This study provided basis for the analysis of molecular genetic pathology of cognitive dysfunctions in GTS.
Collapse
Affiliation(s)
- Weidong Ji
- Department of Psychiatry, Shanghai Changning Mental Health Center, No 299 Xiehe Road, Shanghai, 200335, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu L, Xu X, Yekeen TA, Lin K, Li W, Huo X. Assessment of association between the dopamine D2 receptor (DRD2) polymorphism and neurodevelopment of children exposed to lead. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1786-93. [PMID: 24469773 DOI: 10.1007/s11356-014-2565-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023]
Abstract
The mechanism of lead (Pb) neurotoxicity has not been illustrated over the years. People pay more attention to dopaminergic neurotransmission, specifically dopamine receptor-2 (DRD2) Taq IA polymorphism, but no consensus has been reached. A total of 258 three-year-old children in Guiyu (exposed group) and Nanao (reference group), China were examined and their concentrations of blood lead (BPb) were determined. Cognitive and language scores of children were assessed using the Bayley Scales of Infant Development, third edition (BSID-III). Genotyping for the DRD2 polymorphism was carried out using a polymerase chain reaction (PCR) re-sequencing platform. The logistic stepwise regression analysis and stepwise regression analysis was used to explore associations among lead, neurodevelopment of children, and DRD2 Taq IA categories. Median values of Pb in Guiyu was higher than that of the reference group (11.30 ± 5.38 μg/dL vs. 5.77 ± 2.51 μg/dL, P < 0.001). Compared with the reference group, children from e-waste exposed area have lower cognitive scale scores (100 ± 25 vs 120 ± 20, P < 0.001) and lower language scale scores (99.87 ± 7.52 vs 111.39 ± 7.02, P < 0.001). The three kinds of genotype, A1/A1, A1/A2, and A2/A2, had no significant influences on BPb, cognitive scores and language scores (P > 0.05). Exposure of inhabitants, especially children to Pb from informal e-waste recycling activities might have contributed to higher levels of BPb and reduced cognitive and language scores observed in local children, however, the result obtained showed no significant association between DRD2 polymorphism and neurodevelopment of children exposed to lead.
Collapse
Affiliation(s)
- Lian Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Arnold C, Gispert S, Bonig H, von Wegner F, Somasundaram S, Kell CA. Dopaminergic Modulation of Cognitive Preparation for Overt Reading: Evidence from the Study of Genetic Polymorphisms. Cereb Cortex 2015; 26:1539-1557. [DOI: 10.1093/cercor/bhu330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
19
|
Fagundo AB, Fernández-Aranda F, de la Torre R, Verdejo-García A, Granero R, Penelo E, Gené M, Barrot C, Sánchez C, Alvarez-Moya E, Ochoa C, Aymamí MN, Gómez-Peña M, Menchón JM, Jiménez-Murcia S. Dopamine DRD2/ANKK1 Taq1A and DAT1 VNTR polymorphisms are associated with a cognitive flexibility profile in pathological gamblers. J Psychopharmacol 2014; 28:1170-7. [PMID: 25237117 DOI: 10.1177/0269881114551079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Like drug addiction, pathological gambling (PG) has been associated with impairments in executive functions and alterations in dopaminergic functioning; however, the role of dopamine (DA) in the executive profile of PG remains unclear. The aim of this study was to identify whether the DRD2/ANKK1 Taq1A-rs1800497 and the DAT1-40 bp VNTR polymorphisms are associated with cognitive flexibility (measured by Wisconsin Card Sorting Test (WCST) and Trail Making Test (TMT)) and inhibition response (measured by Stroop Color and Word Test (SCWT)), in a clinical sample of 69 PG patients. Our results showed an association between DA functioning and cognitive flexibility performance. The Taq1A A1+ (A1A2/A1A1) genotype was associated with poorer TMT performance (p<0.05), while DAT1 9-repeat homozygotes displayed better WCST performance (p<0.05) than either 10-repeat homozygotes or heterozygotes. We did not find any association between the DRD2 or DAT1 polymorphisms and the inhibition response. These results suggested that pathological gamblers with genetic predispositions toward lower availability of DA and D2 receptor density are at a higher risk of cognitive flexibility difficulties. Future studies should aim to shed more light on the genetic mechanisms underlying the executive profile in PG.
Collapse
Affiliation(s)
- Ana B Fagundo
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain School of Medicine, University of Barcelona, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain Neuroscience Research Program, 'Del Mar' Hospital Medical Research Institute (IMIM), Barcelona, Spain
| | - Antonio Verdejo-García
- School of Psychology and Psychiatry, Monash University, Melbourne, VIC, Australia Institute of Neuroscience and Department of Clinical Psychology, University of Granada, Granada, Spain Red de Trastornos Adictivos [Network for Addictive Diseases], Instituto de Salud Carlos III, Madrid, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eva Penelo
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Manel Gené
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carme Barrot
- School of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Eva Alvarez-Moya
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain
| | - Cristian Ochoa
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain
| | - Maria Neus Aymamí
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain
| | - Jose M Menchón
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge (IDIBELL), Barcelona, Spain CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III [Carlos III Health Institute], Barcelona, Spain School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
O'Tuathaigh CMP, Gantois I, Waddington JL. Genetic dissection of the psychotomimetic effects of cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:33-40. [PMID: 24239593 DOI: 10.1016/j.pnpbp.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
Abstract
Cannabis use is an established risk factor for the development of schizophrenia and related psychotic disorders. Factors that may mediate susceptibility to the psychosis-inducing effects of cannabis include the age at onset of first cannabis use, genetic predisposition, as well as interaction with other environmental risk variables. Clinical and preclinical genetic studies provide increasing evidence that, in particular, genes encoding proteins implicated in dopamine signalling are implicated in the cannabis-psychosis association. In the present review, we focus on both human and animal studies which have focused on identifying the neuronal basis of these interactions. We conclude that further studies are required to provide greater mechanistic insight into the long-term and neurodevelopmental effects of cannabis use, with implications for improved understanding of the cannabis-psychosis relationship.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Medicine, University College Cork, Cork, Ireland.
