1
|
Liu Y, Huang S, Xu W, Wang Z, Ming D. An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training. NPJ SCIENCE OF LEARNING 2024; 9:80. [PMID: 39738213 DOI: 10.1038/s41539-024-00294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI. After training, the BCI-SRF group showed 350% times compared to the Finger group in the improvement of sequence opposition accuracy before and after training, and accompanied by significant functional connectivity increases in the sensorimotor region and prefrontal cortex, as well as in the intra- and inter-hemisphere of the sensorimotor network. Moreover, Granger Causality Analysis identified causal effect main transfer within the sensorimotor cortex-cerebellar-thalamus loop and frontal-parietal loop. The findings suggest that BCI-SRF training enhances motor sequence learning ability by influencing the functional reorganization of sensorimotor network.
Collapse
Affiliation(s)
- Yuan Liu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, Tianjin, China.
| | - Shuaifei Huang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
| | - Weiguo Xu
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zhuang Wang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, Tianjin, China.
| |
Collapse
|
2
|
Firouzi M, Baetens K, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. The cerebellum is involved in implicit motor sequence learning. Front Neurosci 2024; 18:1433867. [PMID: 39712223 PMCID: PMC11659296 DOI: 10.3389/fnins.2024.1433867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Background Implicit motor sequence learning (IMSL) is a cognitive function that allows us to execute multiple movements in a specific sequential order and plays a crucial role in our daily functional activities. Although the role of the basal ganglia network in IMSL is well-established, the exact involvement of the cerebellar network is less clear. Aim Here, we aimed to address this issue by investigating the effects of cerebellar transcranial direct-current stimulation (tDCS) on IMSL. Methods In this sham-controlled, crossover study in 45 healthy young adults, we used mixed-effects models to analyze sequence-specific (primary outcome) and general learning effects (secondary outcome) in the acquisition (during tDCS), short- (five minutes post-tDCS) and long-term consolidation (one week post-tDCS) phases of IMSL, as measured by the serial reaction time (SRT) task. Results Analyses based on response times (RTs) revealed that anodal tDCS over the cerebellum significantly increased sequence-specific learning during acquisition, compared to sham (anodal: M = 38.24 ms, sham: M = 26.78 ms, p = 0.032); did not affect general learning; and significantly slowed overall RTs (anodal: M = 362.03 ms, sham: M = 356.37 ms, p = 0.049). Accuracy-based analyses revealed that anodal tDCS reduced the probability of correct responses occurring in random trials versus sequential trials by 1.17%, p = 0.009, whereas sham tDCS had no effect, p = 0.999. Conclusion Our finding of enhanced sequence-specific learning, but not general learning, suggests that the cerebellar network not only plays a role in error correction processes, but also serves a sequence-specific function within the integrated motor learning network that connects the basal ganglia and cerebellum.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
3
|
Zhang K, Cao C, Wang Y, Zhang D. Brain structure and function differences across varying levels of endurance training: a cross-sectional study. Front Hum Neurosci 2024; 18:1503094. [PMID: 39677401 PMCID: PMC11638187 DOI: 10.3389/fnhum.2024.1503094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Background Although previous studies have shown that athletes engaged in endurance sports exhibit unique characteristics of brain plasticity, there has been no systematic investigation into the structural and functional brain characteristics of endurance athletes with varying training levels. Methods Utilizing the "expert-novice paradigm" design, we employed functional magnetic resonance imaging (fMRI) to obtain images of brain structure and functional activity. We compared differences in gray matter volume (GMV), fractional amplitude of low-frequency fluctuations (fALFF), and degree centrality (DC) among high-level endurance athletes, moderate-level endurance athletes, and non-athlete controls. Results (1) High-level endurance athletes exhibited significantly greater GMV in the left parahippocampal gyrus, bilateral thalamus, right temporal lobe, and bilateral cerebellum compared to both moderate-level endurance athletes and controls. The GMV in these regions showed an increasing trend with more years of endurance training and higher endurance capacity. Additionally, these athletes had significantly higher fALFF in the left superior medial frontal gyrus and right precuneus, as well as higher DC in the right lateral occipital lobe compared to moderate-level endurance athletes. They also had significantly higher DC in the right precuneus and cerebellum compared to the control group. (2) Moderate-level endurance athletes demonstrated significantly greater GMV in the right prefrontal cortex, bilateral medial frontal lobe, right temporal pole, right striatum, and bilateral insula compared to high-level endurance athletes. They also had significantly higher fALFF in the left posterior cingulate gyrus compared to high-level endurance athletes. (3) Control group showed significantly greater GMV in the right amygdala, higher fALFF in the left medial frontal lobe, and greater DC in the left lateral occipital lobe compared to moderate-level endurance athletes. Conclusion Adaptive benefits exhibit different characteristics across different endurance levels. High-level endurance athletes exhibit pronounced enhancements in gray matter volume and functional activity in regions associated with memory, motor control, and sensory processing. While moderate-level athletes demonstrate distinct functional reorganization in the default mode network and cerebellum.