1
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
3
|
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus—lessons from laboratory animals. Epilepsia Open 2022; 8 Suppl 1:S90-S109. [PMID: 36352789 PMCID: PMC10173850 DOI: 10.1002/epi4.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
Collapse
Affiliation(s)
- Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Pavel Mareš
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
4
|
Esterlis I, DeBonee S, Cool R, Holmes S, Baldassari SR, Maruff P, Pietrzak RH, Davis MT. Differential Role of mGluR5 in Cognitive Processes in Posttraumatic Stress Disorder and Major Depression. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221105804. [PMID: 35958037 PMCID: PMC9358555 DOI: 10.1177/24705470221105804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Background A robust literature supports the role of the metabotropic glutamate receptor type 5 (mGluR5) in cognitive functioning. mGluR5 is also implicated in the pathophysiology of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), which are characterized by cognitive alterations. However, the relationship between mGluR5 and cognition in MDD and PTSD has not yet been directly investigated. To address this gap, we examined the relationship between in vivo mGluR5 availability and cognition in PTSD, MDD, and matched healthy adults (HA). Methods Individuals with PTSD (N = 28) and MDD (N = 21), and HA (N = 28) were matched for age, gender, and smoking status. Participants completed 18F-FPEB positron emission tomography (PET) scan, psychiatric and cognitive assessments. Results Across models examining the relationship between mGluR5 availability and different domains of cognition across diagnostic groups, only the interaction of diagnosis*attention was significant (F 4,64 = 3.011, P = .024). Higher mGluR5 availability was associated with poorer attention in PTSD in 4 frontolimbic regions of interests (ROI's: OFC (r = -.441, P = .016), vmPFC (r = -.408, P = .028), dlPFC (r = -.421, P = .023), hippocampus (r = -.422, P = .025). By contrast, mGluR5 availability in the MDD group was positively related to Attention (ATTN) in the OFC (r = .590, P = .006), vmPFC (r = .653, P = .002), and dlPFC (r = .620, P = .004). Findings in the hippocampus for MDD followed the same pattern but did not survive correction for multiple comparisons (r = .480, P = .036). ATTN and mGluR5 availability were not significantly related in the HA group. Of note, in MANOVA analyses group*ATTN interaction results in the OFC did not survive multiple comparisons (P = .046). All other findings survived correction for multiple comparisons and remained significant when covarying for potential confounds (eg, depressed mood). Conclusions We observed a significant relationship between frontolimbic mGluR5 availability and performance on tests of attention in individuals with MDD and PTSD. This finding aligns with animal work showing dysregulation in mGluR5 in cognitive functioning, and differed as a function of diagnosis. Results suggest interventions targeting mGluR5 may help bolster cognitive difficulties, highlighting the importance of employing different mGluR5 directed treatment strategies in MDD and PTSD.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Sarah DeBonee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Cool
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sophie Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Stephen R. Baldassari
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
- Program in Addiction Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Robert H. Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Margaret T. Davis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
5
|
Bui TA, Shatto J, Cuppens T, Droit A, Bolduc FV. Phenotypic Trade-Offs: Deciphering the Impact of Neurodiversity on Drug Development in Fragile X Syndrome. Front Psychiatry 2021; 12:730987. [PMID: 34733188 PMCID: PMC8558248 DOI: 10.3389/fpsyt.2021.730987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.