| | - Ilse Gantois
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
21
|
Blum K, Schoenthaler SJ, Oscar-Berman M, Giordano J, Madigan MA, Braverman ER, Han D. Drug abuse relapse rates linked to level of education: can we repair hypodopaminergic-induced cognitive decline with nutrient therapy? PHYSICIAN SPORTSMED 2014; 42:130-45. [PMID: 24875980 DOI: 10.3810/psm.2014.05.2065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well known that athletes and other individuals who have suffered painful injuries are at increased risk for all reward deficiency syndrome (RDS) behaviors, including substance use disorder (SUD). Comparing patient demographics and relapse rates in chemical dependence programs is pertinent because demographics may affect outcomes. Increased risk for relapse and lower academic achievement were found to have a significant association in recent outcome data from a holistic treatment center (HTC) located in North Miami Beach, FL. Relapse outcomes from the Drug Addiction Treatment Outcome Study (DATOS; n = 1738) and HTC (n = 224) were compared for a 12-month period. Post-discharge relapse was reported by 26% of HTC patients and 58% of patients in DATOS. When broken out by education level-less than high school, high school diploma, college degree, and graduate degree-HTC patient relapse was 50%, 36%, 33%, and 16%, respectively, and demonstrated an inverse linear association (F = 5.702; P = 0.017). Looking at DATOS patient relapse rates broken down by educational grades/years completed, patients who attended school between 7th grade and 4 years of college also demonstrated an inverse linear association (F = 5.563; P = 0.018). Additionally, the lowest performers, patients who reported their academic performance as "not so good," had the highest relapse (F = 4.226; P = 0.04). Albeit certain limitations, compared with DATOS patients, HTC patients produced significantly larger net differences in relapse rates (X 2 = 84.09; P = 0.0001), suggesting that other variables, such as the treatment model may also affect patient relapse. Our results implicate the use of vitamin and mineral supplements coupled with a well-researched natural dopamine agonist nutrient therapy; both have been shown to improve cognition and behavior, and thus academic achievement. That relapse is highest among addicts who have less education and who report lower grades is a factor that can be useful when considering treatment type and controlled for when comparing treatment outcomes.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wittmann M. The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 2013; 14:217-23. [PMID: 23403747 DOI: 10.1038/nrn3452] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A large number of competing models exist for how the brain creates a representation of time. However, several human and animal studies point to 'climbing neural activation' as a potential neural mechanism for the representation of duration. Neurophysiological recordings in animals have revealed how climbing neural activation that peaks at the end of a timed interval underlies the processing of duration, and, in humans, climbing neural activity in the insular cortex, which is associated with feeling states of the body and emotions, may be related to the cumulative representation of time.
Collapse
Affiliation(s)
- Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Department of Empirical and Analytical Psychophysics, Wilhelmstr. 3a, 79098 Freiburg, Germany.
| |
Collapse
|
23
|
The COMT Val158Met polymorphism modulates working memory performance under acute stress. Psychoneuroendocrinology 2012; 37:1810-21. [PMID: 22503421 DOI: 10.1016/j.psyneuen.2012.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND One of the most widely studied genetic polymorphisms regarding cognitive and emotional phenotypes is the COMT Val158Met polymorphism that influences dopamine availability in the prefrontal cortex (PFC). The PFC is the key brain structure for higher cognitive functions such as working memory, as well as an important regulatory site and target of the psychoendocrine stress response. Dopamine is thought to influence PFC functions in an inverted u-shaped manner. Thus, a stress-related increase in prefrontal dopamine is hypothesized to exert differential effects on working memory performance depending on the genetically determined baseline dopamine level in the PFC. METHOD Thirty-three healthy young subjects homozygous for the COMT Val158Met polymorphism were selected from a larger pre-genotyped sample. They performed an n-back working memory task after exposure to a laboratory psychosocial stress induction paradigm (The Trier Social Stress Test for Groups; TSST-G). RESULTS Under stress, working memory performance of Met homozygotes was significantly worse than working memory performance of Val homozygotes. Importantly, this genotype effect was restricted to the medium difficulty level of the n-back task. CONCLUSION Our results demonstrate that working memory performance under stress is influenced by genetic variation in prefrontal dopamine levels. More generally, our results point to the importance of considering the complex interaction of genes, environment, and task variables.
