1
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
3
|
Kuil LE, Varkevisser TMCK, Huisman MH, Jansen M, Bunt J, Compter A, Ket H, Schagen SB, Meeteren AYNSV, Partanen M. Artificial and natural interventions for chemotherapy- and / or radiotherapy-induced cognitive impairment: A systematic review of animal studies. Neurosci Biobehav Rev 2024; 157:105514. [PMID: 38135266 DOI: 10.1016/j.neubiorev.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Cancer survivors frequently experience cognitive impairments. This systematic review assessed animal literature to identify artificial (pharmaceutical) or natural interventions (plant/endogenously-derived) to reduce treatment-related cognitive impairments. METHODS PubMed, EMBASE, PsycINFO, Web of Science, and Scopus were searched and SYRCLE's tool was used for risk of bias assessment of the 134 included articles. RESULTS High variability was observed and risk of bias analysis showed overall poor quality of reporting. Results generally showed positive effects in the intervention group versus cancer-therapy only group (67% of 156 cognitive measures), with only 15 (7%) measures reporting cognitive impairment despite intervention. Both artificial (61%) and natural (75%) interventions prevented cognitive impairment. Artificial interventions involving GSK3B inhibitors, PLX5622, and NMDA receptor antagonists, and natural interventions utilizing melatonin, curcumin, and N-acetylcysteine, showed most consistent outcomes. CONCLUSIONS Both artificial and natural interventions may prevent cognitive impairment in rodents, which merit consideration in future clinical trials. Greater consistency in design is needed to enhance the generalizability across studies, including timing of cognitive tests and description of treatments and interventions.
Collapse
Affiliation(s)
- L E Kuil
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - T M C K Varkevisser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M H Huisman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - M Jansen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bunt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A Compter
- Department of Neuro-Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - H Ket
- Universiteitsbibliotheek, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - S B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | - M Partanen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
4
|
Lal R, Dharavath RN, Chopra K. Alpha-Lipoic Acid Ameliorates Doxorubicin-Induced Cognitive Impairments by Modulating Neuroinflammation and Oxidative Stress via NRF-2/HO-1 Signaling Pathway in the Rat Hippocampus. Neurochem Res 2023:10.1007/s11064-023-03914-y. [PMID: 37017891 DOI: 10.1007/s11064-023-03914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a common complication associated with the use of chemotherapeutics. Doxorubicin (DOX) is a reactive oxygen species (ROS) producing anticancer agent capable of causing potential neurotoxic effects via cytokine-induced oxidative and nitrosative damage to brain tissues. On the other hand, alpha-lipoic acid (ALA), a nutritional supplement, is reputable for its excellent antioxidant, anti-inflammatory, and anti-apoptotic activities. Consequently, the objective of the current investigation was to examine any potential neuroprotective and memory-improving benefits of ALA against DOX-induced behavioral and neurological anomalies. DOX (2 mg/kg/week, i.p.) was administrated for 4 weeks to Sprague-Dawley rats. ALA (50, 100, and 200 mg/kg) was administered for 4 weeks. The Morris water maze (MWM) and novel objective recognition task (NORT) tests were used to assess memory function. Biochemical assays with UV-visible spectrophotometry were used to analyze oxidative stress markers [malondialdehyde (MDA), protein carbonylation (PCO)], endogenous antioxidants [reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)] and acetylcholinesterase (AChE) activity in hippocampal tissue. Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor kappa B (NF-κB)], nuclear factor erythroid 2-related factor-2 (NRF-2) and hemeoxygenase-1 (HO-1) levels were estimated using enzyme-linked immunosorbent assay (ELISA). In addition, reactive oxygen species (ROS) levels were measured in hippocampus tissue using 2-7-dichlorofluorescein-diacetate (DCFH-DA) assay with fluorimetry. ALA treatment significantly protected against DOX-induced memory impairment. Furthermore, ALA restored hippocampal antioxidants, halted DOX-induced oxidative and inflammatory insults via upregulation of NRF-2/HO-1 levels, and alleviated the increase in NF-κB expression. These results indicate that ALA offers neuroprotection against DOX-induced cognitive impairment, which could be attributed to its antioxidant potential via the NRF-2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, Pharmacology Division, UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Fidler Y, Gomes JR. Effects of a Single Dose of X-Ray Irradiation on MMP-9 Expression and Morphology of the Cerebellum Cortex of Adult Rats. CEREBELLUM (LONDON, ENGLAND) 2023; 22:240-248. [PMID: 35262839 DOI: 10.1007/s12311-022-01386-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Although radiation is a strategy widely used to inhibit cancer progression, which includes those of the neck and head, there are still few experimental reports on radiation effects in the cerebellum, particularly on the morphology of its cortex layers and on the Matrix metalloproteinases' (MMPs') expression, which, recently, seems to be involved in the progression of some mental disorders. Therefore, in the present study, we evaluated the morphology of the cerebellum close to the expression of MMP-9 from 4 up to 60 days after a 15-Gy X-ray single dose of X-ray irradiation had been applied to the heads of healthy adult male rats. The cerebellum of the control and irradiated groups was submitted for an analysis of cell Purkinje count, nuclear perimeter, and chromatin density using morphometric estimatives obtained from the Feulgen histochemistry reaction. In addition, immunolocalization and estimative for MMP-9 expression were determined in the cerebellar cortex on days 4, 9, 14, 25, and 60 after the irradiation procedure. Results demonstrated that irradiation produced a significant reduction in the total number of Purkinje cells and a reduction in their nuclear perimeter, along with an increase in chromatin condensation and visible nuclear fragmentation, which was also detected in the granular layer. MMP-9 expression was significantly increased on 4, 9, and 14 days, being detected around the Purkinje cells and in parallel fibres at the molecular layer. We conclude that the effects of a single dose of 15-Gy X-ray irradiation in the cerebellum were an increase in MMP-9 expression in the first 2 weeks after irradiation, especially surrounding the Purkinje cells and in the molecular layers, with morphological changes in the Purkinje cell and granular cell layers, suggesting a continuous cell loss throughout the days evaluated after irradiation.
Collapse
Affiliation(s)
- Yasmin Fidler
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil
| | - Jose Rosa Gomes
- Biomedical Science Post Graduate Program and Department of Structural, Genetic and Molecular Biology, University of Ponta Grossa, Avenue Carlos Cavalcanti, 4748 Campus of Uvaranas CEP, Paraná, 84030-900, Brazil.
