1
|
Maddern XJ, Walker LC, Anversa RG, Lawrence AJ, Campbell EJ. Understanding sex differences and the translational value of models of persistent substance use despite negative consequences. Neurobiol Learn Mem 2024; 213:107944. [PMID: 38825163 DOI: 10.1016/j.nlm.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Persistent substance use despite negative consequences is a key facet of substance use disorder. The last decade has seen the preclinical field adopt the use of punishment to model adverse consequences associated with substance use. This has largely involved the pairing of drug use with either electric foot shock or quinine, a bitter tastant. Whilst at face value, these punishers may model aspects of the physical and psychological consequences of substance use, such models are yet to assist the development of approved medications for treatment. This review discusses progress made with animal models of punishment to understand the behavioral consequences of persistent substance use despite negative consequences. We highlight the importance of examining sex differences, especially when the behavioral response to punishment changes following drug exposure. Finally, we critique the translational value these models provide for the substance use disorder field.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
2
|
Gancarz AM, Mitchell SH, George AM, Martin CD, Turk MC, Bool HM, Aktar F, Kwarteng F, Palmer AA, Meyer PJ, Richards JB, Dietz DM, Ishiwari K. Reward maximization assessed using a sequential patch depletion task in a large sample of heterogeneous stock rats. Sci Rep 2023; 13:7027. [PMID: 37120610 PMCID: PMC10148848 DOI: 10.1038/s41598-023-34179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water "patches" and could elect to "stay" in the current patch or "leave" for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward magnitude. Based on the delay in a given session, different visit durations were necessary to obtain the maximum number of rewards. Visit duration may be analogous to an indifference point in traditional DD tasks. Males and females did not significantly differ on traditional measures of DD (e.g. delay gradient; AUC). When examining measures of patch utilization, females made fewer patch changes at all delays and spent more time in the patch before leaving for the alternative patch compared to males. Consistent with this, there was some evidence that females deviated from reward maximization more than males. However, when controlling for body weight, females had a higher normalized rate of reinforcement than males. Measures of reward maximization were only weakly associated with traditional DD measures and may represent distinctive underlying processes. Taken together, females performance differed from males with regard to reward maximization that were not observed utilizing traditional measures of DD, suggesting that the patch depletion model was more sensitive to modest sex differences when compared to traditional DD measures in a large sample of HS rats.
Collapse
Affiliation(s)
- Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, 93311, USA.
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Marisa C Turk
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Heather M Bool
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Fahmida Aktar
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Francis Kwarteng
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jerry B Richards
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - David M Dietz
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Gancarz AM, Mitchell SH, George AM, Martin CD, Turk MC, Bool HM, Aktar F, Kwarteng F, Palmer AA, Meyer PJ, Richards JB, Dietz DM, Isiwari K. Reward Maximization Assessed Using a Sequential Patch Depletion Task in a Large Sample of Heterogeneous Stock Rats. RESEARCH SQUARE 2023:rs.3.rs-2525080. [PMID: 36778344 PMCID: PMC9915773 DOI: 10.21203/rs.3.rs-2525080/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water "patches" and could elect to "stay" in the current patch or "leave" for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward magnitude. Based on the delay in a given session, different visit durations were necessary to obtain the maximum number of rewards. Visit duration may be analogous to an indifference point in traditional DD tasks. While differences in traditional DD measures (e.g., delay gradient) have been detected between males and females, these effects were small and inconsistent. However, when examining measures of reward maximization, females made fewer patch changes at all delays and spent more time in the patch before leaving for the alternative patch compared to males. This pattern of choice resulted in males having a higher rate of reinforcement than females. Consistent with this, there was some evidence that females deviated from the optimal more, leading to less reward. Measures of reward maximization were only weakly associated with traditional DD measures and may represent distinctive underlying processes. Taken together, females performance differed from males with regard to reward maximization that were not observed utilizing traditional measures of DD, suggesting that the patch depletion model was more sensitive to modest sex differences when compared to traditional DD measures in a large sample of HS rats.
Collapse
|
4
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Prepubertal methylphenidate leads to sex-dependent differences in probabilistic discounting. Pharmacol Biochem Behav 2022; 218:173424. [PMID: 35780911 DOI: 10.1016/j.pbb.2022.173424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Prescription psychostimulants, such as methylphenidate (MPH), have served as a first line treatment for ADHD and associated developmental disorders since 1961. Psychostimulants has been shown to improve attention, response inhibition, and reduce hyperactivity in patients with ADHD, as well as in non-clinical human populations and animals. While there is a considerable amount of preclinical research investigating the effects of stimulant medications on reward sensitivity and basic learning in male rats, less is understood about their effects in females. Further, there are competing theories on the long-term cognitive impact of MPH, specifically in children who do not have ADHD. To this end, Long-Evans female and male rats were exposed to methylphenidate (0, 2.5, 5 mg/kg, BID, IP) for 20 days during early development (PD10-29). After discontinuation of MPH into adulthood, rats (beginning PD 60) were trained and tested for risk-preference using a 2-choice probabilistic discounting task. For this task, rats were given an option between a 'large-risky' choice (3 sugar pellets delivered on a probabilistic VR schedule) and 'small-certain' choice (1 sugar pellet delivered on a FR schedule). Rats were subsequently tested on an open field conflict test. The results demonstrate that prepubertal exposure to MPH can have lasting effects on decision-making. Specifically, female rats treated with 2.5 mg/kg MPH displayed a decrease in preference for the risky option, whereas male rats treated with the same dose showed an overall increase in preference compared to sex-matched controls. Irrespective of sex, rats treated with 2.5 mg/kg MPH also demonstrated a decrease in anxiety/inhibitory behavior on the modified open field test compared to controls. These results were not due to differences in locomotor behavior. Overall, the study contributes to the growing body of evidence to suggest that MPH exposure early in development can have a sex-dependent impact on decision-making in adulthood.
Collapse
|
6
|
Otterbring T, Elbæk CT, Lu C. Can Digit Ratio and Gender Identity Predict Preferences for Consumption Options With a Distinct Gender Image? Front Psychol 2022; 13:923709. [PMID: 35756313 PMCID: PMC9220292 DOI: 10.3389/fpsyg.2022.923709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated whether individuals' preferences for masculine (vs. feminine) consumption options could be predicted by a biological sex cue (the 2D:4D digit ratio; a biomarker linked to prenatal testosterone exposure), and a psychological gender cue (self-perceived gender identity). Chinese participants (N = 216) indicated their preferences for a series of binary options that differed in their perceived gender image (e.g., romantic comedy vs. action thriller; pop music vs. hard rock), with one of the options evaluated as relatively more feminine and the other viewed as comparably more masculine. Participants also self-reported their gender identity and the length of their index and ring fingers, which was used to calculate their 2D:4D digit ratios. A low (male-typical) digit ratio and a masculine gender identity were both associated with more masculine preferences, regardless of participants' biological sex. However, a low digit ratio predicted preferences for masculine consumption options only in female participants with a masculine gender identity, but not in those with a feminine gender identity. These findings add to the literature on whether and when biological sex cues and psychological gender cues can predict preferences for options with a distinct gender image and suggest that the connection between these cues is more complex in women than in men.
