1
|
Simmons CM, Moseley SC, Ogg JD, Zhou X, Johnson M, Wu W, Clark BJ, Wilber AA. A thalamo-parietal cortex circuit is critical for place-action coordination. Hippocampus 2023; 33:1252-1266. [PMID: 37811797 PMCID: PMC10872801 DOI: 10.1002/hipo.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
The anterior and lateral thalamus (ALT) contains head direction cells that signal the directional orientation of an individual within the environment. ALT has direct and indirect connections with the parietal cortex (PC), an area hypothesized to play a role in coordinating viewer-dependent and viewer-independent spatial reference frames. This coordination between reference frames would allow an individual to translate movements toward a desired location from memory. Thus, ALT-PC functional connectivity would be critical for moving toward remembered allocentric locations. This hypothesis was tested in rats with a place-action task that requires associating an appropriate action (left or right turn) with a spatial location. There are four arms, each offset by 90°, positioned around a central starting point. A trial begins in the central starting point. After exiting a pseudorandomly selected arm, the rat had to displace the correct object covering one of two (left versus right) feeding stations to receive a reward. For a pair of arms facing opposite directions, the reward was located on the left, and for the other pair, the reward was located on the right. Thus, each reward location had a different combination of allocentric location and egocentric action. Removal of an object was scored as correct or incorrect. Trials in which the rat did not displace any objects were scored as "no selection" trials. After an object was removed, the rat returned to the center starting position and the maze was reset for the next trial. To investigate the role of the ALT-PC network, muscimol inactivation infusions targeted bilateral PC, bilateral ALT, or the ALT-PC network. Muscimol sessions were counterbalanced and compared to saline sessions within the same animal. All inactivations resulted in decreased accuracy, but only bilateral PC inactivations resulted in increased non selecting, increased errors, and longer latency responses on the remaining trials. Thus, the ALT-PC circuit is critical for linking an action with a spatial location for successful navigation.
Collapse
Affiliation(s)
- Christine M Simmons
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Shawn C Moseley
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Jordan D Ogg
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Xinyu Zhou
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Madeline Johnson
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Wei Wu
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Aaron A Wilber
- Department of Psychology, Program of Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Hamilton JJ, Dalrymple‐Alford JC. Anterior thalamic nuclei: A critical substrate for non-spatial paired-associate memory in rats. Eur J Neurosci 2022; 56:5014-5032. [PMID: 35985792 PMCID: PMC9804733 DOI: 10.1111/ejn.15802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
Injury or dysfunction in the anterior thalamic nuclei (ATN) may be the key contributory factor in many instances of diencephalic amnesia. Experimental ATN lesions impair spatial memory and temporal discriminations, but there is only limited support for a more general role in non-spatial memory. To extend evidence on the effects of ATN lesions, we examined the acquisition of biconditional associations between odour and object pairings presented in a runway, either with or without a temporal gap between these items. Intact adult male rats acquired both the no-trace and 10-s trace versions of this non-spatial task. Intact rats trained in the trace version showed elevated Zif268 activation in the dorsal CA1 of the hippocampus, suggesting that the temporal component recruited additional neural processing. ATN lesions completely blocked acquisition on both versions of this association-memory task. This deficit was not due to poor inhibition to non-rewarded cues or impaired sensory processing, because rats with ATN lesions were unimpaired in the acquisition of simple odour discriminations and simple object discriminations using similar task demands in the same apparatus. This evidence challenges the view that impairments in arbitrary paired-associate learning after ATN lesions require the use of multimodal spatial stimuli. It suggests that diencephalic amnesia associated with the ATN stems from degraded attention to stimulus-stimulus associations and their representation across a distributed memory system.