| |
Collapse
|
6
|
Motallebzadeh E, Aghighi F, Vakili Z, Talaei SA, Mohseni M. Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats. Res Pharm Sci 2023; 18:202-209. [PMID: 36873276 PMCID: PMC9976052 DOI: 10.4103/1735-5362.367798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 09/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. Experimental approach Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. Findings/Results The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat's brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. Conclusion and implications ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Mohseni
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
7
|
Protective Potentials of Alpha-Lipoic Acid against Ionizing Radiation-Induced Brain Damage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4999306. [PMID: 36778212 PMCID: PMC9918365 DOI: 10.1155/2023/4999306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Background This study was aimed at determining the effects of alpha-lipoic acid on ionizing irradiation-induced oxidative damage and apoptosis in the brain of rats. Methods The animals were exposed to whole-brain X-radiation with a 15 Gy single dose in the absence or presence of alpha-lipoic acid (200 mg/kg body weight) pretreatment for one week. The rats were divided into four groups (5 rats in each group): vehicle control, alpha-lipoic acid alone (ALA), radiation alone (RAD), and radiation plus alpha-lipoic acid (RAD+ALA). In the next stage, malondialdehyde (MDA), nitric oxide, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain tissue of the rats were measured. Furthermore, the Western blot analysis technique was performed to assess the NOX2, NOX4, and caspase-3 protein expression levels. Results Twenty-four hours after the irradiation, MDA and nitric oxide levels in the irradiated rats were significantly higher than those in the control group (p < 0.001); however, the pretreatment with alpha-lipoic acid resulted in a significant reduction in these stress oxidative markers (p < 0.05). Moreover, a significant decrease in CAT, SOD, and GPx levels was observed in the radiation group alone compared to the control group (p < 0.01); in contrast, the activities of these antioxidant enzymes significantly increased in the radiation plus alpha-lipoic acid group in comparison to the radiation group alone (p < 0.05). The results of Western blot analysis revealed that NOX2, NOX4, and caspase-3 protein expressions significantly elevated in the irradiated rats compared to the control group (p < 0.001). The pretreatment with alpha-lipoic acid could significantly decrease the expression levels of NOX2, NOX4, and caspase-3 in comparison with the radiation group alone (p < 0.05). Conclusion According to the obtained findings, it can be mentioned that the alpha-lipoic acid pretreatment could mitigate the ionizing irradiation-induced oxidative damage and apoptosis in the brain of the rats.
Collapse
|
8
|
Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SHM, Eid NI. Neuroprotective Effect of Gold Nanoparticles and Alpha-Lipoic Acid Mixture against Radiation-Induced Brain Damage in Rats. Int J Mol Sci 2022; 23:ijms23179640. [PMID: 36077035 PMCID: PMC9456030 DOI: 10.3390/ijms23179640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.
Collapse
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-223624917
| | - Ahmed I. El-Batal
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Yara M. Amin
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Asrar M. Hawas
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Seham H. M. Hassan
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Nihad I. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
9
|
Iqubal A, Iqubal MK, Sharma S, Wasim M, Alfaleh MA, Md S, Baboota S, Ali J, Haque SE. Pathogenic mechanisms and therapeutic promise of phytochemicals and nanocarriers based drug delivery against radiotherapy-induced neurotoxic manifestations. Drug Deliv 2022; 29:1492-1511. [PMID: 35543534 PMCID: PMC9103628 DOI: 10.1080/10717544.2022.2064562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-β, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
TANBEK K, OZEROL E, YILMAZ U, YILMAZ N, GUL M, COLAK C. Alpha Lipoic Acid Decreases Neuronal Damage on Brain Tissue of STZ-Induced Diabetic Rats. Physiol Behav 2022; 248:113727. [DOI: 10.1016/j.physbeh.2022.113727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
|
11
|
Methneni N, Ezdini K, Ben Abdeljelil N, Van Loco J, Van den Houwe K, Jabeur R, Fekih Sallem O, Jaziri A, Fernandez-Serrano M, Khdary NH, Ben Mansour H. Occurrence of Textile Dyes and Metals in Tunisian Textile Dyeing Effluent: Effects on Oxidative Stress Status and Histological Changes in Balb/c Mice. Int J Mol Sci 2021; 22:ijms222212568. [PMID: 34830450 PMCID: PMC8619562 DOI: 10.3390/ijms222212568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Although it is known that textile wastewater contains highly toxic contaminants whose effects in humans represent public health problems in several countries, studies involving mammal species are scarce. This study was aimed to evaluate the toxicity profile of 90-days oral administration of textile dyeing effluent (TDE) on oxidative stress status and histological changes of male mice. The TDE was collected from the textile plant of Monastir, Tunisia and evaluated for the metals, aromatic amines, and textile dyes using analytical approaches. Metal analysis by ICP-MS showed that the tested TDE exhibited very high levels of Cr, As, and Sr, which exceeded the wastewater emission limits prescribed by WHO and Tunisian authority. The screening of TDE through UPLC-MS/MS confirmed the presence of two textile dyes: a triphenylmethane dye (Crystal violet) and a disperse azo dye (Disperse yellow 3). Exposure to TDE significantly altered the malondialdehyde (MDA), Conjugated dienes (CDs), Sulfhydryl proteins (SHP) and catalase levels in the hepatic and renal tissues. Furthermore, histopathology observation showed that hepatocellular and renal lesions were induced by TDE exposure. The present study concluded that TDE may involve induction of oxidative stress which ensues in pathological lesions in several vital organs suggesting its high toxicity. Metals and textile dyes may be associated with the observed toxicological effects of the TDE. These pollutants, which may have seeped into surrounding rivers in Monastir city, can cause severe health malaise in wildlife and humans.
Collapse
Affiliation(s)
- Nosra Methneni
- Research Unit of Analysis, Process Applied to the Environment–APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (N.M.); (O.F.S.); (A.J.)
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, 1050 Brussels, Belgium; (J.V.L.); (K.V.d.H.)
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18002 Granada, Spain;
| | - Khawla Ezdini
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir 5000, Tunisia;
| | - Nouha Ben Abdeljelil
- Department of Pathology, Fattouma Bourguiba University Hospital, Monastir 5000, Tunisia;
| | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, 1050 Brussels, Belgium; (J.V.L.); (K.V.d.H.)
| | - Kathy Van den Houwe
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, 1050 Brussels, Belgium; (J.V.L.); (K.V.d.H.)
| | - Riheb Jabeur
- Department of Matter and Life Sciences, Bretagne Sud University, IRDL, FRE CNRS 3744, CER Yves Coppens, BP573, 56000 Vannes, France;
| | - Ons Fekih Sallem
- Research Unit of Analysis, Process Applied to the Environment–APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (N.M.); (O.F.S.); (A.J.)
| | - Ahlem Jaziri
- Research Unit of Analysis, Process Applied to the Environment–APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (N.M.); (O.F.S.); (A.J.)
| | | | - Nezar H. Khdary
- King Abdulaziz City for Science and Technology (KACST), 11442 Riyadh, Saudi Arabia
- Correspondence: (N.H.K.); (H.B.M.)
| | - Hedi Ben Mansour
- Research Unit of Analysis, Process Applied to the Environment–APAE (UR17ES32) Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (N.M.); (O.F.S.); (A.J.)
- Correspondence: (N.H.K.); (H.B.M.)
| |
Collapse
|
12
|
Alpha lipoic acid ameliorates detrimental effects of maternal lipopolysaccharides exposure on prefrontal white matter in adult male offspring rats. J Chem Neuroanat 2021; 118:102038. [PMID: 34610418 DOI: 10.1016/j.jchemneu.2021.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Activation of the maternal immune system by lipopolysaccharide (LPS) increases the production of proinflammatory cytokines, free radicals, and reactive oxygen species (ROS), all of which play a significant role in the pathogenesis of many offspring neurodevelopmental disorders. Alpha Lipoic Acid (ALA) is a natural compound that has anti-inflammatory and antioxidant properties. This study was performed to assess the effect of prenatal exposure to LPS on the prefrontal white matter of rat offspring and evaluate the potential protective effects of ALA co-administration during pregnancy. METHODS Pregnant Wistar rats were randomly divided into six groups (n = 6 each group): (1) control, (2) received LPS (100 μg/kg, intraperitoneally (IP) on gestational day 9.5 (GD 9.5), (3) received ALA (20 mg/kg) from GD1 to GD11, (4) LPS+ALA received LPS on GD9.5 and ALA from GD1 to GD11, (5 and 6) received LPS and ALA vehicle respectively. In each group, 21-day old male offspring (2 male pups from each mother) was harvested, and then their prefrontal white matter was separated and prepared for the ultrastructural, stereological, and molecular assays. RESULTS In utero exposure to LPS led to a significant decrease in nerve cell counts, ultrastructural alterations in myelinated axons, and abnormal changes in genes expression of Sox10,Olig1,yrf,Wnt in the prefrontal of the rat offspring. Co-administration of ALA resulted in amelioration of those abnormal changes in the LPS rat offspring. CONCLUSION The findings of our preclinical study, explore that prenatal ALA treatment efficiently protects the nervous system against LPS induced abnormal changes in the offspring.
