1
|
Wong YT, Zheng X, Lau SH, Sun KHM, Chen X, Li H, Ng SL, Jiang H, Lau GCY, He J. Artificial fluorescent sensor reveals pre-synaptic NMDA receptors switch cholecystokinin release and LTP in the hippocampus. J Neurochem 2024; 168:2621-2639. [PMID: 38750623 DOI: 10.1111/jnc.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.
Collapse
Grants
- CityU11101521, CityU11103922, CityU11104923 Hong Kong Research Grants Council, General Research Fund
- Ref The College Research Grant under Hong Kong Tung Wah College
- 2023-00-51CRG230204 The College Research Grant under Hong Kong Tung Wah College
- C1043-21G Hong Kong Research Grants Council, Collaborative Research Fund
- T13-605/18-W Hong Kong Research Grants Council, Theme-Based Research Scheme
- SRFS2324-1S02 Hong Kong Research Grants Council, Senior Research Fellow Scheme
- GHP_075_19GD Innovation and Technology Fund of the Hong Kong SAR, China
- 09203656, 08194106 Hong Kong Health Bureau, Health and Medical Research Fund
- Health@InnoHKprogram Innovation Technology Commission of the Hong Kong SAR, China
Collapse
Affiliation(s)
- Yin-Ting Wong
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- School of Medical and Health Sciences, Tung Wah College, Ho Man Tin, Hong Kong
| | - Xuejiao Zheng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Siu-Hin Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ka-Hei Murphy Sun
- Department of Pathology, Princess Margaret Hospital, Hong Kong City, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Huangcan Li
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Siu-Lung Ng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - HeHai Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Guangzhou Laboratory, Guangzhou, China
| | | | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
2
|
da Silva Beraldo IJ, Prates Rodrigues M, Polanczyk RS, Verano-Braga T, Lopes-Aguiar C. Proteomic-Based Studies on Memory Formation in Normal and Neurodegenerative Disease-Affected Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:129-158. [PMID: 38409419 DOI: 10.1007/978-3-031-50624-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A critical aspect of cognition is the ability to acquire, consolidate, and evoke memories, which is considerably impaired by neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. These mnemonic processes are dependent on signaling cascades, which involve protein expression and degradation. Recent mass spectrometry (MS)-based proteomics has opened a range of possibilities for the study of memory formation and impairment, making it possible to research protein systems not studied before. However, in the context of synaptic proteome related to learning processes and memory formation, a deeper understanding of the synaptic proteome temporal dynamics after induction of synaptic plasticity and the molecular changes underlying the cognitive deficits seen in neurodegenerative diseases is needed. This review analyzes the applications of proteomics for understanding memory processes in both normal and neurodegenerative conditions. Moreover, the most critical experimental studies have been summarized using the PANTHER overrepresentation test. Finally, limitations associated with investigations of memory studies in physiological and neurodegenerative disorders have also been discussed.
Collapse
Affiliation(s)
- Ikaro Jesus da Silva Beraldo
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Mateus Prates Rodrigues
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Rafaela Schuttenberg Polanczyk
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Núcleo de Proteômica Funcional (NPF), Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (INCT-Nanobiofar), Belo Horizonte, Brazil
| | - Cleiton Lopes-Aguiar
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC), Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Su J, Huang F, Tian Y, Tian R, Qianqian G, Bello ST, Zeng D, Jendrichovsky P, Lau CG, Xiong W, Yu D, Tortorella M, Chen X, He J. Entorhinohippocampal cholecystokinin modulates spatial learning by facilitating neuroplasticity of hippocampal CA3-CA1 synapses. Cell Rep 2023; 42:113467. [PMID: 37979171 DOI: 10.1016/j.celrep.2023.113467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.
Collapse
Affiliation(s)
- Junfeng Su
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Ran Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Dingxaun Zeng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Peter Jendrichovsky
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Daiguan Yu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
4
|
Aumont E, Bussy A, Bedard MA, Bezgin G, Therriault J, Savard M, Fernandez Arias J, Sziklas V, Vitali P, Poltronetti NM, Pallen V, Thomas E, Gauthier S, Kobayashi E, Rahmouni N, Stevenson J, Tissot C, Chakravarty MM, Rosa-Neto P. Hippocampal subfield associations with memory depend on stimulus modality and retrieval mode. Brain Commun 2023; 5:fcad309. [PMID: 38035364 PMCID: PMC10681971 DOI: 10.1093/braincomms/fcad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Hippocampal atrophy is a well-known feature of age-related memory decline, and hippocampal subfields may contribute differently to this decline. In this cross-sectional study, we investigated the associations between hippocampal subfield volumes and performance in free recall and recognition memory tasks in both verbal and visual modalities in older adults without dementia. We collected MRIs from 97 (41 males) right-handed participants aged over 60. We segmented the right and left hippocampi into (i) dentate gyrus and cornu ammonis 4 (DG/CA4); (ii) CA2 and CA3 (CA2/CA3); (iii) CA1; (iv) strata radiatum, lacunosum and moleculare; and (v) subiculum. Memory was assessed with verbal free recall and recognition tasks, as well as visual free recall and recognition tasks. Amyloid-β and hippocampal tau positivity were assessed using [18F]AZD4694 and [18F]MK6240 PET tracers, respectively. The verbal free recall and verbal recognition performances were positively associated with CA1 and strata radiatum, lacunosum and moleculare volumes. The verbal free recall and visual free recall were positively correlated with the right DG/CA4. The visual free recall, but not verbal free recall, was also associated with the right CA2/CA3. The visual recognition was not significantly associated with any subfield volume. Hippocampal tau positivity, but not amyloid-β positivity, was associated with reduced DG/CA4, CA2/CA3 and strata radiatum, lacunosum and moleculare volumes. Our results suggest that memory performances are linked to specific subfields. CA1 appears to contribute to the verbal modality, irrespective of the free recall or recognition mode of retrieval. In contrast, DG/CA4 seems to be involved in the free recall mode, irrespective of verbal or visual modalities. These results are concordant with the view that DG/CA4 plays a primary role in encoding a stimulus' distinctive attributes, and that CA2/CA3 could be instrumental in recollecting a visual memory from one of its fragments. Overall, we show that hippocampal subfield segmentation can be useful for detecting early volume changes and improve our understanding of the hippocampal subfields' roles in memory.