Collapse
Affiliation(s)
- Truong An Bui
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Julie Shatto
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - François V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: pharmacokinetics, side effects, and analgesic effects in healthy human subjects. Pain 2021; 161:135-146. [PMID: 31568235 DOI: 10.1097/j.pain.0000000000001695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metabotropic glutamate receptor 5 (mGlu5) has been shown to modulate nociception in animals, but no mGlu5 antagonists have been developed commercially as analgesics. The mGlu5 antagonist fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] was originally evaluated for development as a nonbenzodiazepine anxiolytic. Fenobam is analgesic in numerous mouse pain models, acting exclusively through mGlu5 blockade. Furthermore, fenobam showed no signs of analgesic tolerance with up to 2 weeks of daily dosing in mice. Analgesic effects of fenobam in humans have not been reported. The purpose of this investigation was to evaluate fenobam pharmacokinetics and analgesic effects in humans. We first evaluated single-dose oral fenobam disposition in a parallel-group dose-escalation study in healthy volunteers. A second investigation tested the analgesic effects of fenobam in an established experimental human pain model of cutaneous sensitization using capsaicin cream and heat, in a double-blind placebo-controlled study. The primary outcome measure was the area of hyperalgesia and allodynia around the area applied with heat/capsaicin. Secondary outcome measures included nociception, measured as pain rating on a visual analog scale, heat pain detection threshold, and effects on cognition and mood. Fenobam plasma exposures showed considerable interindividual variability and were not linear with dose. Fenobam reduced sensitization vs placebo at a single timepoint (peak plasma concentration); we found no other difference between fenobam and placebo. Our results suggest highly variable fenobam disposition and minimal analgesic effects at the dose tested. We suggest that future studies testing analgesic effects of mGlu5 blockade are warranted, but such studies should use molecules with improved pharmacokinetic profiles.
Collapse
|
7
|
Musazzi L. Targeting metabotropic glutamate receptors for rapid-acting antidepressant drug discovery. Expert Opin Drug Discov 2020; 16:147-157. [PMID: 32962432 DOI: 10.1080/17460441.2020.1822814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder and a worldwide health issue. Functional deficits in glutamatergic cortico-limbic areas are hypothesized to play a key role in the pathogenesis of the disease. Consistently, the clinical antidepressant efficacy of the N-Methyl-D-aspartate (NMDA) receptor antagonist ketamine gives hope for a new class of glutamatergic rapid-acting antidepressants. In this context, metabotropic glutamate (mGlu) receptors have received attention as interesting targets for new antidepressants. AREAS COVERED The present review summarizes the preclinical evidence supporting the antidepressant effect of the pharmacological modulation of mGlu receptors. Antidepressant properties in animal models of mGlu1 antagonists, mGlu5 negative allosteric modulators (NAMs) and positive allosteric modulators (PAMs), mGlu2/3 agonists, PAMs, orthosteric antagonists and NAMs, mGlu4 and mGlu7 PAMs are reviewed. To date, orthosteric mGlu2/3 antagonists are the most promising compounds in development as antidepressants. EXPERT OPINION Although accumulating clinical and preclinical evidence concur to confirm a primary role of glutamate transmission modulation for the induction of a rapid antidepressant effect, very little is still known about the cellular mechanisms involved. More mechanistic studies are required to understand the role of glutamate in depression and the therapeutic potential of drugs directly targeting the glutamate synapse.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| |
Collapse
|
8
|
Davis MT, Hillmer A, Holmes SE, Pietrzak RH, DellaGioia N, Nabulsi N, Matuskey D, Angarita G, Carson RE, Krystal JH, Esterlis I. In vivo evidence for dysregulation of mGluR5 as a biomarker of suicidal ideation. Proc Natl Acad Sci U S A 2019; 116:11490-11495. [PMID: 31085640 PMCID: PMC6561298 DOI: 10.1073/pnas.1818871116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent evidence implicates dysregulation of metabotropic glutamatergic receptor 5 (mGluR5) in pathophysiology of PTSD and suicidality. Using positron emission tomography and [18F]FPEB, we quantified mGluR5 availability in vivo in individuals with PTSD (n = 29) and MDD (n = 29) as a function of suicidal ideation (SI) to compare with that of healthy comparison controls (HC; n = 29). Volume of distribution was computed using a venous input function in the five key frontal and limbic brain regions. We observed significantly higher mGluR5 availability in PTSD compared with HC individuals in all regions of interest (P's = 0.001-0.01) and compared with MDD individuals in three regions (P's = 0.007). mGluR5 availability was not significantly different between MDD and HC individuals (P = 0.17). Importantly, we observed an up-regulation in mGluR5 availability in the PTSD-SI group (P's = 0.001-0.007) compared with PTSD individuals without SI. Findings point to the potential role for mGluR5 as a target for intervention and, potentially, suicide risk management in PTSD.