Collapse
|
13
|
Bekal M, Sun L, Ueno S, Moritake T. Neurobehavioral effects of acute low-dose whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:804-811. [PMID: 33982114 PMCID: PMC8438260 DOI: 10.1093/jrr/rrab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Radiation exposure has multiple effects on the brain, behavior and cognitive functions. It has been reported that high-dose (>20 Gy) radiation-induced behavior and cognitive aberration partly associated with severe tissue destruction. Low-dose (<3 Gy) exposure can occur in radiological disasters and cerebral endovascular treatment. However, only a few reports analyzed behavior and cognitive functions after low-dose irradiation. This study was undertaken to assess the relationship between brain neurochemistry and behavioral disruption in irradiated mice. The irradiated mice (0.5 Gy, 1 Gy and 3 Gy) were tested for alteration in their normal behavior over 10 days. A serotonin (5-HT), Dopamine, gamma-Aminobutyric acid (GABA) and cortisol analysis was carried out in blood, hippocampus, amygdala and whole brain tissue. There was a significant decline in the exploratory activity of mice exposed to 3 Gy and 1 Gy radiation in an open field test. We observed a significant short-term memory loss in 3 Gy and 1 Gy irradiated mice in Y-Maze. Mice exposed to 1 Gy and 3 Gy radiation exhibited increased anxiety in an elevated plus maze (EPM). The increased anxiety and memory loss patterns were also seen in 0.5 Gy irradiated mice, but the results were not statistically significant. In this study we observed that neurotransmitters are significantly altered after irradiation, but the neuronal cells in the hippocampus were not significantly affected. This study suggests that the low-dose radiation-induced cognitive impairment may be associated with the neurochemical in low-dose irradiation and unlike the high-dose scenario might not be directly related to the morphological changes in the brain.
Collapse
Affiliation(s)
- Mahesh Bekal
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Ueno
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takashi Moritake
- Corresponding author. Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Iseigaoka Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan, E-mail:
| |
Collapse
|
14
|
Sheikholeslami S, Khodaverdian S, Dorri-Giv M, Mohammad Hosseini S, Souri S, Abedi-Firouzjah R, Zamani H, Dastranj L, Farhood B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int Immunopharmacol 2021; 96:107741. [PMID: 33989970 DOI: 10.1016/j.intimp.2021.107741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiation therapy is one of the main cancer treatment modalities applied in 50-70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. METHODS A systematic search was performed following PRISMA guidelines to identify relevant literature on the "role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. RESULTS The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. CONCLUSION According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.
Collapse
Affiliation(s)
- Sahar Sheikholeslami
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Khodaverdian
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Dorri-Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Hosseini
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokoufeh Souri
- Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Zamani
- Department of Medical Physics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari Universuty, Sabzevar, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan. Iran.
| |
Collapse
|
15
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
16
|
An Iatrogenic Model of Brain Small-Vessel Disease: Post-Radiation Encephalopathy. Int J Mol Sci 2020; 21:ijms21186506. [PMID: 32899565 PMCID: PMC7555594 DOI: 10.3390/ijms21186506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
We studied 114 primitive cerebral neoplasia, that were surgically treated, and underwent radiotherapy (RT), and compared their results to those obtained by 190 patients diagnosed with subcortical vascular dementia (sVAD). Patients with any form of primitive cerebral neoplasia underwent whole-brain radiotherapy. All the tumor patients had regional field partial brain RT, which encompassed each tumor, with an average margin of 2.6 cm from the initial target tumor volume. We observed in our patients who have been exposed to a higher dose of RT (30–65 Gy) a cognitive and behavior decline similar to that observed in sVAD, with the frontal dysexecutive syndrome, apathy, and gait alterations, but with a more rapid onset and with an overwhelming effect. Multiple mechanisms are likely to be involved in radiation-induced cognitive impairment. The active site of RT brain damage is the white matter areas, particularly the internal capsule, basal ganglia, caudate, hippocampus, and subventricular zone. In all cases, radiation damage inside the brain mainly focuses on the cortical–subcortical frontal loops, which integrate and process the flow of information from the cortical areas, where executive functions are “elaborated” and prepared, towards the thalamus, subthalamus, and cerebellum, where they are continuously refined and executed. The active mechanisms that RT drives are similar to those observed in cerebral small vessel disease (SVD), leading to sVAD. The RT’s primary targets, outside the tumor mass, are the blood–brain barrier (BBB), the small vessels, and putative mechanisms that can be taken into account are oxidative stress and neuro-inflammation, strongly associated with the alteration of NMDA receptor subunit composition.
Collapse
|
17
|
Abdel Fattah S, Waly H, El-Enein AA, Kamel A, Labib H. Mesenchymal stem cells versus curcumin in enhancing the alterations in the cerebellar cortex of streptozocin-induced diabetic albino rats. The role of GFAP, PLC and α-synuclein. J Chem Neuroanat 2020; 109:101842. [PMID: 32599256 DOI: 10.1016/j.jchemneu.2020.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetes mellitus is the disease, termed either by insulin paucity or resistance and hyperglycemia. The selection of the cerebellum was built on its specific functions. The aim of this study was to investigate a comparison between the possible therapeutic effects of MSCs and curcumin against fluctuations in the cerebellar cortex of STZ-induced diabetic albino rats. MATERIALS AND METHODS Forty rats were divided into five groups: control, sham control, streptozotocin-induced diabetes, diabetes and MSCs administered and diabetes and curcumin administered. Light microscopic (H&E), immune-histochemical; Glial fibrillary acidic protein (GFAP), real-time PCR; phospholipase-C (PLC) and α-synuclein, histomorphometric analysis, oxidative / anti-oxidatants; malondialdehyde (MDA)/ superoxide dismutase (SOD) glutathione (GSH) and were made. RESULTS The histopathological examination of the STZ-induced diabetic rats revealed alterations in the molecular, purkinje and granular layers. Abnormal organizations, vacuolation, patchy loss of purkinje cells were detected. Some purkinje cells migrated into the granular layer.Hemorrhage in pia mater outspreading to cerebellar layers is discerned. Purkinje cells showed karyorrhexis. The mean value of area percentage for GFAP immune- reactivity revealed 360 % significant increase compared to that of the control group. Also, MDA level was significantly increased while the SOD and GSH levels were significantly lower when compared to the control group. Meanwhile, mean values of PLC demonstrated significant decrease, while α-synuclein levels displayed a significant increment in the diabetic group. Administration of curcumin and MSCs extremely ameliorated the previous alterations. CONCLUSION the deleterious alterations on the cerebellar cortex induced by diabetes were obviously improved when treated with either MSCs or curcumin.