Collapse
Affiliation(s)
- Etienne Aumont
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Aurélie Bussy
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
| | - Marc-André Bedard
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph Therriault
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Melissa Savard
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jaime Fernandez Arias
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Viviane Sziklas
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Paolo Vitali
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | | | - Vanessa Pallen
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Emilie Thomas
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
| | - Serge Gauthier
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenson
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mallar M Chakravarty
- Cerebral Imaging Center, Douglas Research Center, Montreal, QC H4H 1R3, Canada
- Computational Brain Anatomy (CoBrALab) Laboratory, Montreal, QC H4H 1R2, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- NeuroQAM Research Centre, Université du Québec à Montréal (UQAM), Montreal H2X 3P2, Canada
- McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
5
|
Vanrobaeys Y, Mukherjee U, Langmack L, Beyer SE, Bahl E, Lin LC, Michaelson JJ, Abel T, Chatterjee S. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. Nat Commun 2023; 14:6100. [PMID: 37773230 PMCID: PMC10541893 DOI: 10.1038/s41467-023-41715-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, mapping the transcriptomic signature across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to delineate transcriptome-wide gene expression changes across subregions of the dorsal hippocampus of male mice following learning. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. The CA1 region exhibited increased expression of genes related to transcriptional regulation, while the DG showed upregulation of genes associated with protein folding. Importantly, our approach enabled us to define the transcriptomic signature of learning within two less-defined hippocampal subregions, CA1 stratum radiatum, and oriens. We demonstrated that CA1 subregion-specific expression of a transcription factor subfamily has a critical functional role in the consolidation of long-term memory. This work demonstrates the power of spatial molecular approaches to reveal simultaneous transcriptional events across the hippocampus during memory consolidation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242, USA
| | - Lucy Langmack
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Biochemistry and Molecular Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Stacy E Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Li-Chun Lin
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
7
|
Poon CH, Liu Y, Pak S, Zhao RC, Aquili L, Tipoe GL, Leung GKK, Chan YS, Yang S, Fung ML, Wu EX, Lim LW. Prelimbic Cortical Stimulation with L-methionine Enhances Cognition through Hippocampal DNA Methylation and Neuroplasticity Mechanisms. Aging Dis 2023; 14:112-135. [PMID: 36818556 PMCID: PMC9937711 DOI: 10.14336/ad.2022.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Declining global DNA methylation and cognitive impairment are reported to occur in the normal aging process. It is not known if DNA methylation plays a role in the efficacy of memory-enhancing therapies. In this study, aged animals were administered prelimbic cortical deep brain stimulation (PrL DBS) and/or L-methionine (MET) treatment. We found that PrL DBS and MET (MET-PrL DBS) co-administration resulted in hippocampal-dependent spatial memory enhancements in aged animals. Molecular data suggested MET-PrL DBS induced DNA methyltransferase DNMT3a-dependent methylation, robust synergistic upregulation of neuroplasticity-related genes, and simultaneous inhibition of the memory-suppressing gene calcineurin in the hippocampus. We further found that MET-PrL DBS also activated the PKA-CaMKIIα-BDNF pathway, increased hippocampal neurogenesis, and enhanced dopaminergic and serotonergic neurotransmission. We next inhibited the activity of DNA methyltransferase (DNMT) by RG108 infusion in the hippocampus of young animals to establish a causal relationship between DNMT activity and the effects of PrL DBS. Hippocampal DNMT inhibition in young animals was sufficient to recapitulate the behavioral deficits observed in aged animals and abolished the memory-enhancing and molecular effects of PrL DBS. Our findings implicate hippocampal DNMT as a therapeutic target for PrL DBS and pave way for the potential use of non-invasive neuromodulation modalities against dementia.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yanzhi Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | | | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia.
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ed Xuekui Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Correspondence should be addressed to: Dr. Lee Wei LIM, Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .
| |
Collapse
|
8
|
Vanrobeys Y, Mukherjee U, Langmack L, Bahl E, Lin LC, Michaelson JJ, Abel T, Chatterjee S. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524576. [PMID: 36711475 PMCID: PMC9882356 DOI: 10.1101/2023.01.18.524576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, defining learning-responsive gene expression across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to elucidate transcriptome-wide changes in gene expression in the hippocampus following learning, enabling us to define molecular signatures unique to each hippocampal subregion. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. Although the CA1 region exhibited increased expression of genes related to transcriptional regulation, the DG showed upregulation of genes associated with protein folding. We demonstrate the functional relevance of subregion-specific gene expression by genetic manipulation of a transcription factor selectively in the CA1 hippocampal subregion, leading to long-term memory deficits. This work demonstrates the power of using spatial molecular approaches to reveal transcriptional events during memory consolidation.
Collapse
Affiliation(s)
- Yann Vanrobeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Lucy Langmack
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Biochemistry and Molecular Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Li-Chun Lin
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
10
|
Kim HH, Lee SH, Ho WK, Eom K. Dopamine Receptor Supports the Potentiation of Intrinsic Excitability and Synaptic LTD in Temporoammonic-CA1 Synapse. Exp Neurobiol 2022; 31:361-375. [PMID: 36631845 PMCID: PMC9841748 DOI: 10.5607/en22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Dopaminergic projection to the hippocampus from the ventral tegmental area or locus ceruleus has been considered to play an essential role in the acquisition of novel information. Hence, the dopaminergic modulation of synaptic plasticity in the hippocampus has been widely studied. We examined how the D1 and D2 receptors influenced the mGluR5-mediated synaptic plasticity of the temporoammonic-CA1 synapses and showed that the dopaminergic modulation of the temporoammonic-CA1 synapses was expressed in various ways. Our findings suggest that the dopaminergic system in the hippocampal CA1 region regulates the long-term synaptic plasticity and processing of the novel information.
Collapse
Affiliation(s)
- Hye-Hyun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea,Won-Kyung Ho, TEL: 82-2-740-8226, FAX: 82-2-763-9667, e-mail:
| | - Kisang Eom
- Department of Physiology, School of Medicine, Keimyung University, Daegu 42601, Korea,To whom correspondence should be addressed. Kisang Eom, TEL: 82-53-258-7416, FAX: 82-53-258-7412, e-mail:
| |
Collapse
|
11
|
Bhasin G, Nair IR. Dynamic Hippocampal CA2 Responses to Contextual Spatial Novelty. Front Syst Neurosci 2022; 16:923911. [PMID: 36003545 PMCID: PMC9393711 DOI: 10.3389/fnsys.2022.923911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal place cells are functional units of spatial navigation and are present in all subregions: CA1, CA2, CA3, and CA4. Recent studies on CA2 have indicated its role in social and contextual memories, but its contribution to spatial novelty detection and encoding remains largely unknown. The current study aims to uncover how CA2 processes spatial novelty and to distinguish its functional role towards the same from CA1. Accordingly, a novel 3-day paradigm was designed where animals were introduced to a completely new environment on the first day, and on subsequent days, novel segments were inserted into the existing spatial environment while the other segments remained the same, allowing us to compare novel and familiar parts of the same closed-loop track on multiple days. We found that spatial novelty leads to dynamic and complex hippocampal place cell firings at both individual neuron and population levels. Place cells in both CA1 and CA2 had strong responses to novel segments, leading to higher average firing rates and increased pairwise cross correlations across all days. However, CA2 place cells that fired for novel areas had lower spatial information scores than CA1 place cells active in the same areas. At the ensemble level, CA1 only responded to spatial novelty on day 1, when the environment was completely novel, whereas CA2 responded to it on all days, each time novelty was introduced. Therefore, CA2 was more sensitive and responsive to novel spatial features even when introduced in a familiar environment, unlike CA1.