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Physical Education, Southeast University, Nanjing, China
| | - Chunmei Cao
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yaxue Wang
- Department of Physical Education, Hebei Normal University, Shijiazhuang, China
| | - Dong Zhang
- Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
4
|
Muehlberg C, Goerg S, Rullmann M, Hesse S, Sabri O, Wawrzyniak M, Classen J, Fricke C, Rumpf JJ. Motor learning is modulated by dopamine availability in the sensorimotor putamen. Brain Commun 2024; 6:fcae409. [PMID: 39584157 PMCID: PMC11582004 DOI: 10.1093/braincomms/fcae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Successful motor skill acquisition requires the dynamic interaction of multiple brain regions, with the striatum playing a critical role in this network. Animal studies suggest that dopaminergic mechanisms are involved in the regulation of motor learning-associated striatal plasticity. In humans, however, the contribution of nigrostriatal dopaminergic transmission to motor learning remains elusive beyond its well-characterized role in initiation and fluent execution of movements. In this prospective observational study, we investigated motor sequence learning in individuals who had undergone 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography for the differential diagnosis of Parkinson's disease (n = 41) and age-matched healthy controls (n = 20). We found that striatal dopamine transporter depletion exhibited distinct spatial patterns that were associated with impairments in motor sequence learning and the manifestation of Parkinsonian motor symptoms, respectively. Specifically, significant associations between striatal dopamine transporter depletion and impairments in motor sequence learning were confined to posterior putaminal regions, whereas significant associations of striatal dopamine transporter depletion with Parkinsonian motor symptom severity showed a widespread spatial pattern across the entire striatal volume with an anterior maximum. Normative functional connectivity analysis revealed that both behavioural domains shared largely overlapping connectivity patterns with the basal ganglia and supplementary motor area. However, apart from connectivity with more posterior parts of the supplementary motor area, significant functional connectivity with primary motor cortical areas was only present for striatal dopamine transporter availability-related modulation of online motor learning. Our findings indicate that striatal dopaminergic signalling plays a specific role in motor sequence learning beyond its influence on mere motor execution, implicating learning-related sensorimotor striatum recruitment and cortico-striatal plasticity as dopamine-dependent mechanisms.
Collapse
Affiliation(s)
- Christoph Muehlberg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Sophia Goerg
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Rubino C, Andrushko JW, Rinat S, Harrison AT, Boyd LA. Oculomotor functional connectivity associated with motor sequence learning. Cereb Cortex 2024; 34:bhae434. [PMID: 39514340 PMCID: PMC11546180 DOI: 10.1093/cercor/bhae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Acquisition of learned motor sequences involves saccades directed toward the goal to gather visual information prior to reaching. While goal-directed actions involve both eye and hand movements, the role of brain areas controlling saccades during motor sequence learning is still unclear. This study aimed to determine whether resting-state functional connectivity of oculomotor regions is associated with behavioral changes resulting from motor sequence learning. We investigated connectivity between oculomotor control regions and candidate regions involved in oculomotor control and motor sequence learning. Twenty adults had brain scans before 3 days of motor task practice and after a 24-hour retention test, which was used to assess sequence-specific learning. During testing, both saccades and reaches were tracked. Stronger connectivity in multiple oculomotor regions prior to motor task practice correlated with greater sequence-specific learning for both saccades and reaches. A more negative connectivity change involving oculomotor regions from pre- to post-training correlated with greater sequence-specific learning for both saccades and reaches. Overall, oculomotor functional connectivity was associated with the magnitude of behavioral change resulting from motor sequence learning, providing insight into the function of the oculomotor system during motor sequence learning.