Collapse
Affiliation(s)
- Shereen Abdel Fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Hafiz Waly
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Abou El-Enein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt; Faculty of Medicine KAU (Rabigh), Saudi Arabia
| | - Asmaa Kamel
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Labib
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Shahabadi N, Shiri F, Hadidi S, Kashanian S. Direct effects of low-energy electrons on including sulfur bonds in proteins: a second-order Møller-Plesset perturbation (MP2) theory approach. J Biomol Struct Dyn 2020; 39:1681-1687. [PMID: 32151206 DOI: 10.1080/07391102.2020.1740788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In an attempt to describe how low-energy electrons (LEEs) damage the polypeptide chain at disulfide bridges, ab initio electronic structure estimates on LEE interactions with cysteine-cysteine (Cys-Cys) disulfide bond model have been performed. Here, the fundamental mechanisms in LEE impression on S-S and C-S bond ruptures in the Cys-Cys model have been discussed. The electronic energy was calculated using the MP2 method with a Hartree-Fock exchange during the SCF and the Møller-Plesset correlation energy correction on the converged HF orbitals with 6-311++G(d,p) atomic orbital basis set. Further, six more sets of diffuse s and p functions with extra basis on the sulfur and relevant carbon atoms were used to describe the added electron to located away as much as possible from the nuclei in anions. The bonds rupture mechanisms involve the primary placement of LEEs to the π* orbital of the model to construct the shape-resonance state following by an adiabatic or nonadiabatic electron migration to either S-S or C-S bond σ* orbital. The formed radical anion undergoes S-S or C-S bonds cleavage by energy barriers of ca. 5.68 and 9.19 kcal/mol, respectively, to produce either (2-amino-2-carboxyethyl) sulfanyl (cysteine radical), aziridine-2-carboxylic acid or mercapto-L-cysteine lesions. In SMD solvent, calculations suggest electronically stable of the formed π* and σ* states by solvation, something that induces either S-S or C-S bond break even when the electron energy is near zero. The required barrier energy of only 0 to < 0.4 eV indicates a high kinetic favorable fragmentation for involved sulfur polypeptides with LEEs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Science, Kermanshah, Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Nano Drug Delivery Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Nakamura M, Yamasaki T, Ueno M, Shibata S, Ozawa Y, Kamada T, Nakanishi I, Yamada KI, Aoki I, Matsumoto KI. Radiation-induced redox alteration in the mouse brain. Free Radic Biol Med 2019; 143:412-421. [PMID: 31446055 DOI: 10.1016/j.freeradbiomed.2019.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Time courses of the redox status in the brains of mice after X-ray or carbon-ion beam irradiation were observed by magnetic resonance redox imaging (MRRI). The relationship between radiation-induced oxidative stress on the cerebral nervous system and the redox status in the brain was discussed. The mice were irradiated by 8-Gy X-ray or carbon-ion beam (C-beam) on their head under anesthesia. C-beam irradiation was performed at HIMAC (Heavy-Ion Medical Accelerator in Chiba, NIRS/QST, Chiba, Japan). MRRI measurements using a blood-brain-barrier-permeable nitroxyl contrast agent, MCP or TEMPOL, were performed using 7-T scanner at several different times, i.e., 5-10 h, 1, 2, 4, and 8 day(s) after irradiation. Decay rates of the nitroxyl-enhanced T1-weighted MR signals in the brains were estimated from MRRI data sets, and variation in the decay rates after irradiation was assessed. The variation in decay rates of MCP and TEMPOL after X-ray or C-beam irradiation was similar, but different variation patterns were observed between X-ray and C-beam. The apparent decay rate of both MCP and TEMPOL decreased due to the temporal reduction of blood flow in the brain several hours after X-ray and/or C-beam irradiation. After decreasing, the apparent decay rates of nitroxyl radicals in the brain gradually increased during the following days after X-ray irradiation or rapidly increased 1 day after C-beam irradiation. The sequential increase in nitroxyl decay rates may have been due to the oxidative atmosphere in the tissue due to ROS generation. X-ray and C-beam irradiation resulted in different redox responses, which may have been due to time-varying oxidative stress/injury, in the mouse brain. The C-beam irradiation effects were more acute and larger than those of X-ray irradiation.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada, Kobe, 658-8558, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshikazu Ozawa
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tadashi Kamada
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-88670, Japan; Research Center Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ichio Aoki
- Preclinical Research and Development for Functional and Molecular Imaging Group, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
20
|
Kaločayová B, Kovačičová I, Radošinská J, Tóthová Ľ, Jagmaševič‐Mézešová L, Fülöp M, Slezák J, Babál P, Janega P, Vrbjar N. Alteration of renal Na,K-ATPase in rats following the mediastinal γ-irradiation. Physiol Rep 2019; 7:e13969. [PMID: 30746862 PMCID: PMC6370683 DOI: 10.14814/phy2.13969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 11/30/2022] Open
Abstract
Na,K-ATPase represents the key enzyme that maintains the homeostasis of sodium and potassium ions in the cells. It was documented that in directly irradiated organs the activity of this enzyme is decreased. The aim of present study was to clarify the remote effect of irradiation in mediastinal area on the activity of the Na,K-ATPase in kidneys in rats. Ionizing radiation in single dose 25 Gy resulted in consequent decrease of the body weight gain as well as the size of kidneys in Wistar rats. In addition, radiation induced alterations in the oxidative status of blood plasma. Irradiation also decreased the activity of renal Na,K-ATPase. Measurements of enzyme kinetics that were dependent on the concentration of energy substrate ATP or cofactor Na+ indicated that the lowered enzyme activity is probably a consequence of decreased number of active molecules of the enzyme, as suggested by lowered Vmax values. Immunoblot analysis confirmed the lowered expression of the catalytic alpha subunit together with decreased content of the glycosylated form of beta subunit in the renal tissue of irradiated rats. The ability of the enzyme to bind the substrate ATP, as well as Na+ was not affected, as shown by unaltered values of Km and KNa . Irradiation of the body in the mediastinal area despite protection of kidneys by lead plates during application of X-ray was followed by significant decline of activity of the renal Na,K-ATPase, what may result in deteriorated homeostasis in the organism.
Collapse
Affiliation(s)
- Barbora Kaločayová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
| | - Ivona Kovačičová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
| | - Jana Radošinská
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
- Institute of PhysiologyFaculty of MedicineComenius University in BratislavaBratislavaSlovak Republic
| | - Ľubomíra Tóthová
- Institute of Molecular BiomedicineFaculty of MedicineComenius UniversityBratislavaSlovak Republic
| | - Lucia Jagmaševič‐Mézešová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
| | - Marko Fülöp
- Slovak Medical UniversityBratislavaSlovak Republic
| | - Ján Slezák
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
| | - Pavel Babál
- Institute of PathologyFaculty of MedicineComenius University in BratislavaBratislavaSlovak Republic
| | - Pavol Janega
- Institute of PathologyFaculty of MedicineComenius University in BratislavaBratislavaSlovak Republic
| | - Norbert Vrbjar
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
| |
Collapse
|
21
|
Boström M, Kalm M, Eriksson Y, Bull C, Ståhlberg A, Björk-Eriksson T, Hellström Erkenstam N, Blomgren K. A role for endothelial cells in radiation-induced inflammation. Int J Radiat Biol 2018; 94:259-271. [PMID: 29359989 DOI: 10.1080/09553002.2018.1431699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To unravel the role of the vasculature in radiation-induced brain tissue damage. MATERIALS AND METHODS Postnatal day 14 mice received a single dose of 10 Gy cranial irradiation and were sacrificed 6 h, 24 h or 7 days post-irradiation. Endothelial cells were isolated from the hippocampus and cerebellum using fluorescence-activated cell sorting, followed by cell cycle analysis and gene expression profiling. RESULTS Flow cytometric analysis revealed that irradiation increased the percentage of endothelial cells, relative to the whole cell population in both the hippocampus and the cerebellum. This change in cell distribution indicates that other cell types are more susceptible to irradiation-induced cell death, compared to endothelial cells. This was supported by data showing that genes involved in endothelial cell-specific apoptosis (e.g. Smpd1) were not induced at any time point investigated but that genes involved in cell-cycle arrest (e.g. Cdkn1a) were upregulated at all investigated time points, indicating endothelial cell repair. Inflammation-related genes, on the other hand, were strongly induced, such as Ccl2, Ccl11 and Il6. CONCLUSIONS We conclude that endothelial cells are relatively resistant to ionizing radiation but that they play an active, hitherto unknown, role in the inflammatory response after irradiation. In the current study, this was shown in both the hippocampus, where neurogenesis and extensive cell death after irradiation occurs, and in the cerebellum, where neurogenesis no longer occurs at this developmental age.