Collapse
|
24
|
Chistiakov DA, Kekelidze ZI, Chekhonin VP. Endophenotypes as a measure of suicidality. J Appl Genet 2012; 53:389-413. [DOI: 10.1007/s13353-012-0113-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 01/07/2023]
|
25
|
Schwartz JA, Beaver KM. Examining the effects of dopamine genes on verbal IQ within and between families. J Neural Transm (Vienna) 2012; 120:477-86. [DOI: 10.1007/s00702-012-0881-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
|
26
|
Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: their interaction with obesity. PLoS One 2012; 7:e41482. [PMID: 22848508 PMCID: PMC3405092 DOI: 10.1371/journal.pone.0041482] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Obesity is a multifactorial disease caused by the interaction between genotype and environment, and it is considered to be a type of addictive alteration. The A1 allele of the DRD2/ANKK1-TaqIA gene has been associated with addictive disorders, with obesity and with the performance in executive functions. The 7 repeat allele of the DRD4 gene has likewise been associated with the performance in executive functions, as well as with addictive behaviors and impulsivity. Participants were included in the obesity group (N = 42) if their body mass index (BMI) was equal to or above 30, and in the lean group (N = 42) if their BMI was below 25. The DRD2/ANKK1-TaqIA and DRD4 VNTR polymorphisms were obtained. All subjects underwent neuropsychological assessment. Eating behavior traits were evaluated. The 'DRD2/ANKK1-TaqIA A1-allele status' had a significant effect on almost all the executive variables, but no significant 'DRD4 7R-allele status' effects were observed for any of the executive variables analyzed. There was a significant 'group' x 'DRD2/ANKK1-TaqIA A1-allele status' interaction effect on LN and 'group' x 'DRD4 7R-allele status' interaction effect on TMT B-A score. Being obese and a carrier of the A1 allele of DRD2/ANKK1-TaqIA or the 7R allele of DRD4 VNTR polymorphisms could confer a weakness as regards the performance of executive functions.
Collapse
|
27
|
Weaver SM, Chau A, Portelli JN, Grafman J. Genetic polymorphisms influence recovery from traumatic brain injury. Neuroscientist 2012; 18:631-44. [PMID: 22402485 DOI: 10.1177/1073858411435706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traumatic brain injury (TBI) is a major public health concern in both civilian and military populations. Recently, genetics studies have begun to identify individual differences in polymorphisms that could affect recovery and outcome of cognitive and social processes following TBI. This review considers the potential for polymorphisms to influence six specific cognitive and social functions, which represent the most prominent domains of impairment following TBI: working memory, executive function, decision making, inhibition and impulsivity, aggression, and social and emotional function. Examining the influence of polymorphisms on TBI outcome has the potential to contribute to an understanding of variations in TBI outcome, aid in the triaging and treatment of TBI patients, and ultimately lead to targeted interventions based on genetic profiles.
Collapse
Affiliation(s)
- Starla M Weaver
- Traumatic Brain Injury Research Laboratory, Kessler Foundation Research Center, West Orange, NJ 07052, USA. kesllerfoundation.org
| | | | | | | |
Collapse
|
28
|
Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Çevik MÖ. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 2012; 62:1221-9. [DOI: 10.1016/j.neuropharm.2011.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
29
|
Taylor J. Heritability of Wisconsin Card Sorting Test (WCST) and Stroop Color-Word Test Performance in Normal Individuals: Implications for the Search for Endophenotypes. Twin Res Hum Genet 2012; 10:829-34. [DOI: 10.1375/twin.10.6.829] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAsurge in the search for endophenotypes for psychiatric disorders has occurred in the past several years. An important criterion of an endophenotype is that it is heritable. Two of the most widely used executive cognitive functioning measures are the Wisconsin Card Sorting Test (WCST) and the Stroop Color-Word Test. Each has been considered as a possible endophenotype. However, research on the heritability of each of these measures is sparse, and in the case of the WCST, mixed. As part of a pilot twin study examining cognitive functioning and personality in adults, the WCST and the Stroop were administered to 80 monozygotic and 29 dizygotic twin pairs screened for absence of neurological disease and head injury. Results replicated and extended previous findings for moderate heritability of Stroop performance. However, the WCST showed little evidence of genetic influence, suggesting that it might not meet one of the criteria for an endophenotype.
Collapse
|
30
|
Abstract
OBJECTIVE The literature on the genetics of stuttering is reviewed with special reference to the historical development from psychosocial explanations leading up to current biological research of gene identification. SUMMARY A gradual progression has been made from the early crude methods of counting percentages of stuttering probands who have relatives who stutter to recent studies using entire genomes of DNA collected from each participant. Despite the shortcomings of some early studies, investigators have accumulated a substantial body of data showing a large presence of familial stuttering. This encouraged more refined research in the form of twin studies. Concordance rates among twins were sufficiently high to lend additional support to the genetic perspective of stuttering. More sophisticated aggregation studies and segregation analyses followed, producing data that matched recognized genetic models, providing the final ‘go ahead’ to proceed from the behavior/statistical genetics into the sphere of biological genetics. Recent linkage and association studies have begun to reveal contributing genes to the disorder. CONCLUSION No definitive findings have been made regarding which transmission model, chromosomes, genes, or sex factors are involved in the expression of stuttering in the population at large. Future research and clinical implications are discussed.