Collapse
Affiliation(s)
- Jennifer J. Hamilton
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| | - John C. Dalrymple‐Alford
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand,New Zealand Brain Research InstituteChristchurchNew Zealand,Brain Research New Zealand – Rangahau Roro AotearoaAucklandNew Zealand
| |
Collapse
|
3
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
4
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Perry BAL, Mitchell AS. Considering the Evidence for Anterior and Laterodorsal Thalamic Nuclei as Higher Order Relays to Cortex. Front Mol Neurosci 2019; 12:167. [PMID: 31333412 PMCID: PMC6616498 DOI: 10.3389/fnmol.2019.00167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Our memories are essential in our daily lives. The frontal and cingulate cortices, hippocampal system and medial temporal lobes are key brain regions. In addition, severe amnesia also occurs after damage or dysfunction to the anterior thalamic nuclei; this subcortical thalamic hub is interconnected to these key cortical memory structures. Behavioral, anatomical, and physiological evidence across mammalian species has shown that interactions between the anterior thalamic nuclei, cortex and hippocampal formation are vital for spatial memory processing. Furthermore, the adjacent laterodorsal thalamic nucleus (LD), interconnected to the retrosplenial cortex (RSC) and visual system, also contributes to spatial memory in mammals. However, how these thalamic nuclei contribute to memory still remains largely unknown. Fortunately, our understanding of the importance of the thalamus in cognitive processes is being redefined, as widespread evidence challenges the established view of the thalamus as a passive relay of sensory and subcortical information to the cortex. In this review article, we examine whether the anterior thalamic nuclei and the adjacent LD are suitable candidates for "higher-order" thalamic nuclei, as defined by the Sherman and Guillery model. Rather than simply relaying information to cortex, "higher-order" thalamic nuclei have a prominent role in cognition, as they can regulate how areas of the cortex interact with one another. These considerations along with a review of the latest research will be used to suggest future studies that will clarify the contributions that the anterior and LD have in supporting cortical functions during cognitive processes.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
7
|
Perry BAL, Mercer SA, Barnett SC, Lee J, Dalrymple-Alford JC. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system. Hippocampus 2017; 28:121-135. [DOI: 10.1002/hipo.22815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Brook A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Stephanie A. Mercer
- Department of Biochemistry; University of Otago; Dunedin
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Sophie C. Barnett
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Jungah Lee
- Department of Psychology; University of Canterbury; Christchurch New Zealand
| | - John C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| |
Collapse
|
8
|
Lopez J, Gamache K, Milo C, Nader K. Differential role of the anterior and intralaminar/lateral thalamic nuclei in systems consolidation and reconsolidation. Brain Struct Funct 2017; 223:63-76. [DOI: 10.1007/s00429-017-1475-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
9
|
Sanchez LM, Thompson SM, Clark BJ. Influence of Proximal, Distal, and Vestibular Frames of Reference in Object-Place Paired Associate Learning in the Rat. PLoS One 2016; 11:e0163102. [PMID: 27658299 PMCID: PMC5033391 DOI: 10.1371/journal.pone.0163102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/04/2016] [Indexed: 11/18/2022] Open
Abstract
Object-place paired associate learning has been used to test hypotheses regarding the neurobiological basis of memory in rodents. Much of this work has focused on the role of limbic and hippocampal-parahippocampal regions, as well as the use of spatial information derived from allothetic visual stimuli to determine location in an environment. It has been suggested that idiothetic self-motion (vestibular) signals and internal representations of directional orientation might play an important role in disambiguating between spatial locations when forming object-place associations, but this hypothesis has not been explicitly tested. In the present study, we investigated the relationship between allothetic (i.e., distal and proximal cues) and vestibular stimuli on performance of an object-place paired-associate task. The paired-associate task was composed of learning to discriminate between an identical pair of objects presented in 180° opposite arms of a radial arm maze. Thus, animals were required to select a particular object on the basis of spatial location (i.e., maze arm). After the animals acquired the object-place rule, a series of probe tests determined that rats utilize self-generated vestibular cues to discriminate between the two maze arms. Further, when available, animals showed a strong preference for local proximal cues associated with the maze. Together, the work presented here supports the establishment of an object-place task that requires both idiothetic and allothetic stimulus sources to guide choice behavior, and which can be used to further investigate the dynamic interactions between neural systems involved in pairing sensory information with spatial locations.