Collapse
Affiliation(s)
- Martina Boström
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Marie Kalm
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Yohanna Eriksson
- c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Cecilia Bull
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Anders Ståhlberg
- d Department of Pathology and Genetics , Sahlgrenska Cancer Centre, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Thomas Björk-Eriksson
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Nina Hellström Erkenstam
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Klas Blomgren
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,e Department of Pediatric Oncology , Karolinska University Hospital , Stockholm , Sweden.,f Department of Women's and Children's Health , Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
22
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
23
|
Kosenko EA, Tikhonova LA, Alilova GA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Portacaval shunting causes differential mitochondrial superoxide production in brain regions. Free Radic Biol Med 2017; 113:109-118. [PMID: 28964916 DOI: 10.1016/j.freeradbiomed.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 01/23/2023]
Abstract
The portacaval shunting (PCS) prevents portal hypertension and recurrent bleeding of esophageal varices. On the other hand, it can induce chronic hyperammonemia and is considered to be the best model of mild hepatic encephalopathy (HE). Pathogenic mechanisms of HE and dysfunction of the brain in hyperammonemia are not fully elucidated, but it was originally suggested that the pathogenetic defect causes destruction of antioxidant defense which leads to an increase in the production of reactive oxygen species (ROS) and the occurrence of oxidative stress. In order to gain insight into the pathogenic mechanisms of HE in the brain tissue, we investigated the effects of PCS in rats on free radicals production and activity levels of antioxidant and prooxidant enzymes in mitochondria isolated from different brain areas. We found that O2·- production, activities of Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GT), nitric oxide synthase (NOS), and levels of carbonylated proteins differed between the four brain regions both in the amount and response to PCS. In PCS rats, Mn-SOD activity in the cerebellum was significantly decreased, and remained unchanged in the neocortex, hippocampus and striatum compared with that in sham-operated animals. Among the four brain regions in control rats, the levels of the carbonyl groups in mitochondrial proteins were maximal in the cerebellum. 4 weeks after PCS, the content of carbonylated proteins were higher only in mitochondria of this brain region. Under control conditions, O2·- production by submitochondrial particles in the cerebellum was significantly higher than in other brain regions, but was significantly increased in each brain region from PCS animals. Indeed, the production of O2·- by submitochondrial particles correlated with mitochondrial ammonia levels in the four brain regions of control and PCS-animals. These findings are the first to suggest that in vivo levels of ammonia in the brain directly affect the rate of mitochondrial O2·- production.
Collapse
Affiliation(s)
- Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russia.
| | | | - Gubidat A Alilova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, Instituto Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Institute Inc., 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA 30097, USA.
| | - Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| |
Collapse
|
24
|
Cho HJ, Lee WH, Hwang OMH, Sonntag WE, Lee YW. Role of NADPH oxidase in radiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain. Int J Radiat Biol 2017; 93:1257-1266. [PMID: 28880721 DOI: 10.1080/09553002.2017.1377360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study was designed to investigate our hypothesis that NADPH oxidase plays a role in radiation-induced pro-oxidative and pro-inflammatory environments in the brain. MATERIALS AND METHODS C57BL/6 mice received either fractionated whole brain irradiation or sham-irradiation. The mRNA expression levels of pro-inflammatory mediators, such as TNF-α and MCP-1, were determined by quantitative real-time RT-PCR. The protein expression levels of TNF-α, MCP-1, NOX-2 and Iba1 were detected by immunofluorescence staining. The levels of ROS were visualized by in situ DHE fluorescence staining. RESULTS A significant up-regulation of mRNA and protein expression levels of TNF-α and MCP-1 was observed in irradiated mouse brains. Additionally, immunofluorescence staining of Iba1 showed a marked increase of microglial activation in mouse brain after irradiation. Moreover, in situ DHE fluorescence staining revealed that fractionated whole brain irradiation significantly increased production of ROS. Furthermore, a significant increase in immunoreactivity of NOX-2 was detected in mouse brain after irradiation. On the contrary, an enhanced ROS generation in mouse brain after irradiation was markedly attenuated in the presence of NOX inhibitors or NOX-2 neutralizing antibody. CONCLUSIONS These results suggest that NOX-2 may play a role in fractionated whole brain irradiation-induced pro-oxidative and pro-inflammatory pathways in mouse brain.
Collapse
Affiliation(s)
- Hyung Joon Cho
- a Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Won Hee Lee
- b Stanford Cardiovascular Institute , Stanford University , Stanford , CA , USA
| | - Olivia Min Ha Hwang
- c Department of Biomedical Engineering and Mechanics , Virginia Tech , Blacksburg , VA , USA
| | - William E Sonntag
- d Department of Geriatric Medicine , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Yong Woo Lee
- c Department of Biomedical Engineering and Mechanics , Virginia Tech , Blacksburg , VA , USA
| |
Collapse
|
25
|
Radhakrishna V, Nanilu SK, Sanjeev G, Shetty J, Somyaji YT, Moodithaya SS. Evaluation of the Potency of Kinetin on Radiation Induced Behavioural Changes in Swiss Albino Mice. J Clin Diagn Res 2017; 11:TF01-TF04. [PMID: 28893010 DOI: 10.7860/jcdr/2017/25171.10226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/27/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION According to the various independent studies conducted, it is well evident fact that radiation induces oxidative stress in the living system. It is also proved that this oxidative stress will lead to the various behavioural changes such as anxiety and memory impairment. Kinetin is one of the important plant cytokine with anti-aging properties. However, very few studies were conducted to check its potential in ameliorating the behavioural changes induced by the ionizing radiation. AIM This study was aimed to check the potential of kinetin in ameliorating the radiation induced behavioural changes in albino mice. MATERIALS AND METHODS In this study, survival analysis was performed using three different dose of kinetin intervention along with, one radiation control group and one normal control group (n=50). Based on the cumulative survival rate, single effective dose of kinetin was selected and used to evaluate the behavioural changes induced by radiation. The open field apparatus was used to evaluate the anxiety level (n=18, six in each group). Eight armed radial maze was used to evaluate the memory and learning ability in mice model. RESULTS Survival study results suggest 100 mg/kg body weight of kinetin showed highest cumulative survival rate. Therefore, this dose was selected as an effective drug dose for further study. Analysis also showed 6 Gy whole body electron beam radiation had significantly increased anxiety level, increased duration to complete the task as well as mistakes done during the task. Further, kinetin intervention had significantly ameliorated the same. CONCLUSION A 100 mg/kg body weight of kinetin intervention helps in reducing the anxiety and improves the learning ability in mice exposed to electron beam radiation.