Collapse
|
31
|
Agostino PV, Golombek DA, Meck WH. Unwinding the molecular basis of interval and circadian timing. Front Integr Neurosci 2011; 5:64. [PMID: 22022309 PMCID: PMC3196210 DOI: 10.3389/fnint.2011.00064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/30/2011] [Indexed: 12/01/2022] Open
Abstract
Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, frequencies. Two of the main processes under study are the interval timer (seconds-to-minute range) and the circadian clock. The molecular basis of these two mechanisms is the subject of intense research, as well as their possible relationship. This article summarizes data from studies investigating a possible interaction between interval and circadian timing and reviews the molecular basis of both mechanisms, including the discussion of the contribution from studies of genetically modified animal models. While there is currently no common neurochemical substrate for timing mechanisms in the brain, circadian modulation of interval timing suggests an interaction of different frequencies in cerebral temporal processes.
Collapse
Affiliation(s)
- Patricia V Agostino
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes Buenos Aires, Argentina
| | | | | |
Collapse
|
32
|
On the molecular genetics of flexibility: The case of task-switching, inhibitory control and genetic variants. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:644-51. [DOI: 10.3758/s13415-011-0058-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Kordas K, Ettinger AS, Bellinger DC, Schnaas L, Rojo MMT, Hernández-Avila M, Hu H, Wright RO. A dopamine receptor (DRD2) but not dopamine transporter (DAT1) gene polymorphism is associated with neurocognitive development of Mexican preschool children with lead exposure. J Pediatr 2011; 159:638-43. [PMID: 21592505 PMCID: PMC3158955 DOI: 10.1016/j.jpeds.2011.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 02/01/2011] [Accepted: 03/21/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of prenatal and postnatal lead exposure and polymorphisms in dopamine metabolism genes on neurocognitive development of Mexican children at 24 months (n = 220) and 48 months (n = 186) of age. STUDY DESIGN We genotyped the dopamine transporter gene (DAT1; SLC6A3) variable nucleotide tandem repeat and the dopamine receptor D2 (DRD2) Taq1A single nucleotide polymorphism. Children were assessed at 24 months with Bayley Scales of Infant Development (Mental Development Index and Psychomotor Development Index) and at 48 months with McCarthy Scales of Children's Abilities. RESULTS Blood lead concentration (BLL) in umbilical cord was 6.6 ± 3.3 μg/dL (measured in 1995-96), 8.1 ± 4.4 μg/dL at 24 months, and 8.1 ± 3.6 μg/dL at 48 months. Cord BLL was negatively associated with Mental Development Index (P < .01) and Psychomotor Development Index (P < .1), but not McCarthy scores. The 48-month BLL, but not the 24-month BLL, was negatively associated with children's scores. Children with DRD2 TT genotype (variant) scored higher than children with CC genotype (wild type) on the Mental Development Index and McCarthy memory scale. Neither polymorphism modified the relationship between BLL (either prenatal or postnatal) and neurocognitive development. CONCLUSION Lead exposure was adversely associated with neurocognitive measures, whereas the DRD2 Taq1A TT variant was positively associated with neurocognitive measures. We found no evidence of gene-environment interactions on developmental outcomes in early childhood.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, USA.
| | | | - David C. Bellinger
- Harvard School of Public Health, Boston, MA, USA
,Children’s Hospital, Boston, MA, USA
| | | | | | | | - Howard Hu
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert O. Wright
- Harvard School of Public Health, Boston, MA, USA
,Channing Laboratory, Boston, MA, USA
| |
Collapse
|
34
|
Garcia-Garcia M, Barceló F, Clemente I, Escera C. COMT and ANKK1 gene–gene interaction modulates contextual updating of mental representations. Neuroimage 2011; 56:1641-7. [DOI: 10.1016/j.neuroimage.2011.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 11/16/2022] Open
|
35
|
Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev 2011; 35:1665-86. [PMID: 21527290 DOI: 10.1016/j.neubiorev.2011.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 02/01/2023]
Abstract
Dopamine hypotheses of several psychiatric disorders are based upon the clinical benefits of drugs affecting dopamine transporter or receptors, and have prompted intensive candidate gene research within the dopaminergic system during the last two decades. The aim of this review is to survey the most important findings concerning dopaminergic gene polymorphisms in attention deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), obsessive compulsive disorder, and substance abuse. Also, genetic findings of related phenotypes, such as inattention, impulsivity, aggressive behavior, and novelty seeking personality trait are presented, because recent studies have applied quantitative trait measures using questionnaires, symptom scales, or other objective endophenotypes. Unfortunately, genetic variants with minor effects are problematic to detect in these complex inheritance disorders, often leading to contradictory results. The most consistent association findings relate to ADHD and the dopamine transporter and the dopamine D4 receptor genes. Meta-analyses also support the association between substance abuse and the D2 receptor gene. The dopamine catabolizing enzyme genes, such as monoamine oxidase (MAO) A and catechol-O-methyltransferase (COMT) genes, have been linked to aggressive behaviors.