Collapse
|
12
|
Tamming RJ, Dumeaux V, Jiang Y, Shafiq S, Langlois L, Ellegood J, Qiu LR, Lerch JP, Bérubé NG. Atrx Deletion in Neurons Leads to Sexually Dimorphic Dysregulation of miR-137 and Spatial Learning and Memory Deficits. Cell Rep 2021; 31:107838. [PMID: 32610139 PMCID: PMC7326465 DOI: 10.1016/j.celrep.2020.107838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/13/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
ATRX gene mutations have been identified in syndromic and non-syndromic intellectual disabilities in humans. ATRX is known to maintain genomic stability in neuroprogenitor cells, but its function in differentiated neurons and memory processes remains largely unresolved. Here, we show that the deletion of neuronal Atrx in mice leads to distinct hippocampal structural defects, fewer presynaptic vesicles, and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. We identify male-specific impairments in long-term contextual memory and in synaptic gene expression, linked to altered miR-137 levels. We show that ATRX directly binds to the miR-137 locus and that the enrichment of the suppressive histone mark H3K27me3 is significantly reduced upon the loss of ATRX. We conclude that the ablation of ATRX in excitatory forebrain neurons leads to sexually dimorphic effects on miR-137 expression and on spatial memory, identifying a potential therapeutic target for neurological defects caused by ATRX dysfunction. Loss of ATRX in neurons has sexually dimorphic effects on long-term spatial memory Targeted deletion of neuronal ATRX in mice causes ultrastructural synaptic defects ATRX null neurons show sex-specific changes in miR-137 and target synaptic transcripts ATRX directly binds and suppresses miR-137 in males via enrichment of H3K27me3
Collapse
Affiliation(s)
- Renee J Tamming
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Paediatrics, Western University, London, ON, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Yan Jiang
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Sarfraz Shafiq
- Children's Health Research Institute, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Luana Langlois
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lily R Qiu
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Nathalie G Bérubé
- Children's Health Research Institute, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
13
|
Koutsoumpa A, Papatheodoropoulos C. Frequency-dependent layer-specific differences in short-term synaptic plasticity in the dorsal and ventral CA1 hippocampal field. Synapse 2021; 75:e22199. [PMID: 33687106 DOI: 10.1002/syn.22199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
Information from the entorhinal cortex arrives to the hippocampal CA1 microcircuit directly through the temporoammonic path (TA) that terminates in the stratum lacunosum-moleculare (SLM), and indirectly through Schaffer collateral pathway (SC) that terminates in the stratum radiatum (SR). By virtue of this input convergence, CA1 circuitry may act to compare and integrate incoming cortical information. Although a remarkable dorsal-ventral difference in short-term plasticity (STP) has been recently described at SC-CA1 synapses, the corresponding properties at TA-CA1 synapses have not been examined. Here, we report that stimulation of TA in the dorsal hippocampus produces significant facilitation of all conditioned responses evoked by 1-30 Hz, peaking at 20-30 Hz, and significant depression of steady-state responses to 50-100 Hz. Dorsal SC-CA1 synapses display a similar pattern of responses, yet, facilitation peaked at 10 Hz and depression (at 75-100 Hz) is weaker. Strikingly, stimulation of TA in the ventral hippocampus produces facilitation of steady-state responses to 1-30 Hz and highly contrasts with the depression of SC-CA1 synapses. Steady-state responses to 40-100 Hz in the ventral hippocampus depress in both layers similarly. High-frequency TA input (40-100 Hz) to the dorsal hippocampus depresses more in proximal than in distal SLM, while low-frequency (1-3 Hz) TA input to the ventral hippocampus facilitates more in distal than in proximal SLM. The present evidence suggests that direct and indirect entorhinal cortical inputs across the septotemporal extent of hippocampal CA1 field display frequency selectivity both in the radial and transverse axes, and that a rapid information processing may take place through direct ventral hippocampal CA1-EC circuit interactions independently of trisynaptic circuit.
Collapse
Affiliation(s)
- Andriana Koutsoumpa
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
14
|
Beesley S, Sullenberger T, Ailani R, D'Orio C, Crockett MS, Kumar SS. d-Serine Intervention In The Medial Entorhinal Area Alters TLE-Related Pathology In CA1 Hippocampus Via The Temporoammonic Pathway. Neuroscience 2021; 453:168-186. [PMID: 33197499 PMCID: PMC7796904 DOI: 10.1016/j.neuroscience.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/15/2023]
Abstract
Entrainment of the hippocampus by the medial entorhinal area (MEA) in Temporal Lobe Epilepsy (TLE), the most common type of drug-resistant epilepsy in adults, is believed to be mediated primarily through the perforant pathway (PP), which connects stellate cells in layer (L) II of the MEA with granule cells of the dentate gyrus (DG) to drive the hippocampal tri-synaptic circuit. Using immunohistochemistry, high-resolution confocal microscopy and the rat pilocarpine model of TLE, we show here that the lesser known temporoammonic pathway (TAP) plays a significant role in transferring MEA pathology to the CA1 region of the hippocampus independently of the PP. The pathology observed was region-specific and restricted primarily to the CA1c subfield of the hippocampus. As shown previously, daily intracranial infusion of d-serine (100 μm), an antagonist of GluN3-containing triheteromeric N-Methyl d-aspartate receptors (t-NMDARs), into the MEA prevented loss of LIII neurons and epileptogenesis. This intervention in the MEA led to the rescue of hippocampal CA1 neurons that would have otherwise perished in the epileptic animals, and down regulation of the expression of astrocytes and microglia thereby mitigating the effects of neuroinflammation. Interestingly, these changes were not observed to a similar extent in other regions of vulnerability like the hilus, DG or CA3, suggesting that the pathology manifest in CA1 is driven predominantly through the TAP. This work highlights TAP's role in the entrainment of the hippocampus and identifies specific areas for therapeutic intervention in dealing with TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Roshan Ailani
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Cameron D'Orio
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Mathew S Crockett
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States.
| |
Collapse
|
15
|
Pitsikas N, Zoupa E, Gravanis A. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats. Psychopharmacology (Berl) 2021; 238:227-237. [PMID: 33005973 DOI: 10.1007/s00213-020-05672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a devastating mental disease that affects nearly 1% of the population worldwide. It is well documented that the dopaminergic (DAergic) system is compromised in schizophrenia. It is of note that the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induces schizophrenia-like symptoms in rodents, including disruption of memory abilities. Neuroactive steroids, comprising dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS), were shown to affect brain DAergic system and to be involved in schizophrenia. BNN27 is a novel DHEA derivative, which is devoid of steroidogenic activity. It has recently been reported that BNN27 counteracted schizophrenia-like behavioural deficits produced by glutamate hypofunction in rats. OBJECTIVES The aim of the present study was to investigate the ability of BNN27 to attenuate non-spatial, spatial recognition and discrete memory deficits induced by apomorphine in rats. METHODS To this end, the object recognition task (ORT), the object location task (OLT) and the step-through passive avoidance test (STPAT) were used. RESULTS BNN27 (3 and 6 mg/kg, i.p.) attenuated apomorphine (0.5 mg/kg, i.p.)-induced non-spatial, spatial recognition and discrete memory deficits. Interestingly, the effects of compounds on memory cannot be ascribed to changes in locomotor activity. CONCLUSIONS Our findings suggest that BNN27 is effective to DA dysfunction caused by apomorphine, attenuating cognitive impairments induced by this D1/D2 receptor agonist in rats. Additionally, our findings illustrate a functional interaction between BNN27 and the DAergic system that may be of relevance for schizophrenia-like behavioural symptoms.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece.
| | - Elli Zoupa
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, and Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, University of Crete, Heraklion, Greece
| |
Collapse
|
16
|
Sato Y, Takiguchi M, Tamano H, Takeda A. Extracellular Zn 2+-Dependent Amyloid-β 1-42 Neurotoxicity in Alzheimer's Disease Pathogenesis. Biol Trace Elem Res 2021; 199:53-61. [PMID: 32281074 DOI: 10.1007/s12011-020-02131-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
The basal level of extracellular Zn2+ is in the range of low nanomolar (~ 10 nM) in the hippocampus. However, extracellular Zn2+ dynamics plays a key role for not only cognitive activity but also cognitive decline. Extracellular Zn2+ dynamics is modified by glutamatergic synapse excitation and the presence of amyloid-β1-42 (Aβ1-42), a causative peptide in Alzheimer's disease (AD). When human Aβ1-42 reaches high picomolar (> 100 pM) in the extracellular compartment of the rat dentate gyrus, Zn-Aβ1-42 complexes are readily formed and taken up into dentate granule cells, followed by Aβ1-42-induced cognitive decline that is linked with Zn2+ released from intracellular Zn-Aβ1-42 complexes. Aβ1-42-induced intracellular Zn2+ toxicity is accelerated with aging because of age-related increase in extracellular Zn2+. The recent findings suggest that Aβ1-42 secreted continuously from neuron terminals causes age-related cognitive decline and neurodegeneration via intracellular Zn2+ dysregulation. On the other hand, metallothioneins (MTs), zinc-binding proteins, quickly serve for intracellular Zn2+-buffering under acute intracellular Zn2+ dysregulation. On the basis of the idea that the defense strategy against Aβ1-42-induced pathogenesis leads to preventing the AD development, this review deals with extracellular Zn2+-dependent Aβ1-42 neurotoxicity, which is accelerated with aging.