Collapse
Affiliation(s)
- Vishakh Radhakrishna
- Research Scholar, Department of Biochemistry, Central Research Labratory, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Suchetha Kumari Nanilu
- Professor, Department of Biochemistry, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Ganesh Sanjeev
- Professor, Department of Physics and Head and In charge of Microtron Center, Mangalagangotri, Mangalore University, Mangalore, Karnataka, India
| | - Jayarama Shetty
- Professor, Department of Radiation Oncology, K. S. Hegde Charitable Hospital, Nitte University, Mangalore, Karnataka, India
| | - Yogish Tenkanidiyoor Somyaji
- Research Scholar, Department of Biochemistry, Central Research Labratory, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Shailaja Shivarama Moodithaya
- Additional Professor, Department of Physiology, K.S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| |
Collapse
|
26
|
Comparative histological study on the effect of ginger versus α-lipoic acid on the cerebellum of a male albino rat model of induced diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1097/01.ehx.0000512117.56425.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Effects of ionizing radiation on the mammalian brain. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:219-230. [DOI: 10.1016/j.mrrev.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022]
|
28
|
Akleyev AV. NORMAL TISSUE REACTIONS TO CHRONIC RADIATION EXPOSURE IN MAN. RADIATION PROTECTION DOSIMETRY 2016; 171:107-16. [PMID: 27473696 PMCID: PMC5675050 DOI: 10.1093/rpd/ncw207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents an overview of radiobiological dependences governing the occurrence of tissue (organ) reactions that determine the outcomes of chronic exposure to low-LET ionizing radiation (IR) in humans. The mechanisms involved in the development of tissue reactions (TRs) to long-term exposures to IR and radioadaptation are considered. The overview describes the reactions of the haematopoietic, immune, nervous, reproductive and endocrine systems, lungs, skin and crystalline lens to chronic radiation exposure, which are of fundamental importance in view of radiation protection. It is shown that the individual's physiological tissue (organ) reserve, and also that induced by radiation exposure at low-dose rates are of great significance in the context of TR development.
Collapse
Affiliation(s)
- A V Akleyev
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russian Federation, Chelyabinsk State University, No. 68-A, Vorovsky St., 454076 Chelyabinsk, Russia
| |
Collapse
|
29
|
Villasana LE, Weber S, Akinyeke T, Raber J. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 2016; 138:896-908. [PMID: 27412623 DOI: 10.1111/jnc.13737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.
Collapse
Affiliation(s)
- Laura E Villasana
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Weber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Tunde Akinyeke
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Jacob Raber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA. .,Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
30
|
Pani G, Verslegers M, Quintens R, Samari N, de Saint-Georges L, van Oostveldt P, Baatout S, Benotmane MA. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival. PLoS One 2016; 11:e0155260. [PMID: 27203085 PMCID: PMC4874625 DOI: 10.1371/journal.pone.0155260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight.
Collapse
Affiliation(s)
- Giuseppe Pani
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Membrane Biochemistry and Applied Nutrition, Department of Pharmacology and Bio-molecular Sciences (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Mieke Verslegers
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Nada Samari
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Louis de Saint-Georges
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
| | - Patrick van Oostveldt
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium
- * E-mail:
| |
Collapse
|
31
|
Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RHJ, Davis MJ, Eiwaz M, Fike JR, Nelson GA. Effects of Proton and Combined Proton and 56Fe Radiation on the Hippocampus. Radiat Res 2015; 185:20-30. [DOI: 10.1667/rr14222.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Antiño R. Allen
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Sourabh Sharma
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Barrett Allen
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Susanna Rosi
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | | | | | | | - John R. Fike
- Brain and Spinal Injury Center, Department of Neurological Surgery,
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, 92350
| |
Collapse
|
32
|
Tomé WA, Gökhan Ş, Gulinello ME, Brodin NP, Heard J, Mehler MF, Guha C. Hippocampal-dependent neurocognitive impairment following cranial irradiation observed in pre-clinical models: current knowledge and possible future directions. Br J Radiol 2015; 89:20150762. [PMID: 26514377 DOI: 10.1259/bjr.20150762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We reviewed the literature for studies pertaining to impaired adult neurogenesis leading to neurocognitive impairment following cranial irradiation in rodent models. This compendium was compared with respect to radiation dose, converted to equivalent dose in 2 Gy fractions (EQD2) to allow for direct comparison between studies. The effects of differences between animal species and the dependence on animal age as well as for time after irradiation were also considered. One of the major sites of de novo adult neurogenesis is the hippocampus, and as such, this review also focuses on assessing evidence related to the expression and potential effects of inflammatory cytokines on neural stem cells in the subgranular zone of the dentate gyrus and whether this correlates with neurocognitive impairment. This review also discusses potential strategies to mitigate the detrimental effects on neurogenesis and neurocognition resulting from cranial irradiation, and how the rationale for these strategies compares with the current outcome of pre-clinical studies.
Collapse
Affiliation(s)
- Wolfgang A Tomé
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria E Gulinello
- 4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - N Patrik Brodin
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - John Heard
- 2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Mark F Mehler
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.,4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
33
|
Kugelman T, Zuloaga DG, Weber S, Raber J. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behav Brain Res 2015; 298:1-11. [PMID: 26522840 DOI: 10.1016/j.bbr.2015.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.
Collapse
Affiliation(s)
- Tara Kugelman
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
34
|
Lebda MA, Gad SB, Rashed RR. The effect of lipoic acid on acrylamide-induced neuropathy in rats with reference to biochemical, hematological, and behavioral alterations. PHARMACEUTICAL BIOLOGY 2015; 53:1207-1213. [PMID: 25853975 DOI: 10.3109/13880209.2014.970288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Acrylamide (ACR) is a well-known neurotoxicant and carcinogenic agent which poses a greater risk for human and animal health. OBJECTIVE The present study evaluates the beneficial effects of α-lipoic acid (LA) on ACR-induced neuropathy. MATERIALS AND METHODS A total of 40 male rats were divided into four groups: a placebo group; LA-treated group, administered orally 1% (w/w) LA mixed with diet; ACR-treated group, given 0.05% (w/v) ACR dissolved in drinking water; and LA + ACR-treated group, given LA 1% 7 d before and along with ACR 0.05% for 21 d. After 28 d, blood samples were collected, the rats were decapitated, and the tissues were excised for the measurement of brain biomarkers, antioxidant status, and hematological analysis. Also, the gait score of rats was evaluated. RESULTS ACR-exposed rats exhibited abnormal gait deficits with significant (p < 0.05) decline in acetylcholine esterase (AChE) and creatine kinase in serum and brain tissues, respectively. However, the lactate dehydrogenase activity was increased in serum by 123%, although it decreased in brain tissues by -74%. ACR significantly (p < 0.05) increased the malondialdehyde level by 273% with subsequent depletion of glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and reduced the glutathione (GSH) level in brain tissue. Interestingly, LA significantly (p < 0.05) improved brain enzymatic biomarkers, attenuated lipid peroxidation (LPO), and increased antioxidant activities compared with the ACR-treated group. DISCUSSION AND CONCLUSION These results suggested that LA may have a role in the management of ACR-induced oxidative stress in brain tissues through its antioxidant activity, attenuation of LPO, and improvement of brain biomarkers.