Collapse
Affiliation(s)
- Margaret T Davis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Ansel Hillmer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| | - Nicole DellaGioia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511;
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| |
Collapse
|
9
|
Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc Natl Acad Sci U S A 2017; 114:8390-8395. [PMID: 28716937 DOI: 10.1073/pnas.1701749114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent and highly disabling disorder, but there is currently no targeted pharmacological treatment for it. Dysfunction of the glutamate system has been implicated in trauma and stress psychopathology, resulting in a growing interest in modulation of the glutamate system for the treatment of PTSD. Specifically, the metabotropic glutamate receptor 5 (mGluR5) represents a promising treatment target. We used [18F]FPEB, a radioligand that binds to the mGluR5, and positron emission tomography (PET) to quantify in vivo mGluR5 availability in human PTSD vs. healthy control (HCs) subjects. In an independent sample of human postmortem tissue, we investigated expression of proteins that have a functional relationship with mGluR5 and glucocorticoids in PTSD. We observed significantly higher cortical mGluR5 availability in PTSD in vivo and positive correlations between mGluR5 availability and avoidance symptoms. In the postmortem sample, we observed up-regulation of SHANK1, a protein that anchors mGluR5 to the cell surface, as well as decreased expression of FKBP5, implicating aberrant glucocorticoid functioning in PTSD. Results of this study provide insight into molecular mechanisms underlying PTSD and suggest that mGluR5 may be a promising target for mechanism-based treatments aimed at mitigating this disorder.
Collapse
|
10
|
Zolkowska D, Kondrat-Wrobel MW, Florek-Luszczki M, Luszczki JJ. Influence of MPEP (a selective mGluR5 antagonist) on the anticonvulsant action of novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:172-8. [PMID: 26478256 DOI: 10.1016/j.pnpbp.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the effects of 2-methyl-6-(phenylethynyl)pyridine (MPEP - a selective antagonist for the glutamate metabotropic receptor subtype mGluR5) on the protective action of some novel antiepileptic drugs (lamotrigine, oxcarbazepine, pregabalin and topiramate) against maximal electroshock-induced seizures in mice. Brain concentrations of antiepileptic drugs were measured to determine whether MPEP altered pharmacokinetics of antiepileptic drugs. Intraperitoneal injection of 1.5 and 2mg/kg of MPEP significantly elevated the threshold for electroconvulsions in mice, whereas MPEP at a dose of 1mg/kg considerably enhanced the anticonvulsant activity of pregabalin and topiramate, but not that of lamotrigine or oxcarbazepine in the maximal electroshock-induced seizures in mice. Pharmacokinetic results revealed that MPEP (1mg/kg) did not alter total brain concentrations of pregabalin and topiramate, and the observed effect in the mouse maximal electroshock seizure model was pharmacodynamic in nature. Collectively, our preclinical data suggest that MPEP may be a safe and beneficial adjunct to the therapeutic effects of antiepileptic drugs in human patients.
Collapse
Affiliation(s)
- Dorota Zolkowska
- Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| | | | | | - Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
11
|
Arsenault D, Coulombe K, Zhu A, Gong C, Kil KE, Choi JK, Poutiainen P, Brownell AL. Loss of Metabotropic Glutamate Receptor 5 Function on Peripheral Benzodiazepine Receptor in Mice Prenatally Exposed to LPS. PLoS One 2015; 10:e0142093. [PMID: 26536027 PMCID: PMC4633140 DOI: 10.1371/journal.pone.0142093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.