Collapse
Affiliation(s)
- Tobias Otterbring
- Department of Management, School of Business and Law, University of Agder, Kristiansand, Norway
- Institute of Retail Economics, Stockholm, Sweden
| | | | - Chaoren Lu
- Kunming Academy of Governance, Kunming, China
| |
Collapse
|
7
|
Serrano NE, Saputra SG, Íbias J, Company M, Nazarian A. Pain-induced impulsivity is sexually dimorphic and mu-opioid receptor sensitive in rats. Psychopharmacology (Berl) 2021; 238:3447-3462. [PMID: 34427720 DOI: 10.1007/s00213-021-05963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Pain sensation can negatively impact cognitive function, including impulsivity. Pain-induced changes in impulsivity can contribute to development of psychiatric comorbidities found in those with chronic pain conditions. The goal of this study was to determine whether complete Freund's adjuvant (CFA)-induced pain manipulation enhances impulsivity in rats. Whether the pain-induced impulsivity is sexually dimorphic, and if mu-opioid receptors play a role in these processes. METHODS Male and female rats were screened for trait impulsivity and designated as high or low impulsive using a delay discounting task. Rats then received a hind paw injection of CFA, and their impulsivity was assessed for 16 days. The effects of morphine on impulsivity were also examined. In a separate experiment, rats were pretreated with beta-funaltrexamine (β-FNA) to determine the role of mu-opioid receptors on impulsivity. RESULTS CFA treatment increased impulsivity in males and females. The onset of CFA-induced impulsivity was faster in high impulsive females than males. Morphine blocked CFA-induced impulsivity in both sexes in a dose- and time-dependent manner. β-FNA prevented the actions of morphine on CFA-induced impulsivity in high impulsive males, but not high impulsive females. Moreover, β-FNA increased CFA-induced impulsivity in morphine naïve males, but not females. CONCLUSION These findings demonstrate unique sex differences in CFA-induced impulsivity, response to morphine, and the impact of mu-opioid receptors. A better understanding of cognitive deficits and their mechanisms can provide insight into the development of substance abuse and psychiatric comorbidities that occur in people with chronic pain.
Collapse
Affiliation(s)
- Nidia Espinoza Serrano
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Samuel G Saputra
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Javier Íbias
- Departamento de Metodologίa de Las Ciencias del Comportamiento, Facultad de Psicologίa, Universidad Nacional de Educacίon a Distancia (UNED), 28040, Madrid, Spain
| | - Matthew Company
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
8
|
Fox AE. Effects of immediate-reinforcement training on delay discounting behavior in rats. J Exp Anal Behav 2021; 117:53-68. [PMID: 34734647 DOI: 10.1002/jeab.727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic exposure to delayed reinforcement has been shown to increase choice for larger, later reinforcement in a subsequent delay discounting task. In the 3 experiments presented in this paper, the opposite was tested: effects of chronic exposure to immediate reinforcement on choice in a subsequent delay discounting task. In Experiment 1, larger, later reinforcement choice was significantly reduced as a result of exposure to immediate reinforcement, compared to a maturation/handle control group, in experienced, male Lewis rats. In Experiment 2, with naive male and female Wistar rats, and Experiment 3, with naïve male Long Evans rats, the impact of exposure to immediate reinforcement was less robust, but directionally consistent with results from Experiment 1. These results align with some previous work reporting that exposure to immediate reinforcement may decrease choice for larger, later reinforcement in a delay discounting task, and/or blunt maturational increases in choice for larger, later reinforcement. These findings have implications for future research investigating experience-based interventions to manipulate delay discounting behavior. They also have clinical implications for understanding and treating disorders involving maladaptive choice.
Collapse
|
9
|
Darling JS, Bayless DW, Dartez LR, Taylor JJ, Mehrotra A, Smith WL, Daniel JM. Sex differences in impulsivity in adult rats are mediated by organizational actions of neonatal gonadal hormones and not by hormones acting at puberty or in adulthood. Behav Brain Res 2020; 395:112843. [PMID: 32755634 DOI: 10.1016/j.bbr.2020.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Males as compared to females display increased impulsivity and inefficient inhibitory control and are more frequently diagnosed with disorders characterized by impulsivity. We previously demonstrated male rats make more impulsive action responses (i.e. premature responding) than females on the 5-choice serial reaction time task (5-CSRTT). Furthermore, pre-pubertal male rats make more impulsive choice responses (i.e. choosing an immediate small reward over a delayed larger reward) than females on a delayed-based reward T-maze task. The goal of the current work was to determine if gonadal hormones impact sex differences in impulsivity in adult rats. In an initial experiment, male and female rats underwent sham surgeries or were gonadectomized either pre-pubertally or during adulthood and tested on the 5-CSRTT in adulthood. Males displayed more impulsive action responses than females regardless of hormone status. In a second experiment, females received testosterone or vehicle injections on postnatal days 1 and 2. Males received vehicle injections. All rats were gonadectomized prior to puberty and tested on the 5-CSRTT in adulthood. Females treated neonatally with testosterone and control males made more impulsive action responses than control females. In another set of experiments, manipulation of gonadal hormones led to no differences in performance on the delayed-based reward T-maze task in males and females. Results indicate that no sex difference is apparent in impulsive choice on a delayed-base reward task in adult rats. They also reveal that adult sex differences on a task of impulsive action is mediated by organizational effects of gonadal hormones acting during the neonatal period and not impacted by hormones acting during puberty or adulthood.
Collapse
Affiliation(s)
- Jeffrey S Darling
- Neuroscience Program, United States; Tulane Brain Institute, United States.
| | - Daniel W Bayless
- Psychology Department, Tulane University, New Orleans, LA, 70118, United States; Stanford University School of Medicine, Stanford, CA, 94305 United States
| | - Lauren R Dartez
- Neuroscience Program, United States; Tulane Brain Institute, United States
| | - Joshua J Taylor
- Neuroscience Program, United States; Tulane Brain Institute, United States
| | - Arjun Mehrotra
- Neuroscience Program, United States; Tulane Brain Institute, United States
| | - William L Smith
- Neuroscience Program, United States; Tulane Brain Institute, United States
| | - Jill M Daniel
- Neuroscience Program, United States; Tulane Brain Institute, United States; Psychology Department, Tulane University, New Orleans, LA, 70118, United States
| |
Collapse
|
10
|
Hernandez CM, Orsini C, Wheeler AR, Ten Eyck TW, Betzhold SM, Labiste CC, Wright NG, Setlow B, Bizon JL. Testicular hormones mediate robust sex differences in impulsive choice in rats. eLife 2020; 9:58604. [PMID: 32985975 PMCID: PMC7521924 DOI: 10.7554/elife.58604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Impairments in choosing optimally between immediate and delayed rewards are associated with numerous psychiatric disorders. Such ‘intertemporal’ choice is influenced by genetic and experiential factors; however, the contributions of biological sex are understudied and data to date are largely inconclusive. Rats were used to determine how sex and gonadal hormones influence choices between small, immediate and large, delayed rewards. Females showed markedly greater preference than males for small, immediate over large, delayed rewards (greater impulsive choice). This difference was neither due to differences in food motivation or reward magnitude perception, nor was it affected by estrous cycle. Ovariectomies did not affect choice in females, whereas orchiectomies increased impulsive choice in males. These data show that male rats exhibit less impulsive choice than females and that this difference is at least partly maintained by testicular hormones. These differences in impulsive choice could be linked to gender differences across multiple neuropsychiatric conditions.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, United States.,Department of Psychiatry, University of Florida, Gainesville, United States
| | - Caitlin Orsini
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Noelle G Wright
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, United States
| |
Collapse
|
11
|
Islas-Preciado D, Wainwright SR, Sniegocki J, Lieblich SE, Yagi S, Floresco SB, Galea LAM. Risk-based decision making in rats: Modulation by sex and amphetamine. Horm Behav 2020; 125:104815. [PMID: 32640197 DOI: 10.1016/j.yhbeh.2020.104815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Decision-making is a complex process essential to daily adaptation in many species. Risk is an inherent aspect of decision-making and it is influenced by gonadal hormones. Testosterone and 17β-estradiol may modulate decision making and impact the mesocorticolimbic dopamine pathway. Here, we explored sex differences, the effect of gonadal hormones and the dopamine agonist amphetamine on risk-based decision making. Intact or gonadectomised (GDX) male and female rats underwent to a probabilistic discounting task. High and low doses of testosterone propionate (1.0 or 0.2 mg) and 17β-estradiol benzoate (0.3 μg) were administered to assess acute effects on risk-based decision making. After 3-days of washout period, intact and GDX rats received high or low (0.5 or 0.125 mg/kg) doses of amphetamine and re-tested in the probabilistic discounting task. Under baseline conditions, males made more risky choices during probability discounting compared to female rats, particularly in the lower probability blocks, but GDX did not influence risky choice. The high, but not the low dose, of testosterone modestly reduced risky decision making in GDX male rats. Conversely, 17β-estradiol had no significant effect on risky choice regardless of GDX status in either sex. Lastly, a higher dose of amphetamine increased risky decision making in both intact males and females, but had no effect in GDX rats. These findings demonstrated sex differences in risk-based decision making, with males showing a stronger bias toward larger, uncertain rewards. GDX status influenced the effects of amphetamine, suggesting different dopaminergic regulation in risk-based choices among males and females.