Collapse
|
36
|
Costas J, Sanjuán J, Ramos-Ríos R, Paz E, Agra S, Tolosa A, Páramo M, Brenlla J, Arrojo M. Interaction between COMT haplotypes and cannabis in schizophrenia: a case-only study in two samples from Spain. Schizophr Res 2011; 127:22-7. [PMID: 21310591 DOI: 10.1016/j.schres.2011.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/12/2011] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
Abstract
Cannabis use is one of the environmental factors with more solid evidence contributing to schizophrenia risk, especially in genetically susceptible individuals. One of the genes that may interact with cannabis is COMT, although available data are scarce. Here, we present a case-only study of the putative COMT-cannabis interaction in schizophrenia. Two Spanish samples from Santiago de Compostela and Valencia were screened for cannabis use. One hundred and fifty five individuals from a total of 748 patients were identified as cannabis users. Five SNPs in COMT, defining three common functional haplotypes with different enzymatic activities, were genotyped and analyzed for association at the SNP, haplotype and genotype levels. An association was detected between cannabis use and low activity variants (P<0.01) in the joint analysis and results were consistent between the two samples. Schizophrenic subjects homozygous for the Met allele at rs4680 doubled the probability of lifetime prevalence of cannabis use in comparison to Val homozygous (Mantel-Haenszel OR=2.07, 95% CI: 1.27-3.26, P=0.0031, in the combined sample). These data are in contrast to those from Caspi et al. (Biol. Psychiatry 57 (2005)1117-1127) who found association between schizophrenia/schizophreniform disorder and homozygosity at the high activity Val variant of rs4680. The results of our study are discussed in the context of previous findings, suggesting the involvement of COMT polymorphisms in the association between cannabis use and schizophrenia as well as the existence of additional factors mediating this association. However, further research is needed to confirm the COMT-cannabis interaction.
Collapse
Affiliation(s)
- Javier Costas
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Markett S, Montag C, Walter NT, Reuter M. Evidence for the modality independence of the genetic epistasis between the dopaminergic and cholinergic system on working memory capacity. Eur Neuropsychopharmacol 2011; 21:216-20. [PMID: 21130611 DOI: 10.1016/j.euroneuro.2010.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/21/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
Working memory (WM) is fractionated into systems for visuospatial and phonological information. Recently, it has been shown that the dopamine d2 receptor gene DRD2 and CHRNA4, the gene coding for the nicotinic acetylcholine receptor's alpha4 subunit, interact epistatically on visuospatial WM capacity. In the present study, we show a similar interaction on phonological WM capacity in N=137 healthy subjects genotyped for two single nucleotide polymorphisms (DRD2 rs6277 and CHRNA4 rs1044396). Given the functional independence of the two systems we hypothesize that the genetic interaction targets the central executive which is the common control process for both systems.
Collapse
Affiliation(s)
- Sebastian Markett
- Department of Psychology, University of Bonn, Laboratory of Neurogenetics, University of Bonn, Kaiser-Karl-Ring 9, Bonn, Germany.
| | | | | | | |
Collapse
|
38
|
Costas J, Sanjuán J, Ramos-Ríos R, Paz E, Agra S, Ivorra JL, Páramo M, Brenlla J, Arrojo M. Heterozygosity at catechol-O-methyltransferase Val158Met and schizophrenia: new data and meta-analysis. J Psychiatr Res 2011; 45:7-14. [PMID: 20488458 DOI: 10.1016/j.jpsychires.2010.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022]
Abstract
Catechol-O-methyltransferase (COMT) has been largely studied in relation to schizophrenia susceptibility. Most studies focused on the functional single nucleotide polymorphism (SNP) rs4680 that causes a substitution of Val by Met at codon 158 of the COMT protein. Recent meta-analyses do not support an association between allelic variants at rs4680 and schizophrenia. However, the putative role of overdominance has not been tested in meta-analyses, despite its biological plausibility. In this work, we tested the overdominant model in two Spanish samples (from Valencia and Santiago de Compostela), representing a total of 762 schizophrenic patients and 1042 controls, and performed a meta-analysis of the available studies under this model. A total of 51 studies comprising 13,894 schizophrenic patients and 16,087 controls were included in the meta-analysis, that revealed a small but significant protective effect for heterozygosity at rs4680 (pooled OR=0.947, P=0.023). Post-hoc analysis on southwestern European samples suggested a stronger effect in these populations (pooled OR=0.813, P=0.0009). Thus, the COMT functional polymorphism rs4680 contributes to schizophrenia genetic susceptibility under an overdominant model, indicating that both too high and too low levels of dopamine (DA) signalling may be risk factors. This effect can be modulated by genetic background.