Collapse
Affiliation(s)
- Dany Arsenault
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Aijun Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Chunyu Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Kun-Eek Kil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Pekka Poutiainen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Anna-Liisa Brownell
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kim M, Kim Y, Seo SH, Baek DJ, Min SJ, Keum G, Choo H. Synthesis and Biological Evaluation ofN3-Alkyl-Thienopyrimidin-4-Ones as mGluR1 Antagonists. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Minjoo Kim
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Chemistry, College of Natural Sciences; Sangmyung University; Seoul 110-743 Korea
| | - Youngjae Kim
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Chemistry; Yonsei University; Seoul 120-749 Korea
| | - Seon Hee Seo
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
| | - Du-Jong Baek
- Department of Chemistry, College of Natural Sciences; Sangmyung University; Seoul 110-743 Korea
| | - Sun-Joon Min
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Biological Chemistry; University of Science and Technology; Daejeon 305-350 Korea
| | - Gyochang Keum
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Biological Chemistry; University of Science and Technology; Daejeon 305-350 Korea
| | - Hyunah Choo
- Center for Neuro-Medicine; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Biological Chemistry; University of Science and Technology; Daejeon 305-350 Korea
| |
Collapse
|
13
|
Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP. Pharmacol Rep 2014; 66:927-30. [DOI: 10.1016/j.pharep.2014.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/21/2022]
|
14
|
Mikulecká A, Subrt M, Stuchlík A, Kubová H. Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Front Behav Neurosci 2014; 8:101. [PMID: 24734010 PMCID: PMC3975106 DOI: 10.3389/fnbeh.2014.00101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Clinical and experimental studies suggest possible risks associated with the repeated administration of benzodiazepines (BZDs) during the prenatal or early postnatal period on further development and behavior. In the present study, we assess short- and long-term effects of early exposure to clonazepam (CZP) on cognitive tasks. CZP (0.5 or 1.0 mg/kg/day) was administered from postnatal day (P)7 until P11, and animals were exposed to the following behavioral tests at different developmental stages: (1) a homing response (HR) test, which exploits the motivation of a rat pup to reach its home nest, was administered on P12, P15, P18 and P23 rats; (2) passive avoidance was tested in three trials (at 0, 2 and 24 h intervals) on P12, P15, P18, P25 and P32 rats; (3) within- and between-session habituation was tested in an open field (OF) at P70; and (4) a long-term memory (LTM) version of the Morris water maze (MWM) was tested at P80. A 1.0 mg/kg dose of CZP extended latency in the HR and decreased the number of correct responses when tested at P12 and P23. In the first trial of the passive avoidance test, latency to enter a dark compartment was shorter in the CZP-exposed rats. Both treated and control animals older than P15 learned the passive-avoidance response at the same rate. Irrespective of the treatments, all adult animals showed within-session habituation. Between-session habituation, however, was found only in the controls. With respect to the MWM test, all animals learned to reach the platform, but animals exposed to higher doses of CZP spent more time swimming in the first acquisition test. No difference between groups was found in a repeated acquisition test (10 and 40 days after the first acquisition test). The results of the present study show that even short-term exposure to CZP alters behavioral responsiveness in pre-weaning, juvenile and adult animals. Not only were changes observed on conventional cognitive tests in our study, but the changes also seem to be related to emotional/motivational responsiveness.
Collapse
Affiliation(s)
- Anna Mikulecká
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Martin Subrt
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Aleš Stuchlík
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Hana Kubová
- Institute of Physiology, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
15
|
Roh SE, Hong YH, Jang DC, Kim J, Kim SJ. Lipid rafts serve as signaling platforms for mGlu1 receptor-mediated calcium signaling in association with caveolin. Mol Brain 2014; 7:9. [PMID: 24512690 PMCID: PMC3937055 DOI: 10.1186/1756-6606-7-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background Group I metabotropic glutamate receptors (mGlu1/5 receptors) have important roles in synaptic activity in the central nervous system. They modulate neuronal excitability by mobilizing intracellular Ca2+ following receptor activation. Also, accumulating evidence has indicated the association of Ca2+ signaling with lipid rafts. Caveolin, an adaptor protein found in a specialized subset of lipid rafts, has been reported to promote the localization of membrane proteins to lipid rafts. Results In the present study, we investigated the role of lipid rafts on the mGlu1α receptor-mediated Ca2+ signaling in association with caveolin in hippocampal primary neurons and HEK293 cells. We show that the disruption of lipid rafts using methyl-β-cyclodextrin markedly decreased mGlu1α receptor-mediated Ca2+ transients and lipid rafts localization of the receptor. Furthermore, transfection of mGlu1α receptor with mutated caveolin-binding domain reduced localization of the receptor to lipid rafts. Also, application of a peptide blocker of mGlu1α receptor and caveolin binding reduced the Ca2+ signaling and the lipid rafts localization. Conclusions Taken together, these results suggest that the binding of mGlu1α receptor to caveolin is crucial for its lipid rafts localization and mGlu1α receptor-mediated Ca2+ transients.