Collapse
Affiliation(s)
- Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
17
|
Sawyer KS, Adra N, Salz DM, Kemppainen MI, Ruiz SM, Harris GJ, Oscar-Berman M. Hippocampal subfield volumes in abstinent men and women with a history of alcohol use disorder. PLoS One 2020; 15:e0236641. [PMID: 32776986 PMCID: PMC7416961 DOI: 10.1371/journal.pone.0236641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/10/2020] [Indexed: 12/05/2022] Open
Abstract
Alcohol Use Disorder (AUD) has been associated with abnormalities in hippocampal volumes, but these relationships have not been fully explored with respect to sub-regional volumes, nor in association with individual characteristics such as age, gender differences, drinking history, and memory. The present study examined the impact of those variables in relation to hippocampal subfield volumes in abstinent men and women with a history of AUD. Using Magnetic Resonance Imaging at 3 Tesla, we obtained brain images from 67 participants with AUD (31 women) and 64 nonalcoholic control (NC) participants (31 women). The average duration of the most recent period of sobriety for AUD participants was 7.1 years. We used Freesurfer 6.0 to segment the hippocampus into 12 regions. These were imputed into statistical models to examine the relationships of brain volume with AUD group, age, gender, memory, and drinking history. Interactions with gender and age were of particular interest. Compared to the NC group, the AUD group had approximately 5% smaller subiculum, CA1, molecular layer, and hippocampal tail regions. Age was negatively associated with volumes for the AUD group in the subiculum and the hippocampal tail, but no significant interactions with gender were identified. The relationships for delayed and immediate memory with hippocampal tail volume differed for AUD and NC groups: Higher scores on tests of immediate and delayed memory were associated with smaller volumes in the AUD group, but larger volumes in the NC group. Length of sobriety was associated with decreasing CA1 volume in women (0.19% per year) and increasing volume size in men (0.38% per year). The course of abstinence on CA1 volume differed for men and women, and the differential relationships of subfield volumes to age and memory could indicate a distinction in the impact of AUD on functions of the hippocampal tail. These findings confirm and extend evidence that AUD, age, gender, memory, and abstinence differentially impact volumes of component parts of the hippocampus.
Collapse
Affiliation(s)
- Kayle S. Sawyer
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
- Sawyer Scientific, LLC, Boston, MA, United States of America
| | - Noor Adra
- VA Boston Healthcare System, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel M. Salz
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Maaria I. Kemppainen
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Susan M. Ruiz
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Gordon J. Harris
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Marlene Oscar-Berman
- VA Boston Healthcare System, Boston, MA, United States of America
- Boston University School of Medicine, Boston, MA, United States of America
- Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
18
|
Paw-Min-Thein-Oo, Sakimoto Y, Kida H, Mitsushima D. Proximodistal Heterogeneity in Learning-promoted Pathway-specific Plasticity at Dorsal CA1 Synapses. Neuroscience 2020; 437:184-195. [PMID: 32360699 DOI: 10.1016/j.neuroscience.2020.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/28/2023]
Abstract
Contextual learning requires the delivery of AMPA receptors to CA1 synapses in the dorsal hippocampus. However, proximodistal heterogeneity of pathway-specific plasticity remains unclear. Here, we examined the proximodistal heterogeneity in learning-induced plasticity at the CA1 synapses with inputs from the entorhinal cortex layer III (ECIII) or from CA3. We subjected male rats to an inhibitory avoidance task and prepared acute hippocampal slices for whole-cell patch clamp experiments, where we stimulated ECIII-CA1 or CA3-CA1 input fibers to analyze evoked excitatory postsynaptic currents (EPSCs). Compared to untrained controls, trained rats exhibited higher AMPA/NMDA current ratios at CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons, which suggested that region-specific plasticity occurred after learning. Moreover, trained rats exhibited higher AMPA/NMDA current ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons. These findings suggested the presence of proximodistal heterogeneity in pathway-specific postsynaptic plasticity. Regarding presynaptic plasticity, training slightly, but significantly increased the paired-pulse ratios of CA3-CA1 synapses of proximal and intermediate, but not distal CA1 neurons. Moreover, trained rats exhibited higher paired-pulse ratios at ECIII-CA1 synapses of intermediate and distal, but not proximal CA1 neurons, which suggested region-specific presynaptic plasticity. Finally, learning was clearly prevented by the bilateral microinjection of a plasticity blocker in the proximal or intermediate, but not distal CA1 subfields, which suggested functional heterogeneity along the proximodistal axis. Understanding region- and pathway-specific plasticity at dorsal CA1 synapses could aid in controlling encoded memory.
Collapse
Affiliation(s)
- Paw-Min-Thein-Oo
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
19
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
20
|
Clements L, Harvey J. Activation of oestrogen receptor α induces a novel form of LTP at hippocampal temporoammonic-CA1 synapses. Br J Pharmacol 2020; 177:642-655. [PMID: 31637699 PMCID: PMC7012968 DOI: 10.1111/bph.14880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 17β estradiol (E2) rapidly regulates excitatory synaptic transmission at the classical Schaffer collateral (SC) input to hippocampal CA1 neurons. However, the impact of E2 on excitatory synaptic transmission at the distinct temporoammonic (TA) input to CA1 neurons and the oestrogen receptors involved is less clear. EXPERIMENTAL APPROACH Extracellular recordings were used to monitor excitatory synaptic transmission in hippocampal slices from juvenile male (P11-24) Sprague Dawley rats. Immunocytochemistry combined with confocal microscopy was used to monitor the surface expression of the AMPA receptor (AMPAR) subunit, GluA1 in hippocampal neurons cultured from neonatal (P0-3) rats. KEY RESULTS Here, we show that E2 induces a novel form of LTP at TA-CA1 synapses, an effect mirrored by the ERα agonist, PPT, and blocked by an ERα antagonist. ERα-induced LTP is NMDA receptor (NMDAR)-dependent and involves a postsynaptic expression mechanism that requires PI 3-kinase signalling and synaptic insertion of GluA2-lacking AMPARs. ERα-induced LTP has overlapping expression mechanisms with classical Hebbian LTP, as HFS-induced LTP occluded PPT-induced LTP and vice versa. In addition, activity-dependent LTP was blocked by the ERα antagonist, suggesting that ERα activation is involved in NMDA-LTP at TA-CA1 synapses. CONCLUSION AND IMPLICATIONS ERα induces a novel form of LTP at juvenile male hippocampal TA-CA1 synapses. As TA-CA1 synapses are implicated in episodic memory processes and are an early target for neurodegeneration, these findings have important implications for the role of oestrogens in CNS health and neurodegenerative disease.