Collapse
Affiliation(s)
- Dannia Islas-Preciado
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven R Wainwright
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Julia Sniegocki
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
12
|
Aarde SM, Genner RM, Hrncir H, Arnold AP, Jentsch JD. Sex chromosome complement affects multiple aspects of reversal-learning task performance in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12685. [PMID: 32648356 DOI: 10.1111/gbb.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/11/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Determining the mechanisms by which the sex-chromosome complement (SCC) affects learning, attention, and impulsivity has implications for observed sex differences in prevalence, severity, and prognosis of psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidy. Here, Four Core Genotypes (FCG) mice were evaluated in order to assess the separable and/or interacting effects of gonads (testes vs. ovaries) and their secretions and/or SCC (XX vs. XY) acting via non-gonadal mechanisms on behavior. We tested FCG mice on a reversal-learning task that enables the quantification of aspects of learning, attention and impulsivity. Across testing phases (involving the initial acquisition of a spatial discrimination and subsequent reversal learning), overall error rate was larger in XY compared with XX mice. Although XX and XY groups did not differ in the total number of trials required in order to reach a preset performance criterion, analyses of reversal error types showed more perseverative errors in XY than XX mice, with no difference in regressive errors. Additionally, prepotent-response latencies during the reversal phase were shorter in XY males, as compared with both XX gonadal males and females of either SCC, and failures to sustain the observing response were more frequent in XY mice than XX mice during the acquisition phase. These results indicate that SCC affects the characteristic pattern of response selection during acquisition and reversal performance without affecting the overall learning rate. More broadly, these results show direct effects of the SCC on cognitive processes that are relevant to psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidies.
Collapse
Affiliation(s)
- Shawn M Aarde
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Rylee M Genner
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
13
|
Panfil K, Bailey C, Davis I, Mains A, Kirkpatrick K. A time-based intervention to treat impulsivity in male and female rats. Behav Brain Res 2020; 379:112316. [PMID: 31655096 DOI: 10.1016/j.bbr.2019.112316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
Time-based interventions have emerged as promising treatments for disorders associated with impulsivity. These interventions can be implemented to test their efficacy in preventing or treating impulsive choice in animal models of diseases related to impulsivity such as drug abuse. Impulsive choice is typically defined as choosing a smaller-sooner (SS) reward over a larger-later (LL) reward when the LL is relatively more optimal. Previous research has shown that these interventions promote LL choices in males and females, but sex differences have not been assessed. Because sex differences can complicate the application of therapies, it is critical to compare the effects of the intervention in males and females. The intervention group received exposure to 10-s and 30-s interval schedules, and the control rats received no delay to reward. Different impulsive choice tasks were used to assess the intervention efficacy across the two experiments. Following the intervention, reductions in impulsive choice were found in male and female rats, but the degree of improvement was inconsistent across sex and task. Bayesian analyses that combined the results revealed robust evidence of an overall intervention effect with the intervention group showing greater self-control, but there was no evidence for the intervention affecting males and females differently. Taken together, these results suggest that time-based interventions are effective tools to treat impulsivity in both males and females and offer promising translational capability to humans.
Collapse
Affiliation(s)
- Kelsey Panfil
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States.
| | - Carrie Bailey
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States; University of Missouri, KS, United States
| | - Ian Davis
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States
| | - Anne Mains
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, United States
| |
Collapse
|
14
|
Delevich K, Hall CD, Piekarski D, Zhang Y, Wilbrecht L. Prepubertal gonadectomy reveals sex differences in approach-avoidance behavior in adult mice. Horm Behav 2020; 118:104641. [PMID: 31778717 DOI: 10.1016/j.yhbeh.2019.104641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
Adolescence is a developmental period that is associated with physical, cognitive, and affective maturation and a time when sex biases in multiple psychiatric diseases emerge. While puberty onset marks the initiation of adolescence, it is unclear whether the pubertal rise in gonadal hormones generates sex differences in approach-avoidance behaviors that may impact psychiatric vulnerability. To examine the influence of pubertal development on adult behavior, we removed the gonads or performed sham surgery in male and female mice just prior to puberty onset and assessed performance in an odor-guided foraging task and anxiety-related behaviors in adulthood. We observed no significant sex differences in foraging or anxiety-related behaviors between intact adult male and female mice but found significant differences between adult male and female mice that had been gonadectomized (GDX) prior to puberty onset. GDX males failed to acquire the odor-guided foraging task, showed reduced locomotion, and exhibited increased anxiety-like behavior, while GDX females showed the opposite pattern of behavior. These data suggest that puberty may minimize rather than drive differences in approach-avoidance phenotypes in male and female mice.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Hall
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - David Piekarski
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Yuting Zhang
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
Lamanna J, Sulpizio S, Ferro M, Martoni R, Abutalebi J, Malgaroli A. Behavioral assessment of activity-based-anorexia: how cognition can become the drive wheel. Physiol Behav 2019; 202:1-7. [DOI: 10.1016/j.physbeh.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
|
16
|
Freund N, Jordan CJ, Lukkes JL, Norman KJ, Andersen SL. Juvenile exposure to methylphenidate and guanfacine in rats: effects on early delay discounting and later cocaine-taking behavior. Psychopharmacology (Berl) 2019; 236:685-698. [PMID: 30411140 DOI: 10.1007/s00213-018-5096-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Both methylphenidate (MPH), a catecholamine reuptake blocker, and guanfacine, an alpha2A agonist, are used to treat attention-deficit hyperactivity disorder (ADHD). Childhood impulsivity, including delay discounting, is associated with increased substance use during adolescence. These effects can be mitigated by juvenile exposure to MPH, but less is known about the long-term effects of developmental exposure to guanfacine in males and females. OBJECTIVE This study aims to determine sex differences and dose-dependent effects of juvenile exposure to MPH or guanfacine on delay-discounting and later cocaine self-administration. METHODS The dose-dependent effects of vehicle, MPH (0.5, 1, and 2 mg/kg p.o.) or guanfacine (0.003, 0.03, and 0.3 mg/kg, i.p.) on discounting were determined in male and female Sprague-Dawley rats beginning at postnatal day (P)20. At P90, the amount, motivation, and sensitivity to cocaine following early drug exposure were determined with self-administration. RESULTS Guanfacine, but not MPH, significantly reduced weight by 22.9 ± 4.6% in females. MPH dose dependently decreased delay discounting in both juvenile males and females, while guanfacine was only effective in males. Discounting was associated with cocaine self-administration in vehicle males (R2 = -0.4, P < 0.05) and self-administration was reduced by guanfacine treatment (0.3 mg/kg). Guanfacine significantly decreased cocaine sensitivity in both sexes. CONCLUSIONS These data suggest that MPH is effective in reducing delay discounting in both sexes. Due to both weight loss and ineffectiveness on discounting in females, guanfacine should be used only in males to reduce delay discounting and later cocaine use.