Collapse
Affiliation(s)
| | | | | | | | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, 28, Yeongeon-dong, Jongno-gu, Seoul 110-799, Korea.
| |
Collapse
|
16
|
Arsenault D, Zhu A, Gong C, Kil KE, Kura S, Choi JK, Brownell AL. Hypo-anxious phenotype of adolescent offspring prenatally exposed to LPS is associated with reduced mGluR5 expression in hippocampus. ACTA ACUST UNITED AC 2014; 3:202-211. [PMID: 25419490 DOI: 10.4236/ojmp.2014.33022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies have reported long-term modulation of metabotropic glutamate receptor 5 (mGluR5) by inflammatory processes and a pharmacological modulation of mGluR5 is known to regulate anxiety level. However, it is not known if non-pharmacological modulation of mGluR5 by inflammation impaired the unconditional level of anxiety. In this study, we investigated this relation in LPS prenatal immune challenge (120μg/kg, 3x i.p. injection in late gestation), a developmental model of neuroinflammation in which some studies have reported hypo-anxious phenotype. Using positron emission tomographic imaging (PET) approaches, we have demonstrated a decrease in the binding potential of [18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB, a radioligand for mGluR5) in hippocampus of adolescent offspring prenatally exposed to LPS, without significant change in the binding of [11C]peripheral benzodiazepine receptor 28 ([11C]PBR28), an inflammatory marker. In addition, dark-light box emergence test revealed a lower level of anxiety in LPS-exposed offspring and this behavioural phenotype was associated with the binding potential of [18F]FPEB in hippocampus. These results confirm that neuroinflammation during developmental phase modulates the physiology of mGluR5 and this alteration can be associated with behavioural phenotype related to anxiety. In addition, this study supports a hypotheses that mGluR5 could be used as a diagnostic target in anxiety.
Collapse
Affiliation(s)
- Dany Arsenault
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Aijun Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Chunyu Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Kun-Eek Kil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Ji-Kyung Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| | - Anna-Liisa Brownell
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
17
|
Kumar J, Hapidin H, Bee YTG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behav Brain Funct 2013; 9:43. [PMID: 24279870 PMCID: PMC4222772 DOI: 10.1186/1744-9081-9-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/23/2013] [Indexed: 11/22/2022] Open
Abstract
Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.
Collapse
Affiliation(s)
- Jaya Kumar
- BRAINetwork Centre for Neurocognitive Science, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| | | | | | | |
Collapse
|
18
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Tichá K, Mikulecká A, Mareš P. Behavioral consequences of the mGlu5 receptor antagonist MTEP in immature rats. Pharmacol Biochem Behav 2011; 99:619-25. [DOI: 10.1016/j.pbb.2011.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
20
|
Hrubá L, Schutová B, Šlamberová R. Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats. Physiol Behav 2011; 105:364-70. [PMID: 21884713 DOI: 10.1016/j.physbeh.2011.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/21/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to investigate the impact of prenatal and postnatal methamphetamine (MA) exposure on behavior and anxiety in adult male and female rats. Mothers were daily exposed to injection of MA (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother raised 6 saline-exposed pups and 6 MA-exposed pups. Based on the prenatal and postnatal exposure 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in the Open field (OF) and in the Elevated plus maze (EPM) in adulthood. Locomotion, exploration, immobility and comforting behavior were evaluated in the OF, while anxiety was assessed in the EPM. While prenatal MA exposure did not affect behavior and anxiety in adulthood, postnatal MA exposure (i.e. MA administration to lactating mothers) induced long-term changes. Specifically, adult female rats in diestrus and adult males postnatally exposed to MA via breast milk (S/MA and MA/MA) had decreased locomotion and exploratory behavior in the OF and showed increased anxiety-like behavior in the EPM when compared to female rats in diestrus or males postnatally exposed to saline (S/S and MA/S). In adult females in proestrus, postnatal exposure to MA affected only exploratory behavior in the OF when compared to rats in proestrus postnatally exposed to saline. Thus, the present study shows that postnatal exposure to MA via breast milk impairs behavior in unfamiliar environment and anxiety-like behavior of adult male and female rats more than prenatal MA exposure.