Collapse
Affiliation(s)
- Cristina Rubino
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Adam T Harrison
- Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia 29208, United States
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
6
|
de Almeida FD, Wang Y, de Mello Pedreiro RC, Brizzi ACB, Campos SF, Sales MP, Kennedy DM, Pinto Neto O. Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson's Disease. Neurol Int 2024; 16:1223-1238. [PMID: 39585052 PMCID: PMC11587078 DOI: 10.3390/neurolint16060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Parkinson's disease (PD) is a neurodegenerative disorder characterized by tremors, balance impairments, and mobility limitations. Innovative approaches like combining transcranial direct current stimulation (tDCS) with exercise show promise in addressing these symptoms. This study investigates the effects of exercise combined with tDCS on mobility and tremor management in PD patients. METHODS Twenty-five individuals aged 60-75 (66.6 ± 7.33), diagnosed with PD (Hoehn and Yahr stage 2-3), were assigned to three groups in a randomized controlled design: exercise with active tDCS (n = 8), exercise with sham tDCS (n = 8), and a control group (n = 9). Dual-task training sessions focusing on walking speed, balance, and force control were conducted over ten sessions. RESULTS No significant differences were detected across the groups for grip strength or force control measures (p > 0.05). Significant improvements were observed in the intervention group: the Timed Up and Go (TUG) test showed a significant reduction in time (mean difference = 2.498 s, p < 0.001, ηp2 = 0.331); anterior-posterior displacement significantly increased (mean difference = 21.375 mm, p = 0.0269, ηp2 = 0.303); and force-tremor decoupling improved, with coherence in the 1-4 Hz band significantly decreasing (p = 0.0067). Finally, changes in TUG from post- to pre-treatment values were significantly positively correlated with the changes in coherence (R = 0.468, p = 0.018). CONCLUSIONS Combining tDCS with exercise enhances mobility and tremor management in PD patients. These findings support the potential for such interventions to improve functional outcomes and quality of life for individuals with PD.
Collapse
Affiliation(s)
- Fabrício D. de Almeida
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Department of Anatomy, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Yiyu Wang
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA;
| | - Rodrigo C. de Mello Pedreiro
- Departament of Physical Education, Estácio de Sá University, Teresópolis 25963-150, RJ, Brazil;
- Arena235 Research Lab, São José dos Campos 12246-876, SP, Brazil
| | - Ana Carolina B. Brizzi
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Departments of Psychology and Physical Therapy, Universidade de Taubaté (Unitau), Taubaté 12020-040, SP, Brazil
| | - Shirley F. Campos
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Arena235 Research Lab, São José dos Campos 12246-876, SP, Brazil
| | - Melina P. Sales
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Departments of Psychology and Physical Therapy, Universidade de Taubaté (Unitau), Taubaté 12020-040, SP, Brazil
| | - Deanna M. Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77845, USA;
| | - Osmar Pinto Neto
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Department of Kinesiology, California State University San Marcos (CSUSM), San Marcos, CA 92096, USA
- Center of Innovation Technology and Education-CITÉ, São José dos Campos 12247-016, SP, Brazil
| |
Collapse
|
7
|
Bianco KM, Fuelscher I, Lum JAG, Singh M, Barhoun P, Silk TJ, Caeyenberghs K, Williams J, Enticott PG, Mukherjee M, Kumar G, Waugh J, Hyde C. Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children. Brain Cogn 2024; 180:106204. [PMID: 39053201 DOI: 10.1016/j.bandc.2024.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (Mage = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the 'rebound effect' from the SRT task - a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.