Collapse
Affiliation(s)
- Javier Costas
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario Universitario de Santiago, Edif. Consultas Planta 2, E-15706 Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Roy A, Hu H, Bellinger DC, Mukherjee B, Modali R, Nasaruddin K, Schwartz J, Wright RO, Ettinger AS, Palaniapan K, Balakrishnan K. Hemoglobin, lead exposure, and intelligence quotient: effect modification by the DRD2 Taq IA polymorphism. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:144-9. [PMID: 21205584 PMCID: PMC3018494 DOI: 10.1289/ehp.0901878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 09/24/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Anemia and lead exposure remain significant public health issues in many parts of the world, often occurring together. Animal studies suggest that the dopamine D2 receptor (DRD2) mediates the effects of both lead and iron on cognition and behavior. OBJECTIVE We tested the hypothesis that the DRD2 Taq IA polymorphism modifies the effects of lead and hemoglobin on intelligence quotient (IQ) among children. METHODS Blood lead and hemoglobin were assessed in 717 children 3-7 years of age attending 12 schools in Chennai, India. IQ was determined using the Binet-Kamat scales of intelligence. Genotyping for the DRD2 polymorphism was carried out using a MassARRAY iPLEX platform. Stratified analyses and interaction models, using generalized estimating equations (GEEs), were used to explore interactions between lead and hemoglobin, and DRD2 Taq IA categories [homozygous variant (A1) vs. presence of wild-type allele (A2)]. RESULTS After we controlled for potential confounders, a one-unit increase in log blood lead was associated with a decrease of 9 IQ points [95% confidence interval (CI), -18.08 to -0.16] in the homozygous-variant children (n = 73) compared with a decrease of 4 IQ points (95% CI, -7.21 to -0.69) among those with the wild-type allele (n = 644). Higher hemoglobin levels were associated with higher IQ in the children who carried the wild-type allele DRD2, but in children homozygous for the variant allele, an increase of 1 g/dL hemoglobin was associated with a decrease in 1.82 points of IQ (95% CI, -5.28 to 1.64; interaction term p-value = 0.02). CONCLUSION The results of this study suggest that the DRD2 Taq IA polymorphism disrupts the protective effect of hemoglobin on cognition and may increase the susceptibility to the deficits in IQ due to lead exposure.
Collapse
Affiliation(s)
- Ananya Roy
- Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene may be related to individual differences in cognition, likely via modulation of prefrontal dopamine catabolism. However, the available studies have yielded mixed results, possibly in part because they do not consistently account for other genes that affect cognition. We hypothesized that COMT Met allele homozygosity, which is associated with higher levels of prefrontal dopamine, would predict better executive function as measured using standard neuropsychological testing, and that other candidate genes might interact with COMT to modulate this effect. Participants were 95 healthy, right-handed adults who underwent genotyping and cognitive testing. COMT genotype predicted executive ability as measured by the Trail-Making Test, even after covarying for demographics and Apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), and ankyrin repeat and kinase domain containing 1 (ANKK1) genotype. There was a COMT-ANKK1 interaction in which individuals having both the COMT Val allele and the ANKK1 T allele showed the poorest performance. This study suggests the heterogeneity in COMT effects reported in the literature may be due in part to gene-gene interactions that influence central dopaminergic systems.
Collapse
|
41
|
Walter NT, Markett SA, Montag C, Reuter M. A genetic contribution to cooperation: dopamine-relevant genes are associated with social facilitation. Soc Neurosci 2010; 6:289-301. [PMID: 21061227 DOI: 10.1080/17470919.2010.527169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Social loafing and social facilitation are stable behavioral effects that describe increased or decreased motivation, as well as effort and cooperation in teamwork as opposed to individual working situations. Recent twin studies demonstrate the heritability of cooperative behavior. Brain imaging studies have shown that reciprocity, cooperativeness, and social rewards activate reward processing areas with strong dopaminergic input, such as the ventral striatum. Thus, candidate genes for social behavior are hypothesized to affect dopaminergic neurotransmission. In the present study, we investigated the dopaminergic genetic contribution to social cooperation, especially to social loafing and social facilitation. N = 106 healthy, Caucasian subjects participated in the study and were genotyped for three polymorphisms relevant to the dopaminergic system (COMTval158met, DRD2 c957t, DRD2 rs#2283265). In addition to a main effect indicating an increased performance in teamwork situations, we found a significant interaction between a haplotype block covering both DRD2 single nucleotide polymorphisms (SNPs) (rs#6277 and rs#2283265), henceforth referred to as the DRD2-haplotype block, and the COMT val158met polymorphism (rs#4680) with social facilitation. Carriers of the DRD2 CT-haplotype block and at least one Val-allele showed a greater increase in performance in teamwork settings when compared with carriers of the CT-haplotype block and the Met/Met-genotype. Our results suggest that epistasis between COMTval158met and the two DRD2 SNPs contributes to individual differences in cooperativeness in teamwork settings.
Collapse
Affiliation(s)
- Nora T Walter
- Department of Psychology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
42
|
Rosa EC, Dickinson D, Apud J, Weinberger DR, Elvevåg B. COMT Val158Met polymorphism, cognitive stability and cognitive flexibility: an experimental examination. Behav Brain Funct 2010; 6:53. [PMID: 20836853 PMCID: PMC2945991 DOI: 10.1186/1744-9081-6-53] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022] Open
Abstract
Background Dopamine in prefrontal cortex (PFC) modulates core cognitive processes, notably working memory and executive control. Dopamine regulating genes and polymorphisms affecting PFC - including Catechol-O-Methyltransferase (COMT) Val158Met - are crucial to understanding the molecular genetics of cognitive function and dysfunction. A mechanistic account of the COMT Val158Met effect associates the Met allele with increased tonic dopamine transmission underlying maintenance of relevant information, and the Val allele with increased phasic dopamine transmission underlying the flexibility of updating new information. Thus, consistent with some earlier work, we predicted that Val carriers would display poorer performance when the maintenance component was taxed, while Met carriers would be less efficient when rapid updating was required. Methods Using a Stroop task that manipulated level of required cognitive stability and flexibility, we examined reaction time performance of patients with schizophrenia (n = 67) and healthy controls (n = 186) genotyped for the Val/Met variation. Results In both groups we found a Met advantage for tasks requiring cognitive stability, but no COMT effect when a moderate level of cognitive flexibility was required, or when a conflict cost measure was calculated. Conclusions Our results do not support a simple stability/flexibility model of dopamine COMT Val/Met effects and suggest a somewhat different conceptualization and experimental operationalization of these cognitive components.