Collapse
Affiliation(s)
- Leigh Clements
- Division of Systems Medicine, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| |
Collapse
|
21
|
Gisabella B, Scammell T, Bandaru SS, Saper CB. Regulation of hippocampal dendritic spines following sleep deprivation. J Comp Neurol 2019; 528:380-388. [PMID: 31454077 DOI: 10.1002/cne.24764] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Accumulating evidence supports the role of sleep in synaptic plasticity and memory consolidation. One line of investigation, the synaptic homeostasis hypothesis, has emphasized the increase in synaptic strength during waking, and compensatory downsizing of (presumably less frequently used) synapses during sleep. Conversely, other studies have reported downsizing and loss of dendritic spines following sleep deprivation. We wanted to determine the effect of sleep deprivation on dendritic spines of hippocampal CA1 neurons using genetic methods for fluorescent labeling of dendritic spines. Male Vglut2-Cre mice were injected with an AAV-DIO-ChR2-mCherry reporter in CA1 hippocampus. Gentle handling was used to sleep deprive mice for 5 hr, from lights on (7 am) to 12 noon. Control and sleep-deprived mice were euthanized at 12 noon and processed for quantification of dendritic spines. We used confocal microscope imaging and three-dimensional (3D) analysis to quantify thin, mushroom, and stubby spines from CA1 dendrites, distinguishing between branch segments. We observed significantly greater density of spines in CA1 of sleep-deprived mice, driven primarily by greater numbers of thin spines, and significantly larger spine volume and head diameter. Branch and region-specific analysis revealed that spine volume was greater in primary dendrites of apical and basal segments, along with proximal segments on both apical and basal dendrites, and spine density was increased in secondary branches and distal segments on apical dendrites following sleep deprivation. Our 3D quantification suggests sleep contributes to region- and branch-specific synaptic downscaling in the hippocampus, supporting the theory of broad but selective synaptic downscaling during sleep.
Collapse
Affiliation(s)
- Barbara Gisabella
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Anatomy and Neurobiological Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Thomas Scammell
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Pathophysiological Role of TRPM2 in Age-Related Cognitive Impairment in Mice. Neuroscience 2019; 408:204-213. [PMID: 30999030 DOI: 10.1016/j.neuroscience.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/23/2022]
Abstract
Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. Therefore, we examined the effects of TRPM2 deletion in young (2-3 months) and older (12-24 months) mice. Compared with young wild-type (WT) mice, middle-aged (12-16 months) WT mice showed working and cognitive memory dysfunction and aged (20-24 months) WT mice exhibited impaired spatial memory. However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging.
Collapse
|
23
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
24
|
Wong EW, Glasgow SD, Trigiani LJ, Chitsaz D, Rymar V, Sadikot A, Ruthazer ES, Hamel E, Kennedy TE. Spatial memory formation requires netrin-1 expression by neurons in the adult mammalian brain. ACTA ACUST UNITED AC 2019; 26:77-83. [PMID: 30770464 PMCID: PMC6380201 DOI: 10.1101/lm.049072.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
Abstract
Netrin-1 was initially characterized as an axon guidance molecule that is essential for normal embryonic neural development; however, many types of neurons continue to express netrin-1 in the postnatal and adult mammalian brain. Netrin-1 and the netrin receptor DCC are both enriched at synapses. In the adult hippocampus, activity-dependent secretion of netrin-1 by neurons potentiates glutamatergic synapse function, and is critical for long-term potentiation, an experimental cellular model of learning and memory. Here, we assessed the impact of neuronal expression of netrin-1 in the adult brain on behavior using tests of learning and memory. We show that adult mice exhibit impaired spatial memory following conditional deletion of netrin-1 from glutamatergic neurons in the hippocampus and neocortex. Further, we provide evidence that mice with conditional deletion of netrin-1 do not display aberrant anxiety-like phenotypes and show a reduction in self-grooming behavior. These findings reveal a critical role for netrin-1 expressed by neurons in the regulation of spatial memory formation.
Collapse
Affiliation(s)
- Edwin W Wong
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Lianne J Trigiani
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Daryan Chitsaz
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Vladimir Rymar
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Abbas Sadikot
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Edith Hamel
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, 3801 Rue University, McGill University, Montréal, Québec H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
25
|
Jung MW, Lee H, Jeong Y, Lee JW, Lee I. Remembering rewarding futures: A simulation-selection model of the hippocampus. Hippocampus 2018; 28:913-930. [PMID: 30155938 PMCID: PMC6587829 DOI: 10.1002/hipo.23023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/06/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Despite tremendous progress, the neural circuit dynamics underlying hippocampal mnemonic processing remain poorly understood. We propose a new model for hippocampal function-the simulation-selection model-based on recent experimental findings and neuroecological considerations. Under this model, the mammalian hippocampus evolved to simulate and evaluate arbitrary navigation sequences. Specifically, we suggest that CA3 simulates unexperienced navigation sequences in addition to remembering experienced ones, and CA1 selects from among these CA3-generated sequences, reinforcing those that are likely to maximize reward during offline idling states. High-value sequences reinforced in CA1 may allow flexible navigation toward a potential rewarding location during subsequent navigation. We argue that the simulation-selection functions of the hippocampus have evolved in mammals mostly because of the unique navigational needs of land mammals. Our model may account for why the mammalian hippocampus has evolved not only to remember, but also to imagine episodes, and how this might be implemented in its neural circuits.
Collapse
Affiliation(s)
- Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Hyunjung Lee
- Department of AnatomyKyungpook National University School of MedicineDaeguSouth Korea
| | - Yeongseok Jeong
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Jong Won Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
| | - Inah Lee
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
26
|
Takeda A, Tamano H. Is Vulnerability of the Dentate Gyrus to Aging and Amyloid-β 1-42 Neurotoxicity Linked with Modified Extracellular Zn 2+ Dynamics? Biol Pharm Bull 2018; 41:995-1000. [PMID: 29962410 DOI: 10.1248/bpb.b17-00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basal levels of extracellular Zn2+ are in the range of low nanomolar concentrations in the hippocampus and perhaps increase age-dependently. Extracellular Zn2+ dynamics is critical for cognitive activity and excess influx of extracellular Zn2+ into hippocampal neurons is a known cause of cognitive decline. The dentate gyrus is vulnerable to aging in the hippocampus and affected in the early stage of Alzheimer's disease (AD). The reasons remain unclear. Neurogenesis-related apoptosis may induce non-specific neuronal depolarization by efflux of intracellular K+ in the dentate gyrus and be markedly increased along with aging. Extracellular Zn2+ influx into dentate granule cells via high K+-induced perforant pathway excitation leads to cognitive decline. Modified extracellular Zn2+ dynamics in the dentate gyrus of aged rats is linked with vulnerability to cognitive decline. Amyloid-β1-42 (Aβ1-42) is a causative candidate for AD pathogenesis. When Aβ1-42 concentration reaches picomolar in the extracellular compartment in the dentate gyrus, Zn-Aβ1-42 is formed in the extracellular compartment and rapidly taken up into dentate granule cells, followed by Aβ1-42-induced cognitive decline that is due to Zn2+ released from Aβ1-42, suggesting that dentate granule cells are sensitive to extracellular Zn2+-dependent Aβ1-42 toxicity. This paper deals with proposed vulnerability of the dentate gyrus to aging and Aβ1-42 neurotoxicity.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
27
|
Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus. Neuropharmacology 2018; 141:66-75. [DOI: 10.1016/j.neuropharm.2018.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022]
|
28
|
Zhu G, Yang S, Xie Z, Wan X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 2018; 138:331-340. [DOI: 10.1016/j.neuropharm.2018.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023]
|
29
|
Kassab R, Alexandre F. Pattern separation in the hippocampus: distinct circuits under different conditions. Brain Struct Funct 2018; 223:2785-2808. [PMID: 29637298 DOI: 10.1007/s00429-018-1659-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG), supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here, we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, control the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.