Collapse
Affiliation(s)
| | | | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
- * E-mail:
| |
Collapse
|
10
|
Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory? Neurobiol Learn Mem 2016; 133:69-78. [PMID: 27266961 DOI: 10.1016/j.nlm.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
The anterior and lateral thalamus has long been considered to play an important role in spatial and mnemonic cognitive functions; however, it remains unclear whether each region makes a unique contribution to spatial information processing. We begin by reviewing evidence from anatomical studies and electrophysiological recordings which suggest that at least one of the functions of the anterior thalamus is to guide spatial orientation in relation to a global or distal spatial framework, while the lateral thalamus serves to guide behavior in relation to a local or proximal framework. We conclude by reviewing experimental work using targeted manipulations (lesion or neuronal silencing) of thalamic nuclei during spatial behavior and single-unit recordings from neuronal representations of space. Our summary of this literature suggests that although the evidence strongly supports a working model of spatial information processing involving the anterior thalamus, research regarding the role of the lateral thalamus is limited and requires further attention. We therefore identify a number of major gaps in this research and suggest avenues of future study that could potentially solidify our understanding of the relative roles of anterior and lateral thalamic regions in spatial representation and memory.
Collapse
|
11
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
12
|
Wolff M, Faugère A, Desfosses É, Coutureau É, Marchand AR. Mediodorsal but not anterior thalamic nuclei lesions impair acquisition of a conditional discrimination task. Neurobiol Learn Mem 2015; 125:80-4. [PMID: 26254715 DOI: 10.1016/j.nlm.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
The limbic thalamus is a heterogeneous structure with distinctive cortical connectivity. A recent review suggests that the mediodorsal thalamic nucleus (MD), unlike the anterior thalamic nuclei (ATN), may be involved in selecting relevant information in tasks relying on executive functions. We compared the effects of excitotoxic lesions of the MD or the ATN on the acquisition of a simple conditional discrimination in rats. When required to choose from two levers according to auditory or visual cues, ATN rats and sham-lesioned rats performed to the same levels and displayed similar acquisition curves. Under the same conditions, MD rats' acquisition of the task was markedly delayed. This group nevertheless attained nearly normal performances after more extensive training. Furthermore, all rats learned reversal of the original discrimination at the same rate. These results highlight functional specialization within the limbic thalamus and support the notion that MD contributes to the identification of relevant dimensions in conditional tasks during the initial stages of acquisition.
Collapse
Affiliation(s)
- Mathieu Wolff
- CNRS, INCIA, UMR 5287, 33076 Bordeaux, France; Université de Bordeaux, INCIA, UMR 5287, 33076 Bordeaux, France.
| | - Angélique Faugère
- CNRS, INCIA, UMR 5287, 33076 Bordeaux, France; Université de Bordeaux, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Émilie Desfosses
- CNRS, INCIA, UMR 5287, 33076 Bordeaux, France; Université de Bordeaux, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Étienne Coutureau
- CNRS, INCIA, UMR 5287, 33076 Bordeaux, France; Université de Bordeaux, INCIA, UMR 5287, 33076 Bordeaux, France
| | - Alain R Marchand
- CNRS, INCIA, UMR 5287, 33076 Bordeaux, France; Université de Bordeaux, INCIA, UMR 5287, 33076 Bordeaux, France.
| |
Collapse
|
13
|
Voets NL, Menke RAL, Jbabdi S, Husain M, Stacey R, Carpenter K, Adcock JE. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage. Cereb Cortex 2015; 25:4584-95. [PMID: 26009613 PMCID: PMC4816801 DOI: 10.1093/cercor/bhv109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage.