Collapse
|
35
|
Bioprotective Carnitinoids: Lipoic Acid, Butyrate, and Mitochondria-Targeting to Treat Radiation Injury: Mitochondrial Drugs Come of Age. Drug Dev Res 2015; 76:167-75. [DOI: 10.1002/ddr.21258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|
36
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y, Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, Fujimori A, Uehara Y, Nakajima T, Suhara T, Nenoi M. Low-dose total-body carbon-ion irradiations induce early transcriptional alteration without late Alzheimer's disease-like pathogenesis and memory impairment in mice. J Neurosci Res 2015; 92:915-26. [PMID: 24936619 DOI: 10.1002/jnr.23363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cause and risk factors of Alzheimer's disease (AD) are largely unknown. Studies on possible radiation-induced AD-like pathogenesis and behavioral consequences are important because humans are exposed to ionizing radiation (IR) from various sources. It was reported that total-body irradiations (TBI) at 10 cGy of low linear energy transfer (LET) X-rays to mice triggered acute transcriptional alterations in genes associated with cognitive dysfunctions. However, it was unknown whether low doses of IR could induce AD-like changes late after exposure. We reported previously that 10 cGy X-rays induced early transcriptional response of several AD-related genes in hippocampi without late AD-like pathogenesis and memory impairment in mice. Here, further studies on two low doses (5 or 10 cGy) of high LET carbonion irradiations are reported. On expression of 84 AD-related genes in hippocampi, at 4 hr after TBI, 5 cGy induced a significant upregulation of three genes (Abca1, Casp3, and Chat) and 10 cGy led to a marked upregulation of one gene (Chat) and a downregulation of three genes (Apoe, Ctsd, and Il1α), and, at 1 year after TBI, one gene (Il1α) was significantly downregulated in 10 cGy-irradiated animals. Changes in spatial learning ability and memory and induction of AD-like pathogenesis were not detected by in vivo brain imaging for amyloid-β peptide accumulation and by immunohistochemical staining of amyloid precursor protein, amyloid-β protein, tau, and phosphorylated tau protein. These findings indicate that low doses of carbon-ion irradiations did not cause behavioral impairment or AD-like pathological change in mice.
Collapse
|
37
|
Greene-Schloesser DM, Kooshki M, Payne V, D'Agostino RB, Wheeler KT, Metheny-Barlow LJ, Robbins ME. Cellular response of the rat brain to single doses of (137)Cs γ rays does not predict its response to prolonged 'biologically equivalent' fractionated doses. Int J Radiat Biol 2014; 90:790-8. [PMID: 24937374 DOI: 10.3109/09553002.2014.933915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To determine if the brain's response to single doses predicts its response to 'biologically equivalent' fractionated doses. METHODS Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of (137)Cs γ rays or their 'biologically equivalent' 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively. At 2 months post-irradiation, cellular markers of inflammation (total, activated, and newborn microglia) and neurogenesis (newborn neurons) were measured in 40 μm sections of the dentate gyrus (DG). RESULTS Although the total number of microglia in the DG/hilus was not significantly different (p > 0.7) in unirradiated, single dose, and fWBI rats, single doses produced a significant (p < 0.003) increase in the percent-activated microglia; fWBI did not (p > 0.1). Additionally, single doses produced a significant (p < 0.002) dose-dependent increase in surviving newborn microglia; fWBI did not (p < 0.8). Although total proliferation in the DG was reduced equally by single and fWBI doses, single doses produced a significant dose-dependent (p < 0.02) decrease in surviving newborn neurons; fWBI did not (p > 0.6). CONCLUSIONS These data demonstrate that the rat brain's cellular response to single doses often does not predict its cellular response to 'biologically equivalent' fWBI doses.
Collapse
Affiliation(s)
- Dana M Greene-Schloesser
- Department of Radiation Oncology, Wake Forest School of Medicine , Winston-Salem, North Carolina , USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Weitzel DH, Tovmasyan A, Ashcraft KA, Rajic Z, Weitner T, Liu C, Li W, Buckley AF, Prasad MR, Young KH, Rodriguiz RM, Wetsel WC, Peters KB, Spasojevic I, Herndon JE, Batinic-Haberle I, Dewhirst MW. Radioprotection of the brain white matter by Mn(III) n-Butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol Cancer Ther 2014; 14:70-9. [PMID: 25319393 DOI: 10.1158/1535-7163.mct-14-0343] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cranial irradiation is a standard therapy for primary and metastatic brain tumors. A major drawback of radiotherapy (RT), however, is long-term cognitive loss that affects quality of life. Radiation-induced oxidative stress in normal brain tissue is thought to contribute to cognitive decline. We evaluated the effectiveness of a novel mimic of superoxide dismutase enzyme (SOD), MnTnBuOE-2-PyP(5+)(Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin), to provide long-term neuroprotection following 8 Gy of whole brain irradiation. Long-term RT damage can only be assessed by brain imaging and neurocognitive studies. C57BL/6J mice were treated with MnTnBuOE-2-PyP(5+) before and after RT and evaluated three months later. At this time point, drug concentration in the brain was 25 nmol/L. Mice treated with MnTnBuOE-2-PyP(5+)/RT exhibited MRI evidence for myelin preservation in the corpus callosum compared with saline/RT treatment. Corpus callosum histology demonstrated a significant loss of axons in the saline/RT group that was rescued in the MnTnBuOE-2-PyP(5+)/RT group. In addition, the saline/RT groups exhibited deficits in motor proficiency as assessed by the rotorod test and running wheel tests. These deficits were ameliorated in groups treated with MnTnBuOE-2-PyP(5+)/RT. Our data demonstrate that MnTnBuOE-2-PyP(5+) is neuroprotective for oxidative stress damage caused by radiation exposure. In addition, glioblastoma cells were not protected by MnTnBuOE-2-PyP(5+) combination with radiation in vitro. Likewise, the combination of MnTnBuOE-2-PyP(5+) with radiation inhibited tumor growth more than RT alone in flank tumors. In summary, MnTnBuOE-2-PyP(5+) has dual activity as a neuroprotector and a tumor radiosensitizer. Thus, it is an attractive candidate for adjuvant therapy with RT in future studies with patients with brain cancer.
Collapse
Affiliation(s)
- Douglas H Weitzel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zrinka Rajic
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Wei Li
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina. Animal Pathology Core, Duke University Medical Center, Durham, North Carolina
| | - Mark R Prasad
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kenneth H Young
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina. Department of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Katherine B Peters
- Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- PK/PD BioAnalytical DCI Shared Resource, Duke University Medical Center, Durham, North Carolina
| | - James E Herndon
- Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina. Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
39
|
Morawin B, Turowski D, Naczk M, Siatkowski I, Zembron-Lacny A. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE. Biol Sport 2014; 31:179-85. [PMID: 25177095 PMCID: PMC4135061 DOI: 10.5604/20831862.1111435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2014] [Indexed: 12/19/2022] Open
Abstract
The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise.
Collapse
Affiliation(s)
- B Morawin
- University School of Physical Education in Poznan, Poland
| | - D Turowski
- Department of Biochemistry, Institute of Sport, Warsaw, Poland
| | - M Naczk
- University School of Physical Education in Poznan, Poland
| | - I Siatkowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poland
| | - A Zembron-Lacny
- Department of Biology Basis of Physical Education and Sport, University of Zielona Gora, Poland
| |
Collapse
|
40
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
41
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y, Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, Fujimori A, Uehara Y, Nakajima T, Suhara T, Ono T, Nenoi M. Total body 100-mGy X-irradiation does not induce Alzheimer's disease-like pathogenesis or memory impairment in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:84-96. [PMID: 23908553 PMCID: PMC3885129 DOI: 10.1093/jrr/rrt096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The cause and progression of Alzheimer's disease (AD) are poorly understood. Possible cognitive and behavioral consequences induced by low-dose radiation are important because humans are exposed to ionizing radiation from various sources. Early transcriptional response in murine brain to low-dose X-rays (100 mGy) has been reported, suggesting alterations of molecular networks and pathways associated with cognitive functions, advanced aging and AD. To investigate acute and late transcriptional, pathological and cognitive consequences of low-dose radiation, we applied an acute dose of 100-mGy total body irradiation (TBI) with X-rays to C57BL/6J Jms mice. We collected hippocampi and analyzed expression of 84 AD-related genes. Mouse learning ability and memory were assessed with the Morris water maze test. We performed in vivo PET scans with (11)C-PIB, a radiolabeled ligand for amyloid imaging, to detect fibrillary amyloid beta peptide (Aβ) accumulation, and examined characteristic AD pathologies with immunohistochemical staining of amyloid precursor protein (APP), Aβ, tau and phosphorylated tau (p-tau). mRNA studies showed significant downregulation of only two of 84 AD-related genes, Apbb1 and Lrp1, at 4 h after irradiation, and of only one gene, Il1α, at 1 year after irradiation. Spatial learning ability and memory were not significantly affected at 1 or 2 years after irradiation. No induction of amyloid fibrillogenesis or changes in APP, Aβ, tau, or p-tau expression was detected at 4 months or 2 years after irradiation. TBI induced early or late transcriptional alteration in only a few AD-related genes but did not significantly affect spatial learning, memory or AD-like pathological change in mice.