Collapse
Affiliation(s)
- L Hrubá
- Charles University in Prague, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | | | | |
Collapse
|
21
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
22
|
Characterization of the selective mGluR1 antagonist, JNJ16259685, in rodent models of movement and coordination. Pharmacol Biochem Behav 2011; 98:181-7. [DOI: 10.1016/j.pbb.2010.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
|
23
|
Stettner GM, Kubin L, Volgin DV. Antagonism of orexin 1 receptors eliminates motor hyperactivity and improves homing response acquisition in juvenile rats exposed to alcohol during early postnatal period. Behav Brain Res 2011; 221:324-8. [PMID: 21420437 DOI: 10.1016/j.bbr.2011.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/29/2022]
Abstract
Consequences of prenatal alcohol exposure (AE) include motor hyperactivity, disrupted sleep and cognitive deficits. Hypothalamic orexin (ORX)-synthesizing neurons are important for the maintenance of vigilance and regulation of motor activity but their hyperactivity may contribute to anxiety disorders. Using a rat model, we tested whether ORX plays a role in behavioral consequences of prenatal AE. Male rat pups received 2.625 g/kg of alcohol (AE group) intragastrically twice daily on postnatal days (PD)4-9, a developmental period equivalent to the third trimester of human pregnancy. Control pups were sham-intubated (S group). On PD12-14, they received daily injections of either the ORX-1 receptor antagonist, SB-334867 (SB; 20mg/kg, i.p.) or vehicle (V) during the lights-off period. On PD16, they were subjected to the homing response (HR) test. On PD17, their motor activity was monitored in a novel environment. The percentage of tests in which HR acquisition was not achieved and the number of trials needed to reach the shortest HR latency were higher, whereas the percentage of successful trials was lower, in AE-V than in S-V rats (p = 0.0009-0.03). In contrast, these measures were not significantly different between AE-SB and either S-SB or S-V rats. Motor activity in AE-V rats was significantly higher than in S-V (p = 0.003), S-SB (p = 0.007) or AE-SB (p = 0.02) rats, with no difference between S-SB and AE-SB group. Our findings suggest that excessive activity of ORX neurons contributes to motor hyperactivity and impaired HR acquisition following perinatal AE and that these symptoms may be alleviated by systemic antagonism of ORX-1 receptors.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
24
|
Li GB, Yang LL, Feng S, Zhou JP, Huang Q, Xie HZ, Li LL, Yang SY. Discovery of novel mGluR1 antagonists: a multistep virtual screening approach based on an SVM model and a pharmacophore hypothesis significantly increases the hit rate and enrichment factor. Bioorg Med Chem Lett 2011; 21:1736-40. [PMID: 21316965 DOI: 10.1016/j.bmcl.2011.01.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/05/2023]
Abstract
Development of glutamate non-competitive antagonists of mGluR1 (Metabotropic glutamate receptor subtype 1) has increasingly attracted much attention in recent years due to their potential therapeutic application for various nervous disorders. Since there is no crystal structure reported for mGluR1, ligand-based virtual screening (VS) methods, typically pharmacophore-based VS (PB-VS), are often used for the discovery of mGluR1 antagonists. Nevertheless, PB-VS usually suffers a lower hit rate and enrichment factor. In this investigation, we established a multistep ligand-based VS approach that is based on a support vector machine (SVM) classification model and a pharmacophore model. Performance evaluation of these methods in virtual screening against a large independent test set, M-MDDR, show that the multistep VS approach significantly increases the hit rate and enrichment factor compared with the individual SB-VS and PB-VS methods. The multistep VS approach was then used to screen several large chemical libraries including PubChem, Specs, and Enamine. Finally a total of 20 compounds were selected from the top ranking compounds, and shifted to the subsequent in vitro and in vivo studies, which results will be reported in the near future.
Collapse
Affiliation(s)
- Guo-Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mareš P, Mikulecká A, Tichá K, Lojková-Janečková D, Kubová H. Metabotropic glutamate receptors as a target for anticonvulsant and anxiolytic action in immature rats. Epilepsia 2010; 51 Suppl 3:24-6. [DOI: 10.1111/j.1528-1167.2010.02604.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Responsiveness to methamphetamine in adulthood is altered by prenatal exposure in rats. Physiol Behav 2010; 99:381-7. [DOI: 10.1016/j.physbeh.2009.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 01/09/2023]
|