Collapse
Affiliation(s)
- Natalie L Voets
- FMRIB Centre, Nuffield Department of Clinical Neurosciences Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Saad Jbabdi
- FMRIB Centre, Nuffield Department of Clinical Neurosciences
| | - Masud Husain
- FMRIB Centre, Nuffield Department of Clinical Neurosciences Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Jane E Adcock
- FMRIB Centre, Nuffield Department of Clinical Neurosciences Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
14
|
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 2015; 54:76-88. [PMID: 25757689 DOI: 10.1016/j.neubiorev.2015.03.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/21/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Recent evidence from monkey models of cognition shows that the magnocellular subdivision of the mediodorsal thalamus (MDmc) is more critical for learning new information than for retention of previously acquired information. Further, consistent evidence in animal models shows the mediodorsal thalamus (MD) contributes to adaptive decision-making. It is assumed that prefrontal cortex (PFC) and medial temporal lobes govern these cognitive processes so this evidence suggests that MD contributes a role in these cognitive processes too. Anatomically, the MD has extensive excitatory cortico-thalamo-cortical connections, especially with the PFC. MD also receives modulatory inputs from forebrain, midbrain and brainstem regions. It is suggested that the MD is a higher order thalamic relay of the PFC due to the dual cortico-thalamic inputs from layer V ('driver' inputs capable of transmitting a message) and layer VI ('modulator' inputs) of the PFC. Thus, the MD thalamic relay may support the transfer of information across the PFC via this indirect thalamic route. This review summarizes the current knowledge about the anatomy of MD as a higher order thalamic relay. It also reviews behavioral and electrophysiological studies in animals to consider how MD might support the transfer of information across the cortex during learning and decision-making. Current evidence suggests the MD is particularly important during rapid trial-by-trial associative learning and decision-making paradigms that involve multiple cognitive processes. Further studies need to consider the influence of the MD higher order relay to advance our knowledge about how the cortex processes higher order cognition.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
15
|
Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions. Neurosci Biobehav Rev 2014; 54:120-30. [PMID: 25446945 DOI: 10.1016/j.neubiorev.2014.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Today, the idea that the integrity of the limbic thalamus is necessary for normal memory functions is well established. However, if the study of thalamic patients emphasized the anterior and the mediodorsal thalamus as the critical thalamic loci supporting cognitive functions, clinical studies have so far failed to attribute a specific role to each of these regions. In view of these difficulties, we review here the experimental data conducted in rodents harboring specific lesions of each thalamic region. These data clearly indicate a major functional dissociation within the limbic thalamus. The anterior thalamus provides critical support for hippocampal functions due to its cardinal location in the Papez circuit, while the mediodorsal thalamus may signal relevant information in a circuit encompassing the basolateral amygdala and the prefrontal cortex. Interestingly, while clinical studies have suggested that diencephalic pathologies may disconnect the medial temporal lobe from the cortex, experimental studies conducted in rodent show how this may differently affect distinct temporo-thalamo-cortical circuits, sharing the same general organization but supporting dissociable functions.
Collapse
|
16
|
Dumont JR, Wright NF, Pearce JM, Aggleton JP. The impact of anterior thalamic lesions on active and passive spatial learning in stimulus controlled environments: geometric cues and pattern arrangement. Behav Neurosci 2014; 128:161-77. [PMID: 24773436 PMCID: PMC4046885 DOI: 10.1037/a0036280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 01/09/2023]
Abstract
The anterior thalamic nuclei are vital for many spatial tasks. To determine more precisely their role, the present study modified the conventional Morris watermaze task. In each of 3 experiments, rats were repeatedly placed on a submerged platform in 1 corner (the 'correct' corner) of either a rectangular pool (Experiment 1) or a square pool with walls of different appearances (Experiments 2 and 3). The rats were then released into the pool for a first test trial in the absence of the platform. In Experiment 1, normal rats distinguished the 2 sets of corners in the rectangular pool by their geometric properties, preferring the correct corner and its diagonally opposite partner. Anterior thalamic lesions severely impaired this discrimination. In Experiments 2 and 3, normal rats typically swam directly to the correct corner of the square pool on the first test trial. Rats with anterior thalamic lesions, however, often failed to initially select the correct corner, taking more time to reach that location. Nevertheless, the lesioned rats still showed a subsequent preference for the correct corner. The same lesioned rats also showed no deficits in Experiments 2 and 3 when subsequently trained to swim to the correct corner over repeated trials. The findings show how the anterior thalamic nuclei contribute to multiple aspects of spatial processing. These thalamic nuclei may be required to distinguish relative dimensions (Experiment 1) as well as translate the appearance of spatial cues when viewed for the first time from different perspectives (Experiments 2, 3).