Collapse
Affiliation(s)
- Randa Kassab
- INRIA, Bordeaux Sud-Ouest, Talence, France. .,Institut des Maladies Neurodégénératives, University of Bordeaux, CNRS UMR 5293-Case 28, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, 33076, Bordeaux, France. .,LaBRI, UMR 5800, CNRS, Bordeaux INP, University of Bordeaux, Talence, France.
| | - Frédéric Alexandre
- INRIA, Bordeaux Sud-Ouest, Talence, France.,Institut des Maladies Neurodégénératives, University of Bordeaux, CNRS UMR 5293-Case 28, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, 33076, Bordeaux, France.,LaBRI, UMR 5800, CNRS, Bordeaux INP, University of Bordeaux, Talence, France
| |
Collapse
|
30
|
Papaleonidopoulos V, Kouvaros S, Papatheodoropoulos C. Effects of endogenous and exogenous D1/D5 dopamine receptor activation on LTP in ventral and dorsal CA1 hippocampal synapses. Synapse 2018. [PMID: 29537707 DOI: 10.1002/syn.22033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hippocampus is importantly involved in dopamine-dependent behaviors and dopamine is a significant modulator of synaptic plasticity in the hippocampus. Moreover, the dopaminergic innervation appears to be disproportionally segregated along the hippocampal longitudinal (dorsoventral) axis with unknown consequences for synaptic plasticity. In this study we examined the actions of endogenously released dopamine and the effects of exogenous D1/D5 dopamine receptor agonists on theta-burst stimulation-induced long-term potentiation (LTP) of field excitatory synaptic potential (fEPSP) at Schaffer collateral-CA1 synapses in slices from dorsal (DH) and ventral hippocampus (VH). Furthermore, we quantified D1 receptor mRNA and protein expression levels in DH and VH. We found that blockade of D1/D5 receptors by SCH 23390 (20 μM) significantly reduced the magnitude of LTP in both DH and VH similarly suggesting that dopamine endogenously released during TBS, presumably mimicking low activity of DA neurons, exerts a homogeneous modulation of LTP along the hippocampal long axis. Moderate to high concentrations of the selective partial D1/D5 receptor agonist SKF 38393 (50-150 μM) did not significantly change LTP in either hippocampal segment. However, the full D1 receptor selective agonist SKF 82958 (10 μM) significantly enhanced LTP in VH but not DH. Furthermore, the expression of D1 receptor mRNA and protein was considerably higher in VH compared with DH. These results suggest that the dynamic range of D1/D5 receptor-mediated dopamine effects on LTP may be higher in VH than DH and that VH may be specialized to acquire information about behaviorally relevant strong stimuli signaled by the dopamine system.
Collapse
Affiliation(s)
| | - Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion 26504, Greece
| | | |
Collapse
|
31
|
Batallán-Burrowes AA, Chapman CA. Dopamine suppresses persistent firing in layer III lateral entorhinal cortex neurons. Neurosci Lett 2018. [PMID: 29524644 DOI: 10.1016/j.neulet.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Persistent firing in layer III entorhinal cortex neurons that can be evoked during muscarinic receptor activation may contribute to mechanisms of working memory. The entorhinal cortex receives strong dopaminergic inputs which may modulate working memory for motivationally significant information. We used whole cell recordings in in vitro rat brain slices to assess the effects of dopamine on persistent firing in layer III neurons initiated by depolarizing current injection. Persistent firing during pharmacological block of ionotropic excitatory and inhibitory synaptic transmission, and in the presence of the cholinergic agonist carbachol (10 μM), was observed in 39% of layer III pyramidal cells. Addition of 1 μM dopamine suppressed the incidence of persistent firing and similarly reduced the mean probability of induction of persistent firing at each current step, without significantly affecting the latency, duration, plateau potential, or frequency of persistent firing that was induced. These results indicate that dopamine can result in a suppression of the induction of persistent firing in layer III entorhinal neurons, while still being permissive of persistent firing once it is initiated.
Collapse
Affiliation(s)
- Ariel A Batallán-Burrowes
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4 B 1R6, Canada
| | - C Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, H4 B 1R6, Canada.
| |
Collapse
|
32
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
33
|
Berger SM, Fernández-Lamo I, Schönig K, Fernández Moya SM, Ehses J, Schieweck R, Clementi S, Enkel T, Grothe S, von Bohlen Und Halbach O, Segura I, Delgado-García JM, Gruart A, Kiebler MA, Bartsch D. Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats. Genome Biol 2017; 18:222. [PMID: 29149906 PMCID: PMC5693596 DOI: 10.1186/s13059-017-1350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. Results To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Conclusions Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1350-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan M Berger
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.,Present Address: Institute Cajal (CSIC), 28002, Madrid, Spain
| | - Kai Schönig
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sandra M Fernández Moya
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Janina Ehses
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Rico Schieweck
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Stefano Clementi
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Thomas Enkel
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Sascha Grothe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| | | | - Inmaculada Segura
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany.
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - Michael A Kiebler
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, 82152, Planegg-Martinsried, Germany.