Collapse
Affiliation(s)
- Nadja Freund
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.,Division of Experimental and Molecular Psychiatry, LWL University Hospital Bochum, Bochum, Germany.,Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Chloe J Jordan
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.,Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Norman
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Susan L Andersen
- Laboratory of Developmental Neuropharmacology, McLean Hospital, Harvard Medical School, Belmont, MA, USA. .,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478, USA.
| |
Collapse
|
17
|
Soares AR, Esteves M, Moreira PS, Cunha AM, Guimarães MR, Carvalho MM, Raposo-Lima C, Morgado P, Carvalho AF, Coimbra B, Melo A, Rodrigues AJ, Salgado AJ, Pêgo JM, Cerqueira JJ, Costa P, Sousa N, Almeida A, Leite-Almeida H. Trait determinants of impulsive behavior: a comprehensive analysis of 188 rats. Sci Rep 2018; 8:17666. [PMID: 30518850 PMCID: PMC6281674 DOI: 10.1038/s41598-018-35537-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022] Open
Abstract
Impulsivity is a naturally occurring behavior that, when accentuated, can be found in a variety of neuropsychiatric disorders. The expression of trait impulsivity has been shown to change with a variety of factors, such as age and sex, but the existing literature does not reflect widespread consensus regarding the influence of modulating effects. We designed the present study to investigate, in a cohort of significant size (188 rats), the impact of four specific parameters, namely sex, age, strain and phase of estrous cycle, using the variable delay-to-signal (VDS) task. This cohort included (i) control animals from previous experiments; (ii) animals specifically raised for this study; and (iii) animals previously used for breeding purposes. Aging was associated with a general decrease in action impulsivity and an increase in delay tolerance. Females generally performed more impulsive actions than males but no differences were observed regarding delay intolerance. In terms of estrous cycle, no differences in impulsive behavior were observed and regarding strain, Wistar Han animals were, in general, more impulsive than Sprague-Dawley. In addition to further confirming, in a substantial study cohort, the decrease in impulsivity with age, we have demonstrated that both the strain and sex influences modulate different aspects of impulsive behavior manifestations.
Collapse
Affiliation(s)
- Ana Rosa Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marco Rafael Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Murteira Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Franky Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of General Surgery, Hospital of Braga, Braga, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Melo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Miguel Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
18
|
Enhancing effects of acute exposure to cannabis smoke on working memory performance. Neurobiol Learn Mem 2018; 157:151-162. [PMID: 30521850 DOI: 10.1016/j.nlm.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model. Adult male (n = 15) and female (n = 16) Long-Evans rats were trained in a food-motivated delayed response working memory task. Prior to test sessions, rats were exposed to smoke generated by burning different numbers of cannabis or placebo cigarettes, using a within-subjects design. Exposure to cannabis smoke had no effect on male rats' performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory. Follow-up experiments showed that acute administration of either Δ9-tetrahydrocannabinol (0.0, 0.3, 1.0, 3.0 mg/kg) or the cannabinoid receptor type 1 antagonist rimonabant (0.0, 0.2, 0.6, 2.0 mg/kg) impaired working memory performance. These results indicate that differences in the route, timing, or dose of cannabinoid administration can yield distinct cognitive outcomes, and highlight the need for further investigation of this topic.
Collapse
|
19
|
Stuebing SL, Marshall AT, Triplett A, Kirkpatrick K. Females in the forefront: time-based intervention effects on impulsive choice and interval timing in female rats. Anim Cogn 2018; 21:759-772. [PMID: 30109539 DOI: 10.1007/s10071-018-1208-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
Impulsive choice has been implicated in substance abuse, gambling, obesity, and other maladaptive behaviors. Deficits in interval timing may increase impulsive choices, and therefore, could serve as an avenue through which suboptimal impulsive choices can be moderated. Temporal interventions have successfully attenuated impulsive choices in male rats, but the efficacy of a temporal intervention has yet to be assessed in female rats. As such, this experiment examined timing and choice behavior in female rats, and evaluated the ability of a temporal intervention to mitigate impulsive choice behavior. The temporal intervention administered in this study was successful in reducing impulsive choices compared to a control group. Results of a temporal bisection task indicated that the temporal intervention increased long responses at the shorter durations. Further, results from the peak trials within the choice task combined with the progressive interval task suggest that the intervention increased sensitivity to delay and enhanced timing confidence. Overall, these results indicate that a temporal intervention can be a successful avenue for reducing impulsive choice behavior in female rats, and could contribute to the development of behavioral interventions to prevent impulsive choice and maladaptive behaviors that can be applied to both sexes.
Collapse
Affiliation(s)
- Sarah L Stuebing
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.
| | - Andrew T Marshall
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Ashton Triplett
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA.,Department of Counseling and Psychological Services, State University of New York-Oswego, Oswego, NY, 13126, USA
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506, USA
| |
Collapse
|
20
|
Orsini CA, Setlow B. Sex differences in animal models of decision making. J Neurosci Res 2017; 95:260-269. [PMID: 27870448 DOI: 10.1002/jnr.23810] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 02/03/2023]
Abstract
The ability to weigh the costs and benefits of various options to make an adaptive decision is critical to an organism's survival and wellbeing. Many psychiatric diseases are characterized by maladaptive decision making, indicating a need for better understanding of the mechanisms underlying this process and the ways in which it is altered under pathological conditions. Great strides have been made in uncovering these mechanisms, but the majority of what is known comes from studies conducted solely in male subjects. In recent years, decision-making research has begun to include female subjects to determine whether sex differences exist and to identify the mechanisms that contribute to such differences. This Mini-Review begins by describing studies that have examined sex differences in animal (largely rodent) models of decision making. Possible explanations, both theoretical and biological, for such differences in decision making are then considered. The Mini-Review concludes with a discussion of the implications of sex differences in decision making for understanding psychiatric conditions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida.,Department of Neuroscience, University of Florida, Gainesville, Florida.,Department of Psychology, University of Florida, Gainesville, Florida.,Center for Addiction Research and Education, University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Attentional Control in Adolescent Mice Assessed with a Modified Five Choice Serial Reaction Time Task. Sci Rep 2017; 7:9936. [PMID: 28855580 PMCID: PMC5577211 DOI: 10.1038/s41598-017-10112-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
Adolescence is a critical period for the development of higher-order cognitive functions. Unlike in humans, very limited tools are available to assess such cognitive abilities in adolescent rodents. We implemented a modified 5-Choice Serial Reaction Time Task (5CSRTT) to selectively measure attentiveness, impulsivity, broad monitoring, processing speed and distractibility in adolescent mice. 21-day old C57BL/6J mice reliably acquired this task with no sex-dependent differences in 10–12 days. A protocol previously used in adults was less effective to assess impulsiveness in adolescents, but revealed increased vulnerability in females. Next, we distinctively assessed selective, divided and broad monitoring attention modeling the human Spatial Attentional Resource Allocation Task (SARAT). Finally, we measured susceptibility to distractions using non-predictive cues that selectively disrupted attention. These paradigms were also applied to two genetically modified lines: the dopamine transporter (DAT) and catechol-O-methyltransferase (COMT) heterozygous. Adolescent DAT hypo-functioning mice showed attentional deficits and higher impulsivity as found in adults. In contrast to adults, adolescent COMT hypo-functioning mice showed decreased impulsivity and attentional resilience to distractors. These paradigms open new avenues to study the establishment of higher-order cognitive functions in mice, as well as an effective tool for drug-testing and genetic screenings focused on adolescence.