Collapse
|
17
|
Cassel JC, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP. The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 2013; 111:34-52. [PMID: 24025745 PMCID: PMC4975011 DOI: 10.1016/j.pneurobio.2013.08.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 12/17/2022]
Abstract
The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behavior related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioral evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the effects of a stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and behavioral flexibility, in addition to general behavior and aspects of metabolism.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, Université de Strasbourg, CNRS, Faculté de Psychologie, Neuropôle de Strasbourg GDR 2905 du CNRS, 12 rue Goethe, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
18
|
Dumont JR, Amin E, Aggleton JP. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. Eur J Neurosci 2013; 39:241-56. [PMID: 24215178 PMCID: PMC4278545 DOI: 10.1111/ejn.12409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 01/03/2023]
Abstract
To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.
Collapse
Affiliation(s)
- Julie R Dumont
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | | |
Collapse
|
19
|
Mitchell AS, Chakraborty S. What does the mediodorsal thalamus do? Front Syst Neurosci 2013; 7:37. [PMID: 23950738 PMCID: PMC3738868 DOI: 10.3389/fnsys.2013.00037] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
Dense amnesia can result from damage to the medial diencephalon in humans and in animals. In humans this damage is diffuse and can include the mediodorsal nuclei of the thalamus. In animal models, lesion studies have confirmed the mediodorsal thalamus (MD) has a role in memory and other cognitive tasks, although the extent of deficits is mixed. Anatomical tracing studies confirm at least three different subgroupings of the MD: medial, central, and lateral, each differentially interconnected to the prefrontal cortex (PFC). Moreover, these subgroupings of the MD also receive differing inputs from other brain structures, including the basal ganglia thus the MD subgroupings form key nodes in interconnected frontal-striatal-thalamic neural circuits, integrating critical information within the PFC. We will provide a review of data collected from non-human primates and rodents after selective brain injury to the whole of the MD as well as these subgroupings to highlight the extent of deficits in various cognitive tasks. This research highlights the neural basis of memory and cognitive deficits associated with the subgroupings of the MD and their interconnected neural networks. The evidence shows that the MD plays a critical role in many varied cognitive processes. In addition, the MD is actively processing information and integrating it across these neural circuits for successful cognition. Having established that the MD is critical for memory and cognition, further research is required to understand how the MD specifically influences these cognitive processing carried out by the brain.
Collapse
Affiliation(s)
- Anna S. Mitchell
- Department of Experimental Psychology, Oxford UniversityOxford, UK
| | | |
Collapse
|
20
|
Mendez-Lopez M, Arias JL, Bontempi B, Wolff M. Reduced cytochrome oxidase activity in the retrosplenial cortex after lesions to the anterior thalamic nuclei. Behav Brain Res 2013; 250:264-73. [DOI: 10.1016/j.bbr.2013.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022]
|
21
|
A role for anterior thalamic nuclei in contextual fear memory. Brain Struct Funct 2013; 219:1575-86. [DOI: 10.1007/s00429-013-0586-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
|
22
|
Law LM, Smith DM. The anterior thalamus is critical for overcoming interference in a context-dependent odor discrimination task. Behav Neurosci 2013; 126:710-9. [PMID: 23025833 DOI: 10.1037/a0029698] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anterior thalamus (AT) is anatomically interconnected with the hippocampus and other structures known to be involved in memory, and the AT is involved in many of the same learning and memory functions as the hippocampus. For example, like the hippocampus, the AT is involved in spatial cognition and episodic memory. The hippocampus also has a well-documented role in contextual memory processes, but it is not known whether the AT is similarly involved in contextual memory. In the present study, we assessed the role of the AT in contextual memory processes by temporarily inactivating the AT and training rats on a recently developed context-based olfactory list learning task, which was designed to assess the use of contextual information to resolve interference. Rats were trained on one list of odor discrimination problems, followed by training on a second list in either the same context or a different context. In order to induce interference, some of the odors appeared on both lists with their predictive value reversed. Control rats that learned the two lists in different contexts performed significantly better than rats that learned the two lists in the same context. However, AT lesions completely abolished this contextual learning advantage, a result that is very similar to the effects of hippocampal inactivation. These findings demonstrate that the AT, like the hippocampus, is involved in contextual memory and suggest that the hippocampus and AT are part of a functional circuit involved in contextual memory.