| | - Dusan Bartsch
- Department of Molecular Biology, CIMH and Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
34
|
Takeda A, Tamano H. The Impact of Synaptic Zn 2+ Dynamics on Cognition and Its Decline. Int J Mol Sci 2017; 18:ijms18112411. [PMID: 29135924 PMCID: PMC5713379 DOI: 10.3390/ijms18112411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
The basal levels of extracellular Zn2+ are in the range of low nanomolar concentrations and less attention has been paid to Zn2+, compared to Ca2+, for synaptic activity. However, extracellular Zn2+ is necessary for synaptic activity. The basal levels of extracellular zinc are age-dependently increased in the rat hippocampus, implying that the basal levels of extracellular Zn2+ are also increased age-dependently and that extracellular Zn2+ dynamics are linked with age-related cognitive function and dysfunction. In the hippocampus, the influx of extracellular Zn2+ into postsynaptic neurons, which is often linked with Zn2+ release from neuron terminals, is critical for cognitive activity via long-term potentiation (LTP). In contrast, the excess influx of extracellular Zn2+ into postsynaptic neurons induces cognitive decline. Interestingly, the excess influx of extracellular Zn2+ more readily occurs in aged dentate granule cells and intracellular Zn2+-buffering, which is assessed with ZnAF-2DA, is weakened in the aged dentate granule cells. Characteristics (easiness) of extracellular Zn2+ influx seem to be linked with the weakened intracellular Zn2+-buffering in the aged dentate gyrus. This paper deals with the impact of synaptic Zn2+ signaling on cognition and its decline in comparison with synaptic Ca2+ signaling.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
35
|
McGregor G, Irving AJ, Harvey J. Canonical JAK‐STAT signaling is pivotal for long‐term depression at adult hippocampal temporoammonic‐CA1 synapses. FASEB J 2017; 31:3449-3466. [DOI: 10.1096/fj.201601293rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Gemma McGregor
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| | - Andrew J. Irving
- School of Biomolecular and Biomedical ScienceThe Conway InstituteUniversity College Dublin Dublin Ireland
| | - Jenni Harvey
- Division of NeuroscienceSchool of MedicineNinewells Hospital and Medical SchoolUniversity of Dundee Dundee United Kingdom
| |
Collapse
|
36
|
Tamano H, Nishio R, Takeda A. Involvement of intracellular Zn 2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse. Hippocampus 2017; 27:777-783. [PMID: 28380662 DOI: 10.1002/hipo.22730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/06/2022]
Abstract
Physiological significance of synaptic Zn2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn2+ chelator, suggesting that intracellular Zn2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn2+ , which originates in presynaptic Zn2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
37
|
Pitsikas N, Tarantilis PA. Crocins, the active constituents of Crocus sativus L., counteracted apomorphine-induced performance deficits in the novel object recognition task, but not novel object location task, in rats. Neurosci Lett 2017; 644:37-42. [PMID: 28216334 DOI: 10.1016/j.neulet.2017.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a chronic mental disease that affects nearly 1% of the population worldwide. Several lines of evidence suggest that the dopaminergic (DAergic) system might be compromised in schizophrenia. Specifically, the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induces schizophrenia-like symptoms in rodents, including disruption of memory abilities. Crocins are among the active components of saffron (dried stigmas of Crocus sativus L. plant) and their implication in cognition is well documented. The present study investigated whether crocins counteract non-spatial and spatial recognition memory deficits induced by apomorphine in rats. For this purpose, the novel object recognition task (NORT) and the novel object location task (NOLT) were used. The effects of compounds on mobility in a locomotor activity chamber were also investigated in rats. Post-training peripheral administration of crocins (15 and 30mg/kg) counteracted apomorphine (1mg/kg)-induced performance deficits in the NORT. Conversely, crocins did not attenuate spatial recognition memory deficits produced by apomorphine in the NOLT. The present data show that crocins reversed non-spatial recognition memory impairments produced by dysfunction of the DAergic system and modulate different aspects of memory components (storage and/or retrieval). The effects of compounds on recognition memory cannot be attributed to changes in locomotor activity. Further, our findings illustrate a functional interaction between crocins and the DAergic system that may be of relevance for schizophrenia-like behavioral deficits. Therefore, the utilization of crocins as an adjunctive agent, for the treatment of cognitive deficits observed in schizophrenic patients should be further investigated.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
38
|
Fernández-Lamo I, Sánchez-Campusano R, Gruart A, Delgado-García M JM. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue. Sci Rep 2016; 6:37650. [PMID: 27869181 PMCID: PMC5116647 DOI: 10.1038/srep37650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022] Open
Abstract
Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.
Collapse
Affiliation(s)
- Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | |
Collapse
|
39
|
Freudenberg F, Resnik E, Kolleker A, Celikel T, Sprengel R, Seeburg PH. Hippocampal GluA1 expression in Gria1 −/− mice only partially restores spatial memory performance deficits. Neurobiol Learn Mem 2016; 135:83-90. [DOI: 10.1016/j.nlm.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
|
40
|
Ma R, Xiao M, Gustafsson B. Labile glutamate signaling onto CA1 pyramidal cells in the developing hippocampus depends mechanistically on input pathway. Neuroscience 2016; 337:27-36. [DOI: 10.1016/j.neuroscience.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
41
|
Zeithamova D, Manthuruthil C, Preston AR. Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap. Hippocampus 2016; 26:1464-1477. [PMID: 27479864 DOI: 10.1002/hipo.22622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 11/10/2022]
Abstract
Repeated encounters with the same event typically lead to decreased activation in the medial temporal lobe (MTL) and dopaminergic midbrain, a phenomenon known as repetition suppression. In contrast, encountering an event that overlaps with prior experience leads to increased response in the same regions. Such increased responding is thought to reflect an associative novelty signal that promotes memory updating to resolve differences between current events and stored memories. Here, we married these ideas to test whether event overlap significantly modulates MTL and midbrain responses-even when events are repeated and expected-to promote memory updating through integration. While undergoing high-resolution functional MRI, participants were repeatedly presented with objects pairs, some of which overlapped with other, intervening pairs and some of which contained elements unique from other pairs. MTL and midbrain regions showed widespread repetition suppression for nonoverlapping pairs containing unique elements; however, the degree of repetition suppression was altered for overlapping pairs. Entorhinal cortex, perirhinal cortex (PRc), midbrain, and PRc-midbrain connectivity showed repetition-related increases across overlapping pairs. Notably, increased PRc activation for overlapping pairs tracked individual differences in the ability to reason about the relationships among pairs-our behavioral measure of memory integration. Within the hippocampus, activation increases across overlapping pairs were unique to CA1 , consistent with its hypothesized comparator function. These findings demonstrate that event overlap engages MTL and midbrain functions traditionally implicated in novelty processing, even when overlapping events themselves are repeated. Our findings further suggest that the MTL-midbrain response to event overlap may promote integration of new content into existing memories, leading to the formation of relational memory networks that span experiences. Moreover, the results inform theories about the division of labor within MTL, demonstrating that the role of PRc in episodic encoding extends beyond familiarity processing and item-level recognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Alison R Preston
- Department of Psychology, The University of Texas at Austin. .,Department of Psychology, Center for Learning and Memory. .,Department of Neuroscience, University of Texas at Austin.
| |
Collapse
|
42
|
Gonzalez J, Villarreal DM, Morales IS, Derrick BE. Long-term Potentiation at Temporoammonic Path-CA1 Synapses in Freely Moving Rats. Front Neural Circuits 2016; 10:2. [PMID: 26903815 PMCID: PMC4748048 DOI: 10.3389/fncir.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 11/23/2022] Open
Abstract
Hippocampal area CA1 receives direct entorhinal layer III input via the temporoammonic path (TAP) and recent studies implicate TAP-CA1 synapses are important for some aspects of hippocampal memory function. Nonetheless, as few studies have examined TAP-CA1 synaptic plasticity in vivo, the induction and longevity of TAP-CA1 long-term potentiation (LTP) has not been fully characterized. We analyzed CA1 responses following stimulation of the medial aspect of the angular bundle and investigated LTP at medial temporoammonic path (mTAP)-CA1 synapses in freely moving rats. We demonstrate monosynaptic mTAP-CA1 responses can be isolated in vivo as evidenced by observations of independent current sinks in the stratum lacunosum moleculare of both areas CA1 and CA3 following angular bundle stimulation. Contrasting prior indications that TAP input rarely elicits CA1 discharge, we observed mTAP-CA1 responses that appeared to contain putative population spikes in 40% of our behaving animals. Theta burst high frequency stimulation of mTAP afferents resulted in an input specific and N-methyl-D-aspartate (NMDA) receptor-dependent LTP of mTAP-CA1 responses in behaving animals. LTP of mTAP-CA1 responses decayed as a function of two exponential decay curves with time constants (τ) of 2.7 and 148 days to decay 63.2% of maximal LTP. In contrast, mTAP-CA1 population spike potentiation longevity demonstrated a τ of 9.6 days. To our knowledge, these studies provide the first description of mTAP-CA1 LTP longevity in vivo. These data indicate TAP input to area CA1 is a physiologically relevant afferent system that displays robust synaptic plasticity.