Collapse
|
22
|
Chia C, Dubois F. Impulsiveness does not prevent cooperation from emerging but reduces its occurrence: an experiment with zebra finches. Sci Rep 2017; 7:8544. [PMID: 28819131 PMCID: PMC5561265 DOI: 10.1038/s41598-017-09072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
Reciprocal altruism, the most probable mechanism for cooperation among unrelated individuals, can be modelled as a Prisoner's Dilemma. This game predicts that cooperation should evolve whenever the players, who expect to interact repeatedly, make choices contingent to their partner's behaviour. Experimental evidence, however, indicates that reciprocity is rare among animals. One reason for this would be that animals are very impulsive compared to humans. Several studies have reported that temporal discounting (that is, strong preferences for immediate benefits) has indeed a negative impact on the occurrence of cooperation. Yet, the role of impulsive action, another facet of impulsiveness, remains unexplored. Here, we conducted a laboratory experiment in which male and female zebra finches (Taenyopigia guttata) were paired assortatively with respect to their level of impulsive action and then played an alternating Prisoner's Dilemma. As anticipated, we found that self-controlled pairs achieved high levels of cooperation by using a Generous Tit-for-Tat strategy, while impulsive birds that cooperated at a lower level, chose to cooperate with a fixed probability. If the inability of impulsive individuals to use reactive strategies are due to their reduced working memory capacity, thus our findings might contribute to explaining interspecific differences in cooperative behaviour.
Collapse
Affiliation(s)
- Camille Chia
- Département de Sciences Biologiques, Université de Montréal, Montréal, Qc, Canada
| | - Frédérique Dubois
- Département de Sciences Biologiques, Université de Montréal, Montréal, Qc, Canada.
| |
Collapse
|
23
|
Nautiyal KM, Wall MM, Wang S, Magalong VM, Ahmari SE, Balsam PD, Blanco C, Hen R. Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology 2017; 42:1182-1191. [PMID: 27976680 PMCID: PMC5437890 DOI: 10.1038/npp.2016.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity.
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Melanie M Wall
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shuai Wang
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Valerie M Magalong
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program; Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter D Balsam
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Psychology Departments, Barnard College and Columbia University, New York, NY, USA
| | - Carlos Blanco
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Center for Neurobiology and Behavior, Columbia University, 722 W. 168th St., P.I. Annex 731, 1051 Riverside Drive, Unit 87, New York, NY 10032, USA, Tel: 212 646 774 7104, Fax: 212 646 774 7102, E-mail: or
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY, USA,Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, Columbia University, New York, NY, USA,Center for Neurobiology and Behavior, Columbia University, 722 W. 168th St., P.I. Annex 731, 1051 Riverside Drive, Unit 87, New York, NY 10032, USA, Tel: 212 646 774 7104, Fax: 212 646 774 7102, E-mail: or
| |
Collapse
|
24
|
Carroll ME, Lynch WJ. How to study sex differences in addiction using animal models. Addict Biol 2016; 21:1007-29. [PMID: 27345022 PMCID: PMC4970981 DOI: 10.1111/adb.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/17/2016] [Accepted: 02/27/2016] [Indexed: 11/30/2022]
Abstract
The importance of studying sex as a biological variable in biomedical research is becoming increasingly apparent. There is a particular need in preclinical studies of addiction to include both sexes, as female animals are often excluded from studies, leaving large gaps in our knowledge of not only sex differences and potential prevention and treatment strategies but also with regard to the basic neurobiology of addiction. This review focuses on methodology that has been developed in preclinical studies to examine sex differences in the behavioral aspects and neurobiological mechanisms related to addiction across the full range of the addiction process, including initiation (acquisition), maintenance, escalation, withdrawal, relapse to drug seeking and treatment. This review also discusses strategic and technical issues that need to be considered when comparing females and males, including the role of ovarian hormones and how sex differences interact with other major vulnerability factors in addiction, such as impulsivity, compulsivity and age (adolescent versus adult). Novel treatments for addiction are also discussed, such as competing non-drug rewards, repurposed medications such as progesterone and treatment combinations. Practical aspects of conducting research comparing female and male animals are also considered. Making sex differences a point of examination requires additional effort and consideration; however, such studies are necessary given mounting evidence demonstrating that the addiction process occurs differently in males and females. These studies should lead to a better understanding of individual differences in the development of addiction and effective treatments for males and females.
Collapse
Affiliation(s)
- Marilyn E. Carroll
- Marilyn E. Carroll, Department of Psychiatry, University of Minnesota, MMC 392, Minneapolis, MN, USA
| | - Wendy J. Lynch
- Wendy J. Lynch, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, PO Box 801402, Charlottesville, VA
| |
Collapse
|
25
|
Khani A, Rainer G. Neural and neurochemical basis of reinforcement-guided decision making. J Neurophysiol 2016; 116:724-41. [PMID: 27226454 DOI: 10.1152/jn.01113.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making.
Collapse
Affiliation(s)
- Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Switzerland
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Switzerland
| |
Collapse
|
26
|
Strickland JC, Feinstein MA, Lacy RT, Smith MA. The effects of physical activity on impulsive choice: Influence of sensitivity to reinforcement amount and delay. Behav Processes 2016; 126:36-45. [PMID: 26964905 DOI: 10.1016/j.beproc.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 11/30/2022]
Abstract
Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-s delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychology, Box 7037, Davidson College, Davidson, NC 28035-7037, United States, United States
| | - Max A Feinstein
- Department of Psychology, Box 7037, Davidson College, Davidson, NC 28035-7037, United States, United States
| | - Ryan T Lacy
- Department of Psychology, Box 7037, Davidson College, Davidson, NC 28035-7037, United States, United States
| | - Mark A Smith
- Department of Psychology, Box 7037, Davidson College, Davidson, NC 28035-7037, United States, United States.
| |
Collapse
|
27
|
Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front Psychiatry 2016; 6:175. [PMID: 26903885 PMCID: PMC4745113 DOI: 10.3389/fpsyt.2015.00175] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to discuss recent findings related to sex differences in behavioral dyscontrol that lead to drug addiction, and clinical implications for humans are discussed. This review includes research conducted in animals and humans that reveals fundamental aspects of behavioral dyscontrol. The importance of sex differences in aspects of behavioral dyscontrol, such as impulsivity and compulsivity, is discussed as major determinants of drug addiction. Behavioral dyscontrol during adolescence is also an important consideration, as this is the time of onset for drug addiction. These vulnerability factors additively increase drug-abuse vulnerability, and they are integral aspects of addiction that covary and interact with sex differences. Sex differences in treatments for drug addiction are also reviewed in terms of their ability to modify the behavioral dyscontrol that underlies addictive behavior. Customized treatments to reduce behavioral dyscontrol are discussed, such as (1) using natural consequences such as non-drug rewards (e.g., exercise) to maintain abstinence, or using punishment as a consequence for drug use, (2) targeting factors that underlie behavioral dyscontrol, such as impulsivity or anxiety, by repurposing medications to relieve these underlying conditions, and (3) combining two or more novel behavioral or pharmacological treatments to produce additive reductions in drug seeking. Recent published work has indicated that factors contributing to behavioral dyscontrol are an important target for advancing our knowledge on the etiology of drug abuse, intervening with the drug addiction process and developing novel treatments.