Collapse
Affiliation(s)
- L Matthew Law
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Dupire A, Kant P, Mons N, Marchand AR, Coutureau E, Dalrymple-Alford J, Wolff M. A role for anterior thalamic nuclei in affective cognition: Interaction with environmental conditions. Hippocampus 2013; 23:392-404. [DOI: 10.1002/hipo.22098] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/07/2022]
|
24
|
Moreau PH, Tsenkina Y, Lecourtier L, Lopez J, Cosquer B, Wolff M, Dalrymple-Alford J, Cassel JC. Lesions of the anterior thalamic nuclei and intralaminar thalamic nuclei: place and visual discrimination learning in the water maze. Brain Struct Funct 2012; 218:657-67. [PMID: 22543509 DOI: 10.1007/s00429-012-0419-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/14/2012] [Indexed: 01/01/2023]
Abstract
Medial thalamic damage produces memory deficits in humans (e.g., Korsakoff's syndrome) and experimental animals. Both the anterior thalamic nuclei (ATN) and rostral intralaminar plus adjacent lateral thalamic nuclei (ILN/LT) have been implicated. Based on the differences in their main connections with other neural structures, we tested the prediction that ATN lesions would selectively impair acquisition of spatial location discrimination, reflecting a hippocampal system deficit, whereas ILN/LT lesions would impair acquisition of visual pattern discrimination, reflecting a striatal system deficit. Half the rats were first trained in a spatial task in a water maze before switching to a visual task in the same maze, while the remainder were tested with the reverse order of tasks. Compared with sham-operated controls, (1) rats with ATN lesions showed impaired place learning, but normal visual discrimination learning, (2) rats with ILN/LT lesions showed no deficit on either task. Rats with ATN lesions were also hyperactive when their home cage was placed in a novel room and remained more active than ILN/LT or SHAM rats for the subsequent 21 h, especially during the nocturnal phase. These findings confirmed the influence of ATN lesions on spatial learning, but failed to support the view that ILN/LT lesions disrupt striatal-dependent memory.
Collapse
Affiliation(s)
- Pierre-Henri Moreau
- Laboratoire d'Imagerie et Neurosciences Cognitives, UMR 7237, Université de Strasbourg, CNRS, IFR 37 Neurosciences, GDR CNRS 2905, 12 Rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
26
|
Hunsaker MR, Kesner RP. Transecting the dorsal fornix results in novelty detection but not temporal ordering deficits in rats. Behav Brain Res 2009; 201:192-7. [PMID: 19428633 PMCID: PMC2680774 DOI: 10.1016/j.bbr.2009.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/04/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
Abstract
It has been shown that CA1 subserves temporal ordering processes in the hippocampus. It has also recently been shown that transecting the subcortical outputs of dorsal CA1 via the dorsal fornix results in retrieval deficits similar to those seen after lesions to CA1. The present experiment was designed to evaluate the effects of disrupting CA1 subcortical outputs for the temporal processing of visual objects and for a visual object novelty detection paradigm. The results of the present study suggest that CA1 subcortical efferents are not critically involved in temporal processing of visual objects, but are critically involved in visual object novelty detection. The data also suggest that temporal processing and novelty detection may potentially be subserved by independent mechanisms in CA1.
Collapse
|
27
|
Chauveau F, Piérard C, Corio M, Célérier A, Christophe T, Vouimba RM, Guillou JL, Béracochéa D. Mediodorsal thalamic lesions block the stress-induced inversion of serial memory retrieval pattern in mice. Behav Brain Res 2009; 203:270-8. [PMID: 19464320 DOI: 10.1016/j.bbr.2009.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
This study examines the effects of ibotenic acid lesions of the mediodorsal nucleus of the thalamus (MD) on serial contextual memory retrieval in non-stress and stress conditions. Independent groups of mice learned two successive contextual serial discriminations (D1 and D2) in a four-hole board. The discriminations differed each by the color and texture of the floor. Twenty-four hours later, memory testing occurred in independent groups of mice on one of the two floors of the initial acquisition session. Half of the subjects received three electric footschocks (0.9mA, 2s) 5min prior to testing. Results showed that (i) stress induced a plasma corticosterone rise of same magnitude in sham-operated and MD-lesioned mice; (ii) non-stressed sham-operated mice accurately remembered D1 but not D2, whereas stressed sham-operated animals remembered D2 but not D1; (iii) non-stressed MD-lesioned mice exhibited a memory retrieval pattern similar to that observed in non-stressed sham-operated mice; (iv) however, the stress-induced inversion of the memory retrieval pattern was not observed in MD animals. The effects of MD lesions on memory retrieval in this task are similar to those observed in earlier studies in prefrontal cortex or amygdala-lesioned mice [Chauveau F, Piérard C, Coutan M, Drouet I, Liscia P, Béracochéa D. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory pattern in mice. Neurobiol Learn Mem 2008;90:395-403]; they are however in sharp contrast with mice exhibiting hippocampal lesions [Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. The hippocampus and prefrontal cortex are differentially involved in serial memory retrieval in non-stress and stress condition. Neurobiol Learn Mem; in press; Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. Rapid stress-induced corticosterone rise in the hippocampus reverses serial memory retrieval pattern. Hippocampus; in press]. Overall, the present findings highlight the involvement of the MD in an AMG/PFC system mediating the rapid effects of stress on serial memory retrieval.