Collapse
Affiliation(s)
- Jossina Gonzalez
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | - Isaiah S Morales
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | - Brian E Derrick
- Department of Biology, University of Texas at San AntonioSan Antonio, TX, USA; UTSA Neurosciences Institute, University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
43
|
Moriarty O, Gorman CL, McGowan F, Ford GK, Roche M, Thompson K, Dockery P, McGuire BE, Finn DP. Impaired recognition memory and cognitive flexibility in the rat L5-L6 spinal nerve ligation model of neuropathic pain. Scand J Pain 2016; 10:61-73. [PMID: 28361775 DOI: 10.1016/j.sjpain.2015.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Although neuropathic pain is known to negatively affect cognition, the neural mechanisms involved are poorly understood. Chronic pain is associated with changes in synaptic plasticity in the brain which may impact on cognitive functioning. The aim of this study was to model neuropathic pain in mid-aged rats using spinal nerve ligation (SNL). Following establishment of allodynia and hyperalgesia, behaviour was assessed in a battery of cognitive tests. Expression of the presynaptic protein, synaptophysin, and its colocalisation with the vesicular GABA and glutamate transporters (vGAT and vGLUT, respectively), was investigated in the medial prefrontal cortex (mPFC) and hippocampus. METHODS Nine month old male Sprague Dawley rats underwent L5-L6 spinal nerve ligation or a sham procedure. Mechanical and cold allodynia and thermal hyperalgesia were assessed using von Frey, acetone and Hargreaves tests, respectively. Cognition was assessed in the novel-object recognition, air-puff passive avoidance and Morris water maze behavioural tasks. Immunohistochemistry was used to examine the expression of synaptophysin in the mPFC and CA1 region of the hippocampus and double labelling of synaptophysin and the vesicular transporters vGAT and vGlut was used to investigate the distribution of synaptophysin on GABAergic and glutamatergic neurons. RESULTS SNL rats displayed impaired performance in the novel-object recognition task. Passive-avoidance responding, and spatial learning and memory in the Morris water maze, were unaffected by SNL surgery. However, in the water maze reversal task, pain-related impairments were evident during training and probe trials. SNL surgery was not associated with any differences in the expression of synaptophysin or its colocalisation with vGAT or vGLUT in the mPFC or the hippocampal CA1 region. CONCLUSIONS These results suggest that the SNL model of neuropathic pain is associated with deficits in recognition memory and cognitive flexibility, but these deficits are not associated with altered synaptophysin expression or distribution in the mPFC and CA1. IMPLICATIONS Cognitive complaints are common amongst chronic pain patients. Here we modelled cognitive impairment in a well-established animal model of neuropathic pain and investigated the neural mechanisms involved. A better understanding of this phenomenon is an important prerequisite for the development of improved treatment of patients affected.
Collapse
Affiliation(s)
- Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Claire L Gorman
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Fiona McGowan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Gemma K Ford
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Microscopy and Imaging, National University of Ireland, Galway, Ireland
| | - Brian E McGuire
- School of Psychology, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
- NCBES Neuroscience Centre, National University of Ireland, Galway, Ireland
- Centre for Pain Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
44
|
Joseph MA, Fraize N, Ansoud-Lerouge J, Sapin E, Peyron C, Arthaud S, Libourel PA, Parmentier R, Salin PA, Malleret G. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat. PLoS One 2015; 10:e0142065. [PMID: 26528714 PMCID: PMC4631520 DOI: 10.1371/journal.pone.0142065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022] Open
Abstract
How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM) refers to the long-term storage of invariable information whereas Working Memory (WM) depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s) could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting.
Collapse
Affiliation(s)
| | | | | | - Emilie Sapin
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Christelle Peyron
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Sébastien Arthaud
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Paul-Antoine Libourel
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Régis Parmentier
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Paul Antoine Salin
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Gaël Malleret
- University Lyon 1, University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5292, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1028, Lyon, France
- Lyon Neuroscience Research Center (CRNL), Lyon, France
- * E-mail:
| |
Collapse
|
45
|
Smith CC, Smith LA, Bredemann TM, McMahon LL. 17β estradiol recruits GluN2B-containing NMDARs and ERK during induction of long-term potentiation at temporoammonic-CA1 synapses. Hippocampus 2015; 26:110-7. [PMID: 26190171 DOI: 10.1002/hipo.22495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 11/06/2022]
Abstract
When circulating 17β estradiol (E2) is elevated to proestrous levels, hippocampus-dependent learning and memory is enhanced in female rodents, nonhuman primates, and women due to heightened synaptic function at hippocampal synapses. We previously reported that proestrous-like levels of E2 administered to young adult ovariectomized (OVX) female rats increases the magnitude of LTP at CA3 Schaffer collateral (SC)-CA1 synapses only when dendritic spine density, the NMDAR/AMPAR ratio, and current mediated by GluN2B-containing NMDA receptors (NMDARs) are simultaneously increased. We also reported that this increase in GluN2B-mediated NMDAR current in area CA1 is causally related to the E2-induced increase in novel object recognition, tying together heightened synaptic function with improved learning and memory. In addition to SC inputs, innervation from the entorhinal cortex in the temporoammonic (TA) pathway onto CA1 distal dendrites in stratum lacunosum-moleculare is critical for spatial memory formation and retrieval. It is not known whether E2 modulates TA-CA1 synapses similarly to SC-CA1 synapses. Here, we report that 24 hours post-E2 injection, dendritic spine density on CA1 pyramidal cell distal dendrites and current mediated by GluN2B-containing NMDARs at TA-CA1 synapses is increased, similarly to our previous findings at SC-CA1 synapses. However, in contrast to SC-CA1 synapses, AMPAR transmission at TA-CA1 synapses is significantly increased, and there is no effect on the LTP magnitude. Pharmacological blockade of GluN2B-containing NMDARs or ERK activation, which occurs downstream of synaptic but not extrasynaptic GluN2B-containing NMDARs, attenuates the LTP magnitude only in slices from E2-treated rats. These data show that E2 recruits a causal role for GluN2B-containing NMDARs and ERK signaling in the induction of LTP, cellular mechanisms not required for LTP induction at TA-CA1 synapses in vehicle-treated OVX female rats.
Collapse
Affiliation(s)
- Caroline C Smith
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsey A Smith
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teruko M Bredemann
- Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lori L McMahon
- Departments of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama.,Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
46
|
A computational theory of hippocampal function, and tests of the theory: New developments. Neurosci Biobehav Rev 2015; 48:92-147. [DOI: 10.1016/j.neubiorev.2014.11.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023]
|
47
|
Liu ZH, Yang Y, Ge MM, Xu L, Tang Y, Hu F, Xu Y, Wang HL. Bisphenol-A exposure alters memory consolidation and hippocampal CA1 spine formation through Wnt signaling in vivo and in vitro. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00093e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on Wnt signaling pathway, this study aims to further mechanistically understand memory alteration after BPA exposure.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Ye Yang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Li Xu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Yuqing Tang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Fan Hu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Yi Xu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| |
Collapse
|
48
|
Comparison of automated home-cage monitoring systems: Emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J Neurosci Methods 2014; 234:13-25. [DOI: 10.1016/j.jneumeth.2014.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
49
|
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One 2014; 9:e87605. [PMID: 24498342 PMCID: PMC3912020 DOI: 10.1371/journal.pone.0087605] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/21/2013] [Indexed: 02/04/2023] Open
Abstract
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer's disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer's disease.
Collapse
|
50
|
Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices. PLoS One 2013; 8:e80718. [PMID: 24260462 PMCID: PMC3832478 DOI: 10.1371/journal.pone.0080718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/16/2013] [Indexed: 12/02/2022] Open
Abstract
The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively.
Collapse
|