Collapse
Affiliation(s)
| | - John R. Smethells
- Program in PharmacoNeuroImmunology, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Orsini CA, Willis ML, Gilbert RJ, Bizon JL, Setlow B. Sex differences in a rat model of risky decision making. Behav Neurosci 2015; 130:50-61. [PMID: 26653713 DOI: 10.1037/bne0000111] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many debilitating psychiatric conditions, including drug addiction, are characterized by poor decision making and maladaptive risk-taking. Recent research has begun to probe this relationship to determine how brain mechanisms mediating risk-taking become compromised after chronic drug use. Currently, however, the majority of work in this field has used male subjects. Given the well-established sex differences in drug addiction, it is conceivable that such differences are also evident in risk-based decision making. To test this possibility, male and female adult rats were trained in a risky decision making task (RDT), in which they chose between a small, "safe" food reward and a large, "risky" food reward accompanied by an increasing probability of mild footshock punishment. Consistent with findings in human subjects, females were more risk averse, choosing the large, risky reward significantly less than males. This effect was not due to differences in shock reactivity or body weight, and risk-taking in females was not modulated by estrous phase. Systemic amphetamine administration decreased risk-taking in both males and females; however, females exhibited greater sensitivity to amphetamine, suggesting that dopaminergic signaling may partially account for sex differences in risk-taking. Finally, although males displayed greater instrumental responding for food reward, reward choice in the RDT was not affected by satiation, indicating that differences in motivation to obtain food reward cannot fully account for sex differences in risk-taking. These results should prove useful for developing targeted treatments for psychiatric conditions in which risk-taking is altered and that are known to differentially affect males and females.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine
| | - Markie L Willis
- Department of Psychiatry, University of Florida College of Medicine
| | - Ryan J Gilbert
- Department of Neuroscience, University of Florida College of Medicine
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine
| |
Collapse
|
29
|
Jolles JW, Boogert NJ, van den Bos R. Sex differences in risk-taking and associative learning in rats. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150485. [PMID: 26716004 PMCID: PMC4680619 DOI: 10.1098/rsos.150485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 05/28/2023]
Abstract
In many species, males tend to have lower parental investment than females and greater variance in their reproductive success. Males might therefore be expected to adopt more high-risk, high-return behaviours than females. Next to risk-taking behaviour itself, sexes might also differ in how they respond to information and learn new associations owing to the fundamental link of these cognitive processes with the risk-reward axis. Here we investigated sex differences in both risk-taking and learned responses to risk by measuring male and female rats' (Rattus norvegicus) behaviour across three contexts in an open field test containing cover. We found that when the environment was novel, males spent more time out of cover than females. Males also hid less when exposed to the test arena containing predator odour. By contrast, females explored more than males when the predator odour was removed (associatively learned risk). These results suggest that males are more risk-prone but behave more in line with previous experiences, while females are more risk-averse and more responsive to changes in their current environment. Our results suggest that male and female rats differ in how they cope with risk and highlight that a general link may exist between risk-taking behaviour and learning style.
Collapse
Affiliation(s)
- Jolle Wolter Jolles
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Neeltje J. Boogert
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Ruud van den Bos
- Faculty of Science, Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Lukkes JL, Thompson BS, Freund N, Andersen SL. The developmental inter-relationships between activity, novelty preferences, and delay discounting in male and female rats. Dev Psychobiol 2015; 58:231-42. [PMID: 26419783 DOI: 10.1002/dev.21368] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/18/2015] [Indexed: 02/02/2023]
Abstract
Increased locomotion, novelty-seeking, and impulsivity are risk factors associated with substance use. In this study, the inter-relationships between activity, novelty preferences, and delay discounting, a measure of impulsivity, were examined across three stages: juvenile/early adolescence (postnatal Day [P] 15, 19, and 42 for activity, novelty, and impulsivity, respectively), adolescent/late adolescent (P28, 32, 73), and adult (P90, 94, 137) in male and female rats. Our estimates of impulsive choice, where animals were trained to criterion, revealed an age × sex interaction where early adolescent females had the lowest levels of impulsivity. The relationships of activity and novelty to impulsivity significantly changed across age within each sex. Early adolescent males with high activity, but low novelty preferences, were more impulsive; however, low activity and high novelty preferences were related to high impulsivity in adult males. Female activity gradually increased across age, but did not show a strong relationship with impulsivity. Novelty preferences are moderately related to impulsivity into adulthood in females. These data show that males and females have different developmental trajectories for these behaviors. Males show greater sensation-seeking (e.g., activity) and risky behavior (e.g., novelty preferences) earlier in life, whereas these behaviors emerge during adolescence in females.
Collapse
Affiliation(s)
- Jodi L Lukkes
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478
| | | | - Nadja Freund
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Susan L Andersen
- Laboratory of Developmental Neuropharmacology, Belmont, MA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Mailstop 333, 115 Mill Street, Belmont, MA, 02478
| |
Collapse
|
31
|
Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets. Behav Pharmacol 2015; 25:705-16. [PMID: 25000488 DOI: 10.1097/fbp.0000000000000058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for 3 months. Then, operant sessions began in which rats (n=9 standard chow; n=10 high-fat) chose between one sucrose pellet delivered immediately versus three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered intraperitoneally before some choice sessions under both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve values. Rats in the high-fat diet condition showed increased sensitivity to haloperidol compared with chow-fed controls; haloperidol increased discounting in both dietary groups in the sucrose condition, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking dopamine-2 and cannabinoid-1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task.
Collapse
|
32
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
33
|
Remmelink E, Loos M, Koopmans B, Aarts E, van der Sluis S, Smit AB, Verhage M. A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment. Behav Brain Res 2015; 283:53-60. [PMID: 25601577 DOI: 10.1016/j.bbr.2015.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 11/18/2022]
Abstract
Individuals are able to change their behavior based on its consequences, a process involving instrumental learning. Studying instrumental learning in mice can provide new insights in this elementary aspect of cognition. Conventional appetitive operant learning tasks that facilitate the study of this form of learning in mice, as well as more complex operant paradigms, require labor-intensive handling and food deprivation to motivate the animals. Here, we describe a 1-night operant learning protocol that exploits the advantages of automated home-cage testing and circumvents the interfering effects of food restriction. The task builds on behavior that is part of the spontaneous exploratory repertoire during the days before the task. We compared the behavior of C57BL/6J, BALB/cJ and DBA/2J mice and found various differences in behavior during this task, but no differences in learning curves. BALB/cJ mice showed the largest instrumental learning response, providing a superior dynamic range and statistical power to study instrumental learning by using this protocol. Insights gained with this home-cage-based learning protocol without food restriction will be valuable for the development of other, more complex, cognitive tasks in automated home-cages.
Collapse
Affiliation(s)
- Esther Remmelink
- Sylics (Synaptologics B.V.), Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics B.V.), Amsterdam, The Netherlands.
| | | | - Emmeke Aarts
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Sophie van der Sluis
- Section Complex Trait Genetics, Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | | | - Matthijs Verhage
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|
35
|
Weafer J, de Wit H. Sex differences in impulsive action and impulsive choice. Addict Behav 2014; 39:1573-1579. [PMID: 24286704 DOI: 10.1016/j.addbeh.2013.10.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies.