Collapse
Affiliation(s)
- Elise C Rosa
- Clinical Brain Disorders Branch, National Institute of Mental Heath/National Institutes of Health, 10 Center Drive, MSC 1379, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Genetic variation in catechol-O-methyltransferase (COMT), encoding an enzyme critical for prefrontal dopamine flux, has been studied extensively using both behavioral and neuroimaging methods. In behavior, pleiotropic action of a functional Val(158)Met (rs4680) polymorphism on executive cognition and emotional stability has been described and proposed to be of evolutionary significance (the 'warrior/worrier' hypothesis). We conducted a meta-analysis of all available neuroimaging studies of rs4680 to investigate the evidence for a neural substrate of this behavioral pleiotropy. We show significant association between the COMT genotype and prefrontal activation, with large (d=0.73) effect size without evidence for publication bias. Strong and opposing effects were found for executive cognition paradigms (favoring Met allele carriers) and emotional paradigms (favoring Val), providing meta-analytical evidence for a neural substrate for the pleiotropic behavioral effects of COMT genetic variation and validating the use of intermediate phenotypes as a method to bridge between genes and behavior.
Collapse
|
44
|
Association Between Polymorphisms of the Dopamine Receptor D2 and Catechol-o-Methyl Transferase Genes and Cognitive Function. Behav Genet 2010; 40:630-8. [DOI: 10.1007/s10519-010-9372-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
45
|
Holmboe K, Nemoda Z, Fearon RMP, Csibra G, Sasvari-Szekely M, Johnson MH. Polymorphisms in dopamine system genes are associated with individual differences in attention in infancy. Dev Psychol 2010; 46:404-16. [PMID: 20210499 PMCID: PMC3276838 DOI: 10.1037/a0018180] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine(1)methionine (Val 158 Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3; variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.
Collapse
Affiliation(s)
- Karla Holmboe
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 2009; 34:631-48. [PMID: 20026110 DOI: 10.1016/j.neubiorev.2009.12.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 11/26/2022]
Abstract
Human adolescence has been characterized by increases in risk-taking, emotional lability, and deficient patterns of behavioral regulation. These behaviors have often been attributed to changes in brain structure that occur during this developmental period, notably alterations in gray and white matter that impact synaptic architecture in frontal, limbic, and striatal regions. In this review, we provide a rationale for considering that these behaviors may be due to changes in dopamine system activity, particularly overactivity, during adolescence relative to either childhood or adulthood. This rationale relies on animal data due to limitations in assessing neurochemical activity more directly in juveniles. Accordingly, we also present a strategy that incorporates molecular genetic techniques to infer the status of the underlying tone of the dopamine system across developmental groups. Implications for the understanding of adolescent behavioral development are discussed.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
47
|
Reuter M, Montag C, Peters K, Kocher A, Kiefer M. The modulatory influence of the functional COMT Val158Met polymorphism on lexical decisions and semantic priming. Front Hum Neurosci 2009; 3:20. [PMID: 19738929 PMCID: PMC2737487 DOI: 10.3389/neuro.09.020.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/31/2009] [Indexed: 11/13/2022] Open
Abstract
The role of the prefrontal Cortex (PFC) in higher cognitive functions - including working memory, conflict resolution, set shifting and semantic processing - has been demonstrated unequivocally. Despite the great heterogeneity among tasks measuring these phenotypes, due in part to the different cognitive sub-processes implied and the specificity of the stimulus material used, there is agreement that all of these tasks recruit an executive control system located in the PFC. On a biochemical level it is known that the dopaminergic system plays an important role in executive control functions. Evidence comes from molecular genetics relating the functional COMT Val158Met polymorphism to working memory and set shifting. In order determine whether this pattern of findings generalises to linguistic and semantic processing, we investigated the effects of the COMT Val158Met polymorphism in lexical decision making using masked and unmasked versions of the semantic priming paradigm on N = 104 healthy subjects. Although we observed strong priming effects in all conditions (masked priming, unmasked priming with short/long stimulus asynchronies (SOAs), direct and indirect priming), COMT was not significantly related to priming, suggesting no reliable influence on semantic processing. However, COMT Val158Met was strongly associated with lexical decision latencies in all priming conditions if considered separately, explaining between 9 and 14.5% of the variance. Therefore, the findings indicate that COMT mainly influences more general executive control functions in the PFC supporting the speed of lexical decisions.