Collapse
Affiliation(s)
- Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
- Corresponding author. Tel: +81-43-206-3093; Fax: +81-43-251-4582;
| | - Kaoru Tanaka
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Maiko Ono
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yaqun Fang
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nakako Izumi-Nakajima
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nasrin Begum
- Center for Nuclear Medicine and Ultrasound, Rajshahi H-18, Rajshahi Medical College Hospital Campus, Medical College Road, Rajshahi 6000, People's Republic of Bangladesh
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshihiko Uehara
- Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
42
|
Pani G, De Vos WH, Samari N, de Saint-Georges L, Baatout S, Van Oostveldt P, Benotmane MA. MorphoNeuroNet: an automated method for dense neurite network analysis. Cytometry A 2013; 85:188-99. [PMID: 24222510 DOI: 10.1002/cyto.a.22408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/06/2013] [Accepted: 10/05/2013] [Indexed: 02/05/2023]
Abstract
High content cell-based screens are rapidly gaining popularity in the context of neuronal regeneration studies. To analyze neuronal morphology, automatic image analysis pipelines have been conceived, which accurately quantify the shape changes of neurons in cell cultures with non-dense neurite networks. However, most existing methods show poor performance for well-connected and differentiated neuronal networks, which may serve as valuable models for inter alia synaptogenesis. Here, we present a fully automated method for quantifying the morphology of neurons and the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically determines various morphological parameters of the soma and the neurites (size, shape, starting points, and fractional occupation). The image analysis pipeline consists of a multi-tier approach in which the somas are segmented by adaptive region growing using nuclei as seeds, and the neurites are delineated by a combination of various intensity and edge detection algorithms. Quantitative comparison showed a superior performance of MorphoNeuroNet to existing analysis tools, especially for revealing subtle changes in thin neurites, which have weak fluorescence intensity compared to the rest of the network. The proposed method will help determining the effects of compounds on cultures with dense neurite networks, thereby boosting physiological relevance of cell-based assays in the context of neuronal diseases.
Collapse
Affiliation(s)
- Giuseppe Pani
- Radiobiology Unit, Molecular and Cellular Biology Expert Group, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium; Cell Systems and Imaging Research Group (CSI), Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Kumar M, Haridas S, Trivedi R, Khushu S, Manda K. Early cognitive changes due to whole body γ-irradiation: A behavioral and diffusion tensor imaging study in mice. Exp Neurol 2013; 248:360-8. [DOI: 10.1016/j.expneurol.2013.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
|
44
|
Lee YW, Cho HJ, Lee WH, Sonntag WE. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomol Ther (Seoul) 2013; 20:357-70. [PMID: 24009822 PMCID: PMC3762274 DOI: 10.4062/biomolther.2012.20.4.357] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.
Collapse
Affiliation(s)
- Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA ; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
45
|
Haley GE, Yeiser L, Olsen RHJ, Davis MJ, Johnson LA, Raber J. Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice. Radiat Res 2013; 179:590-6. [PMID: 23510274 DOI: 10.1667/rr2946.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of (56)Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As (56)Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of (56)Fe irradiation through a mechanism unlikely involving ROS or oxidative damage.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
46
|
Cohen SR, Cohen EP. Chronic oxidative stress after irradiation: An unproven hypothesis. Med Hypotheses 2012; 80:172-5. [PMID: 23245910 DOI: 10.1016/j.mehy.2012.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/17/2012] [Indexed: 12/25/2022]
Abstract
Injury and organ failure after irradiation of late-responding tissues is a substantial problem in radiation oncology and a major threat after accidental or belligerent exposures. The mechanisms of injury may include death of clonogens, vascular injury, activation of cytokine networks, and/or chronic oxidative stress. Knowledge of mechanisms may guide optimal use of mitigators. The hypothesis of chronic oxidative stress as a mechanism for late radiation injury has received much attention. We review herein the published evidence for chronic oxidative stress in vivo, and for use of antioxidants as mitigators of normal tissue radiation injury. We conclude that there is only indirect evidence for chronic oxidative stress after irradiation, and there are only limited published reports of mitigation by antioxidants. We did not find a differentiation of persistent markers of oxidative stress from an ongoing production of oxygen radicals. It is thus unproven that chronic oxidative stress plays a major role in causing radiation injury and organ failure in late-responding tissues. Further investigation is justified, to identify chronic oxidative stress and to identify optimal mitigators of radiation injury.
Collapse
Affiliation(s)
- Samuel R Cohen
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, United States.
| | | |
Collapse
|
47
|
Haridas S, Kumar M, Manda K. Chronic melatonin administration mitigates behavioral dysfunction induced by γ-irradiation. Horm Behav 2012; 62:621-7. [PMID: 23026539 DOI: 10.1016/j.yhbeh.2012.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
Melatonin, a 'hormone of darkness,' has been reported to play a role in a wide variety of physiological responses including reproduction, circadian homeostasis, sleep, retinal neuromodulation, and vasomotor responses. Our recent studies reported a prophylactic effect of exogenous melatonin against radiation-induced neurocognitive changes. However, there is no reported evidence for a mitigating effect of chronic melatonin administration against radiation-induced behavioral alterations. In the present study, C57BL/6 mice were given either whole day chronic melatonin administration (CMA) or chronic night-time melatonin administration (CNMA) by a low dose of melatonin in drinking water for a period of 2 weeks and 1 month following exposure to 6 Gy of γ-radiation. Various behavioral endpoints, such as locomotor activities, gross behavioral traits, basal anxiety level, and depressive tendencies were scored at different time points. Radiation exposure significantly impaired gross behavioral traits as observed in the open field exploratory paradigms and forced swim test. Both the CMA and CNMA significantly ameliorated the radiation-induced changes in exploratory tendencies, risk-taking behavior and gross behavior traits, such as rearing and grooming. Melatonin administration afforded anxiolytic function against radiation in terms of center exploration tendencies. The radiation-induced augmentation of immobility time in the forced swim test, indices of depression-like behavior was also inhibited by chronic melatonin administration. The results demonstrated the mitigating effect of chronic melatonin administration on radiation-induced affective disorders in mice.
Collapse
Affiliation(s)
- Seenu Haridas
- NeuroBehavior Laboratory, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | |
Collapse
|
48
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 810] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
49
|
Ramachandran L, Nair CKK. Protection against genotoxic damages following whole body gamma radiation exposure in mice by lipoic acid. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 724:52-8. [DOI: 10.1016/j.mrgentox.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 06/03/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
|
50
|
Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 2011; 11:3299-311. [DOI: 10.1002/pmic.201100178] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|