Collapse
|
36
|
van den Bos R, Koot S, de Visser L. A rodent version of the Iowa Gambling Task: 7 years of progress. Front Psychol 2014; 5:203. [PMID: 24672498 PMCID: PMC3957418 DOI: 10.3389/fpsyg.2014.00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/23/2014] [Indexed: 11/21/2022] Open
Abstract
In the Iowa Gambling Task (IGT) subjects need to find a way to earn money in a context of variable wins and losses, conflicting short-term and long-term pay-off, and uncertainty of outcomes. In 2006, we published the first rodent version of the IGT (r-IGT; Behavior Research Methods 38, 470–478). Here, we discuss emerging ideas on the involvement of different prefrontal-striatal networks in task-progression in the r-IGT, as revealed by our studies thus far. The emotional system, encompassing, among others, the orbitofrontal cortex, infralimbic cortex and nucleus accumbens (shell and core area), may be involved in assessing and anticipating the value of different options in the early stages of the task, i.e., as animals explore and learn task contingencies. The cognitive control system, encompassing, among others, the prelimbic cortex and dorsomedial striatum, may be involved in instrumental goal-directed behavior in later stages of the task, i.e., as behavior toward long-term options is strengthened (reinforced) and behavior toward long-term poor options is weakened (punished). In addition, we suggest two directions for future research: (1) the role of the internal state of the subject in decision-making, and (2) studying differences in task-related costs. Overall, our studies have contributed to understanding the interaction between the emotional system and cognitive control system as crucial to navigating human and non-human animals alike through a world of variable wins and losses, conflicting short-term and long-term pay-offs, and uncertainty of outcomes.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Faculty of Science, Radboud University Nijmegen Nijmegen, Netherlands
| | - Susanne Koot
- Division Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine Utrecht University, Utrecht, Netherlands ; Department of Neuroscience and Pharmacology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht Utrecht, Netherlands
| | - Leonie de Visser
- Department of Neuroscience and Pharmacology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht Utrecht, Netherlands
| |
Collapse
|
37
|
Eubig PA, Noe TE, Floresco SB, Sable JJ, Schantz SL. Sex differences in response to amphetamine in adult Long-Evans rats performing a delay-discounting task. Pharmacol Biochem Behav 2014; 118:1-9. [PMID: 24388843 PMCID: PMC3934103 DOI: 10.1016/j.pbb.2013.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 11/11/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
The use of animal models to investigate experimental questions about impulsive behavior can provide valuable insight into problems that affect human health. The delay-discounting paradigm involves subjects choosing between smaller reinforcers delivered immediately and larger reinforcers that are delivered after a delay. This is an important experimental paradigm for examining impulsive choice in both laboratory species and humans. However, a shortcoming of previously published delay-discounting studies in animals is that typically only males were studied, reducing the applicability of these studies to human populations. In the present study, both female and male adult Long-Evans rats were trained to perform a delay-discounting task, with delays of 0, 5, 10, 20 and 40 s before delivery of the larger reinforcer. Because dopaminergic signaling is important in mediating this task, the effects of d-amphetamine and the dopamine receptor antagonist, cis-flupenthixol, on task performance were then examined. The main experimental measure was percent larger-reinforcer choice, which was defined as the percentage of experimental trials at each delay in which the delayed, larger reinforcer was chosen. There was no sex difference in percent larger-reinforcer choice during baseline performance of the task. However, d-amphetamine administration disrupted choice in females, as evidenced by <80% larger-reinforcer choice in half of the females, but none of the males, at 0.5 mg/kg. D-Amphetamine also differentially altered the latency to choose between immediate versus delayed reinforcers in females compared to males. In contrast, cis-flupenthixol did not have a sex-related effect on percent larger-reinforcer choice. These findings parallel the sex differences in response to amphetamine seen in human delay-discounting studies and underscore the importance of evaluating sex-based differences in baseline performance and in response to pharmacologic agents when utilizing animal models.
Collapse
Affiliation(s)
- Paul A Eubig
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA.
| | - Terese E Noe
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey J Sable
- Department of Behavioral Sciences, Christian Brothers University, Memphis, TN 38104, USA
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois, Urbana, IL 61802, USA
| |
Collapse
|
38
|
Bayless DW, Darling JS, Daniel JM. Mechanisms by which neonatal testosterone exposure mediates sex differences in impulsivity in prepubertal rats. Horm Behav 2013; 64:764-9. [PMID: 24126137 DOI: 10.1016/j.yhbeh.2013.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
Abstract
Neonatal testosterone, either acting directly or through its conversion to estradiol, can exert organizational effects on the brain and behavior. The goal of the current study was to examine sex differences and determine the role of neonatal testosterone on prefrontal cortex-dependent impulsive choice behavior in prepubertal rats. Male and female prepubertal rats were tested on the delay-based impulsive choice task. Impulsive choice was defined as choosing an immediate small food reward over a delayed large reward. In a first experiment to examine sex differences, males made significantly more impulsive choices than did females. In a second experiment to examine the organizational effects of testosterone, females treated with neonatal testosterone made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. In a third experiment to determine if the effect of testosterone on performance is due to the actions of androgens or estrogens through its conversion to estradiol, males treated neonatally with the aromatase inhibitor formestane, which blocks the conversion of testosterone to estradiol, females treated neonatally with the non-aromatizable androgen dihydrotestosterone, and females treated neonatally with estradiol made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. Results indicate that male pubertal rats display increased impulsive choice behavior as compared to females, that this sex difference results from organizing actions of testosterone during the neonatal period, and that this effect can result from both androgenic and estrogenic actions.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
39
|
van den Bos R, Davies W, Dellu-Hagedorn F, Goudriaan AE, Granon S, Homberg J, Rivalan M, Swendsen J, Adriani W. Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev 2013; 37:2454-71. [PMID: 23867802 DOI: 10.1016/j.neubiorev.2013.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Decision-making plays a pivotal role in daily life as impairments in processes underlying decision-making often lead to an inability to make profitable long-term decisions. As a case in point, pathological gamblers continue gambling despite the fact that this disrupts their personal, professional or financial life. The prevalence of pathological gambling will likely increase in the coming years due to expanding possibilities of on-line gambling through the Internet and increasing liberal attitudes towards gambling. It therefore represents a growing concern for society. Both human and animal studies rapidly advance our knowledge on brain-behaviour processes relevant for understanding normal and pathological gambling behaviour. Here, we review in humans and animals three features of pathological gambling which hitherto have received relatively little attention: (1) sex differences in (the development of) pathological gambling, (2) adolescence as a (putative) sensitive period for (developing) pathological gambling and (3) avenues for improving ecological validity of research tools. Based on these issues we also discuss how research in humans and animals may be brought in line to maximize translational research opportunities.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Organismal Animal Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands; Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The effects of native whey and α-lactalbumin on the social and individual behaviour of C57BL/6J mice. Br J Nutr 2013; 110:1336-46. [PMID: 23507076 DOI: 10.1017/s0007114513000238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Milk proteins are the main components of everyday feeding and demonstrate a promising potential to change the mental condition. However, the effects of milk proteins after prolonged use remain poorly understood. The aim of the present study was to compare the effects of two whey proteins (alpha-lactalbumin (alpha-lac) and native whey) with casein on social and individual behaviour in mice. During a 30 d-long dietary intervention, male C57BL/6J mice had ad libitum access to an experimental diet containing 17% (w/w) of one of three protein sources: a-lac, native whey or casein. Mice had voluntary access to a running wheel. Social behaviour (group and resident-intruder activity) was tested at baseline and at the end of the intervention. Half of each dietary group was then withdrawn from the diet and running wheel for 7 d, and social activity and individual behaviour tests (open field, elevated-plus maze, light–dark box and forced swimming) were performed, to evaluate anxiety and depression-like status. The study shows that the long-term ingestion of whey proteins may modulate behaviour when compared with casein. Diet enriched with a-lac exhibited anxiolytic and antidepressive activities while the whey diet improved sociability. The differences between the diet groups were pronounced under the running wheel and the withdrawal of the experimental diet, suggesting that the beneficial effects of the milk proteins are clearer in stressful situations. Diet-induced behavioural changes remained visible for a week after feeding, which suggests that the proteins of the milk whey fraction have prolonged efficacy on the mental state of mice.
Collapse
|
41
|
Adriani W, Koot S, Columba-Cabezas S, Romano E, Travaglini D, van den Bos R, Granstrem O, Ali SF, Laviola G. Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice. Behav Brain Funct 2012. [PMID: 23192105 PMCID: PMC3537576 DOI: 10.1186/1744-9081-8-54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT) have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. Methods Male CD-1 mice were immunized with DAT peptide fragments (DAT-i), or vehicle alone (VEH), to generate elevated circulating levels of DAT auto-antibodies (aAbs). Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec), mice had a choice between either an immediate small amount of food (SS), or a larger amount of food after a delay (LL), which increased progressively across sessions (from 0 to 150 sec). Results DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest). Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. Conclusions Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization. Present neuro-behavioural alterations, coming along with an experimentally-induced rise of circulating DAT-directed aAbs, open the issue of a potential role for auto-immunity in vulnerability to impulse-control disorders.