Collapse
Affiliation(s)
- Frédéric Chauveau
- Universités de Bordeaux, Centre de Neurosciences Intégratives et Cognitives (CNIC), UMR CNRS 5228, Bâtiment de Biologie Animale, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lopez J, Wolff M, Lecourtier L, Cosquer B, Bontempi B, Dalrymple-Alford J, Cassel JC. The intralaminar thalamic nuclei contribute to remote spatial memory. J Neurosci 2009; 29:3302-6. [PMID: 19279267 PMCID: PMC6666443 DOI: 10.1523/jneurosci.5576-08.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022] Open
Abstract
Recent studies have shown that the anterior (ATN) and lateral thalamic nuclei (including the intralaminar nuclei; ILN/LT) play different roles in memory processes. These nuclei have prominent direct and indirect connections with the hippocampal system and/or the prefrontal cortex and may thus participate in the time-dependent reorganization of memory traces during systems-level consolidation. We investigated whether ATN or ILN/LT lesions in rats influenced acquisition and subsequent retrieval of spatial memory in a Morris water maze. Retrieval was assessed with a probe trial after a short (5 d, recent memory) or a long (25 d, remote memory) postacquisition delay. The ATN group showed impaired acquisition compared with the Sham controls and ILN/LT groups, which did not differ during acquisition, and exhibited no preference for the target quadrant during the recent or remote memory probe trials. In contrast, probe trial performance in rats with ILN/LT lesions differed according to the age of the memory, with accurate spatial retrieval for the recent memory probe trial but impaired retrieval during the remote memory one. These findings confirm that ATN but not ILN/LT lesions disrupt the acquisition of spatial memory and provide new evidence that the ILN/LT region contributes to remote memory processing. Thus, the lateral thalamus may modulate some aspects of remote memory formation and/or retrieval during the course of systems-level consolidation.
Collapse
Affiliation(s)
- Joëlle Lopez
- Laboratoire d'Imagerie et de Neurosciences Cognitives, Université de Strasbourg, Institut Fédératif de Recherche 37 des Neurosciences, Groupement de Recherche, Centre National de la Recherche Scientifique 2905 Neuromem, F-67000 Strasbourg, France
| | - Mathieu Wolff
- Centre de Neurosciences Intégratives et Cognitives, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5228, Université de Bordeaux 1, F-33405 Talence Cedex, France, and
| | - Lucas Lecourtier
- Laboratoire d'Imagerie et de Neurosciences Cognitives, Université de Strasbourg, Institut Fédératif de Recherche 37 des Neurosciences, Groupement de Recherche, Centre National de la Recherche Scientifique 2905 Neuromem, F-67000 Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire d'Imagerie et de Neurosciences Cognitives, Université de Strasbourg, Institut Fédératif de Recherche 37 des Neurosciences, Groupement de Recherche, Centre National de la Recherche Scientifique 2905 Neuromem, F-67000 Strasbourg, France
| | - Bruno Bontempi
- Centre de Neurosciences Intégratives et Cognitives, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5228, Université de Bordeaux 1, F-33405 Talence Cedex, France, and
| | - John Dalrymple-Alford
- Van der Veer Institute for Parkinson's and Brain Research and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Jean-Christophe Cassel
- Laboratoire d'Imagerie et de Neurosciences Cognitives, Université de Strasbourg, Institut Fédératif de Recherche 37 des Neurosciences, Groupement de Recherche, Centre National de la Recherche Scientifique 2905 Neuromem, F-67000 Strasbourg, France
| |
Collapse
|
29
|