Collapse
Affiliation(s)
- Martin Reuter
- Department of Psychology, University of Bonn Bonn, Germany
| | | | | | | | | |
Collapse
|
48
|
Ukkola LT, Onkamo P, Raijas P, Karma K, Järvelä I. Musical aptitude is associated with AVPR1A-haplotypes. PLoS One 2009; 4:e5534. [PMID: 19461995 PMCID: PMC2678260 DOI: 10.1371/journal.pone.0005534] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/28/2009] [Indexed: 12/16/2022] Open
Abstract
Artistic creativity forms the basis of music culture and music industry. Composing, improvising and arranging music are complex creative functions of the human brain, which biological value remains unknown. We hypothesized that practicing music is social communication that needs musical aptitude and even creativity in music. In order to understand the neurobiological basis of music in human evolution and communication we analyzed polymorphisms of the arginine vasopressin receptor 1A (AVPR1A), serotonin transporter (SLC6A4), catecol-O-methyltranferase (COMT), dopamin receptor D2 (DRD2) and tyrosine hydroxylase 1 (TPH1), genes associated with social bonding and cognitive functions in 19 Finnish families (n = 343 members) with professional musicians and/or active amateurs. All family members were tested for musical aptitude using the auditory structuring ability test (Karma Music test; KMT) and Carl Seashores tests for pitch (SP) and for time (ST). Data on creativity in music (composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Here we show for the first time that creative functions in music have a strong genetic component (h(2) = .84; composing h(2) = .40; arranging h(2) = .46; improvising h(2) = .62) in Finnish multigenerational families. We also show that high music test scores are significantly associated with creative functions in music (p<.0001). We discovered an overall haplotype association with AVPR1A gene (markers RS1 and RS3) and KMT (p = 0.0008; corrected p = 0.00002), SP (p = 0.0261; corrected p = 0.0072) and combined music test scores (COMB) (p = 0.0056; corrected p = 0.0006). AVPR1A haplotype AVR+RS1 further suggested a positive association with ST (p = 0.0038; corrected p = 0.00184) and COMB (p = 0.0083; corrected p = 0.0040) using haplotype-based association test HBAT. The results suggest that the neurobiology of music perception and production is likely to be related to the pathways affecting intrinsic attachment behavior.
Collapse
Affiliation(s)
- Liisa T. Ukkola
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pirre Raijas
- Sibelius Academy, DocMus Department, Helsinki, Finland
| | - Kai Karma
- Sibelius Academy, Department of Music Education, Helsinki, Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Laboratory of Molecular Genetics, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
49
|
Sabb FW, Burggren AC, Higier RG, Fox J, He J, Parker DS, Poldrack RA, Chu W, Cannon TD, Freimer NB, Bilder RM. Challenges in phenotype definition in the whole-genome era: multivariate models of memory and intelligence. Neuroscience 2009; 164:88-107. [PMID: 19450667 DOI: 10.1016/j.neuroscience.2009.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 12/22/2022]
Abstract
Refining phenotypes for the study of neuropsychiatric disorders is of paramount importance in neuroscience. Poor phenotype definition provides the greatest obstacle for making progress in disorders like schizophrenia, bipolar disorder, Attention Deficit/Hyperactivity Disorder (ADHD), and autism. Using freely available informatics tools developed by the Consortium for Neuropsychiatric Phenomics (CNP), we provide a framework for defining and refining latent constructs used in neuroscience research and then apply this strategy to review known genetic contributions to memory and intelligence in healthy individuals. This approach can help us begin to build multi-level phenotype models that express the interactions between constructs necessary to understand complex neuropsychiatric diseases. These results are available online through the http://www.phenowiki.org database. Further work needs to be done in order to provide consensus-building applications for the broadly defined constructs used in neuroscience research.
Collapse
Affiliation(s)
- F W Sabb
- Consortium for Neuropsychiatric Phenomics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
In humans, presence of an A1 allele of the DRD2/ANKK1-TaqIa polymorphism is associated with reduced expression of dopamine (DA) D(2) receptors in the striatum. Recently, it was observed that carriers of the A1 allele (A1+ subjects) showed impaired learning from negative feedback in a reinforcement learning task. Here, using functional MRI (fMRI), we investigated carriers and noncarriers of the A1 allele while they performed a probabilistic reversal learning task. A1+ subjects showed subtle deficits in reversal learning. In particular, these deficits consisted of an impairment in sustaining the newly rewarded response after a reversal and in a generally decreased tendency to stick with a rewarded response. Both genetic groups showed increased fMRI signal in response to negative feedback in the rostral cingulate zone (RCZ) and anterior insula. Negative feedback that incurred a change in behavior additionally engaged the ventral striatum and a region of the midbrain consistent with the location of dopaminergic cell groups. The response of the RCZ to negative feedback increased as a function of preceding negative feedback. However, this graded response was not observed in the A1+ group. Furthermore, the A1+ group also showed diminished recruitment of the right ventral striatum and the right lateral orbitofrontal cortex (lOFC) during reversals. Together, these results suggest that a genetically driven reduction in DA D(2) receptors leads to deficient feedback integration in RCZ. This, in turn, was accompanied by impaired recruitment of the ventral striatum and the right lOFC during reversals, which might explain the behavioral differences between the genetic groups.
Collapse
|