Collapse
Affiliation(s)
- Walter Adriani
- Dept. Cell Biology & Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Effects of sex and COMT genotype on environmentally modulated cognitive control in mice. Proc Natl Acad Sci U S A 2012; 109:20160-5. [PMID: 23169629 DOI: 10.1073/pnas.1214397109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cognitive functioning differs between males and females, likely in part related to genetic dimorphisms. An example of a common genetic variation reported to have sexually dimorphic effects on cognition and temperament in humans is the Val/Met polymorphism in catechol-O-methyltransferase (COMT). We tested male and female wild-type mice ((+/+)) and their COMT knockout littermates ((+/-) and (-/-)) in the five-choice serial reaction time task (5CSRTT) to investigate the effects of sex, COMT genotype, and their interactions with environmental manipulations of cognitive functions such as attention, impulsivity, compulsivity, motivation, and rule-reversal learning. No sex- or COMT-dependent differences were present in the basic acquisition of the five-choice serial reaction time task. In contrast, specific environmental manipulations revealed a variety of sex- and COMT-dependent effects. Following an experimental change to trigger impulsive responding, the sexes showed similar increases in impulsiveness, but males eventually habituated whereas females did not. Moreover, COMT knockout mice were more impulsive compared with wild-type littermates. Manipulations involving mild stress adversely affected cognitive performance in males, and particularly COMT knockout males, but not in females. In contrast, following amphetamine treatment, subtle sex by genotype and sex by treatment interactions emerged primarily limited to compulsive behavior. After repeated testing, female mice showed improved performance, working harder and eventually outperforming males. Finally, removing the food-restriction condition enhanced sex and COMT differences, revealing that overall, females outperform males and COMT knockout males outperform their wild-type littermates. These findings illuminate complex sex- and COMT-related effects and their interactions with environmental factors to influence specific executive cognitive domains.
Collapse
|
43
|
van den Bos R, Homberg J, de Visser L. A critical review of sex differences in decision-making tasks: focus on the Iowa Gambling Task. Behav Brain Res 2012; 238:95-108. [PMID: 23078950 DOI: 10.1016/j.bbr.2012.10.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 12/28/2022]
Abstract
It has been observed that men and women show performance differences in the Iowa Gambling Task (IGT), a task of decision-making in which subjects through exploration learn to differentiate long-term advantageous from long-term disadvantageous decks of cards: men choose more cards from the long-term advantageous decks than women within the standard number of 100 trials. Here, we aim at discussing psychological mechanisms and neurobiological substrates underlying sex differences in IGT-like decision-making. Our review suggests that women focus on both win-loss frequencies and long-term pay-off of decks, while men focus on long-term pay-off. Furthermore, women may be more sensitive to occasional losses in the long-term advantageous decks than men. As a consequence hereof, women need 40-60 trials in addition before they reach the same level of performance as men. These performance differences are related to differences in activity in the orbitofrontal cortex and dorsolateral prefrontal cortex as well as in serotonergic activity and left-right hemispheric activity. Sex differences in orbitofrontal cortex activity may be due to organisational effects of gonadal hormones early in life. The behavioural and neurobiological differences in the IGT between men and women are an expression of more general sex differences in the regulation of emotions. We discuss these findings in the context of sex differences in information processing related to evolutionary processes. Furthermore we discuss the relationship between these findings and real world decision-making.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
44
|
van den Bos R, Jolles J, van der Knaap L, Baars A, de Visser L. Male and female Wistar rats differ in decision-making performance in a rodent version of the Iowa Gambling Task. Behav Brain Res 2012; 234:375-9. [PMID: 22814113 DOI: 10.1016/j.bbr.2012.07.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022]
Abstract
The Iowa Gambling Task (IGT) measures decision-making processes by simulating real-life decisions involving reward, punishment, and uncertainty of outcomes. In humans, men show more choices for the advantageous option than women. Here, we investigated sex differences in a rat model of the IGT (r-IGT). In our r-IGT mildly food-deprived rats learn to differentiate a long-term advantageous arm from a long-term disadvantageous arm differing in frequency and amount of sugar pellets as well as unpalatable but not uneatable quinine-treated sugar pellets. We also used a T-maze discrimination procedure in which rats learn to differentiate a high from a low reward arm to further explore sex differences in reward-related decision-making. In line with human data, male rats showed a stronger task progression of choices for the advantageous option than female rats. Furthermore, male rats showed more win-stay and less lose-shift behaviour in the advantageous arm as the task progressed than female rats. Whilst both male and female rats had a stronger preference for the high over the small reward arm in the T-maze, males increased this preference over sessions, whilst females did not. These data are discussed in relation to sex differences in processing rewards and punishments.
Collapse
Affiliation(s)
- Ruud van den Bos
- Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Zheng D, Cabeza de Vaca S, Carr KD. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacol Biochem Behav 2011; 100:538-44. [PMID: 22074687 DOI: 10.1016/j.pbb.2011.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/30/2011] [Accepted: 10/23/2011] [Indexed: 01/01/2023]
Abstract
Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors.
Collapse
Affiliation(s)
- Danielle Zheng
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
46
|
Archer T, Oscar-Berman M, Blum K. Epigenetics in Developmental Disorder: ADHD and Endophenotypes. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2011; 2:1000104. [PMID: 22224195 PMCID: PMC3250517 DOI: 10.4172/2157-7412.1000104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterogeneity in attention-deficit/hyperactivity disorder (ADHD), with complex interactive operations of genetic and environmental factors, is expressed in a variety of disorder manifestations: severity, co-morbidities of symptoms, and the effects of genes on phenotypes. Neurodevelopmental influences of genomic imprinting have set the stage for the structural-physiological variations that modulate the cognitive, affective, and pathophysiological domains of ADHD. The relative contributions of genetic and environmental factors provide rapidly proliferating insights into the developmental trajectory of the condition, both structurally and functionally. Parent-of-origin effects seem to support the notion that genetic risks for disease process debut often interact with the social environment, i.e., the parental environment in infants and young children. The notion of endophenotypes, markers of an underlying liability to the disorder, may facilitate detection of genetic risks relative to a complex clinical disorder. Simple genetic association has proven insufficient to explain the spectrum of ADHD. At a primary level of analysis, the consideration of epigenetic regulation of brain signalling mechanisms, dopamine, serotonin, and noradrenaline is examined. Neurotrophic factors that participate in the neurogenesis, survival, and functional maintenance of brain systems, are involved in neuroplasticity alterations underlying brain disorders, and are implicated in the genetic predisposition to ADHD, but not obviously, nor in a simple or straightforward fashion. In the context of intervention, genetic linkage studies of ADHD pharmacological intervention have demonstrated that associations have fitted the "drug response phenotype," rather than the disorder diagnosis. Despite conflicting evidence for the existence, or not, of genetic associations between disorder diagnosis and genes regulating the structure and function of neurotransmitters and brain-derived neurotrophic factor (BDNF), associations between symptoms-profiles endophenotypes and single nucleotide polymorphisms appear reassuring.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-40530 Gothenburg, Sweden
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, and McKnight Brain Institute, Gainesville, FL, USA
| |
Collapse
|
47
|
Balemans MC, Huibers MM, Eikelenboom NW, Kuipers AJ, van Summeren RC, Pijpers MM, Tachibana M, Shinkai Y, van Bokhoven H, Van der Zee CE. Reduced exploration, increased anxiety, and altered social behavior: Autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav Brain Res 2010; 208:47-55. [DOI: 10.1016/j.bbr.2009.11.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/27/2009] [Accepted: 11/01/2009] [Indexed: 11/16/2022]
|