Wolff M, Loukavenko EA, Will BE, Dalrymple-Alford JC. The extended hippocampal-diencephalic memory system: Enriched housing promotes recovery of the flexible use of spatial representations after anterior thalamic lesions. Hippocampus 2008; 18:996-1007. [DOI: 10.1002/hipo.20457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Wolff M, Gibb SJ, Cassel JC, Dalrymple-Alford JC. Anterior but not intralaminar thalamic nuclei support allocentric spatial memory. Neurobiol Learn Mem 2008; 90:71-80. [PMID: 18296080 DOI: 10.1016/j.nlm.2008.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 12/28/2007] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
Abstract
Medial thalamic damage is a common cause of severe memory disruption in humans. Both the anterior thalamic nuclei (ATN) and the intralaminar thalamic nuclei (ILN) have been suggested as primary sites of diencephalic injury underlying learning and memory deficits, but their respective roles have yet to be resolved. The present study explicitly compared two spatial memory tasks in male PVGc hooded rats with selective neurotoxic lesions to either (1) the ATN or (2) the rostral ILN (and adjacent lateral mediodorsal thalamic nuclei; ILN/LT lesions). As predicted, the ATN group, but not the ILN/LT group, exhibited clear deficits in the Morris water maze task for the initial acquisition of a fixed hidden platform and its reversal to a new position. The second task examined acquisition of egocentric spatial reference memory for a left or right body turn, using any three arms in an 8-arm water maze on any given trial; contrary to predictions, both lesion groups performed as well as the Sham group. The lack of deficits in ILN/LT rats on this second task contrasted with previous findings reporting a detrimental effect of ILN/LT lesions on egocentric working memory. The clear dissociation between the influence of ATN and ILN/LT lesions with respect to allocentric spatial reference memory in the Morris maze emphasizes that caution is required when interpreting the effects of non-ATN thalamic lesions on spatial memory when the lesions encroach substantial areas of the adjacent ATN region.
Collapse
Affiliation(s)
- Mathieu Wolff
- Van der Veer Institute for Parkinson's and Brain Research, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | | | | | |
Collapse
|
31
|
Loukavenko EA, Ottley MC, Moran JP, Wolff M, Dalrymple-Alford JC. Towards therapy to relieve memory impairment after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. Eur J Neurosci 2007; 26:3267-76. [DOI: 10.1111/j.1460-9568.2007.05879.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Rada P, Hernandez L, Hoebel BG. Feeding and systemic D-amphetamine increase extracellular acetylcholine in the medial thalamus: a possible reward enabling function. Neurosci Lett 2007; 416:184-7. [PMID: 17337121 DOI: 10.1016/j.neulet.2007.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/13/2006] [Accepted: 02/02/2007] [Indexed: 12/19/2022]
Abstract
Acetylcholine neurons that project forward from the midbrain are known to enable dopaminergic reward functions in the ventral tegmental area. The question is whether acetylcholine might also be released in the mediodorsal thalamus for the same general purposes. Rats with a microdialysis probe lodged in the mediodorsal thalamus were allowed to eat chow for 20 min after 16-h food deprivation or were given varying doses of D-amphetamine when fed ad libitum. The result in both cases was a significant increase in extracellular acetylcholine. During feeding, acetylcholine increased to 177% of baseline. In response to d-amphetamine (2.5 mg/kg), acetylcholine increased to 184%, and with a higher dose (5 mg/kg) to 400% of baseline. It is concluded that midbrain projections to limbic portions of the thalamus provide acetylcholine for behavioral activation. This cholinergic function theoretically plays a role in enabling the limbic circuits that pass through the thalamus for reinforcement of feeding and psychostimulant abuse.
Collapse
Affiliation(s)
- P Rada
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida 5101, Venezuela.
| | | | | |
Collapse
|