Collapse
Affiliation(s)
- Kaila M Bianco
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mervyn Singh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mugdha Mukherjee
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gayatri Kumar
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jessica Waugh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
8
|
Dolfen N, Reverberi S, Op de Beeck H, King BR, Albouy G. The Hippocampus Represents Information about Movements in Their Temporal Position in a Learned Motor Sequence. J Neurosci 2024; 44:e0584242024. [PMID: 39137999 PMCID: PMC11403099 DOI: 10.1523/jneurosci.0584-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Our repertoire of motor skills is filled with sequential movements that need to be performed in a specific order. Here, we used functional magnetic resonance imaging to investigate whether the human hippocampus, a region known to support temporal order in non-motor memory, represents information about the order of sequential motor actions in human participants (both sexes). We also examined such representations in other regions of the motor network (i.e., the premotor cortex, supplementary motor area, anterior superior parietal lobule, and striatum) already known for their critical role in motor sequence learning. Results showed that the hippocampus represents information about movements in their learned temporal position in the sequence, but not about movements or temporal positions in random movement patterns. Other regions of the motor network coded for movements in their learned temporal position, as well as movements and positions in random movement patterns. Importantly, movement coding contributed to sequence learning patterns in primary, supplementary, and premotor cortices but not in striatal and parietal regions. Our findings deepen our understanding of how striatal and cortical regions contribute to motor sequence learning and point to the capacity of the hippocampus to represent movements in their temporal context, an ability possibly explaining its contribution to motor learning.
Collapse
Affiliation(s)
- Nina Dolfen
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Psychology, Columbia University, New York City, New York 10027
| | - Serena Reverberi
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
| | - Hans Op de Beeck
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Brain and Cognition, KU Leuven, 3000 Leuven, Flemish Brabant, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, 3001 Leuven, Flemish Brabant, Belgium
- KU Leuven Brain Institute (LBI), 3000 Leuven, Flemish Brabant, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
9
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Meek AW, Greenwell DR, Nishio H, Poston B, Riley ZA. Anodal M1 tDCS enhances online learning of rhythmic timing videogame skill. PLoS One 2024; 19:e0295373. [PMID: 38870202 PMCID: PMC11175489 DOI: 10.1371/journal.pone.0295373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.
Collapse
Affiliation(s)
- Anthony W. Meek
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Davin R. Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon, Eugene, WA, United States of America
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Zachary A. Riley
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
11
|
Bianco KM, Barhoun P, Lum JAG, Fuelscher I, Enticott PG, Williams J, Silk TJ, Caeyenberghs K, Hyde C. Atypical procedural learning in children with developmental coordination disorder: A combined behavioral and neuroimaging study. Brain Cogn 2024; 177:106160. [PMID: 38670051 DOI: 10.1016/j.bandc.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6-14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.
Collapse
Affiliation(s)
- Kaila M Bianco
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport Health and Engineering, Victoria University, Melbourne, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
12
|
Worschech F, Passarotto E, Losch H, Oku T, Lee A, Altenmüller E. What Does It Take to Play the Piano? Cognito-Motor Functions Underlying Motor Learning in Older Adults. Brain Sci 2024; 14:405. [PMID: 38672054 PMCID: PMC11048694 DOI: 10.3390/brainsci14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The acquisition of skills, such as learning to play a musical instrument, involves various phases that make specific demands on the learner. Knowledge of the cognitive and motor contributions during learning phases can be helpful in developing effective and targeted interventions for healthy aging. Eighty-six healthy older participants underwent an extensive cognitive, motoric, and musical test battery. Within one session, one piano-related and one music-independent movement sequence were both learned. We tested the associations between skill performance and cognito-motor abilities with Bayesian mixed models accounting for individual learning rates. Results showed that performance was positively associated with all cognito-motor abilities. Learning a piano-related task was characterized by relatively strong initial associations between performance and abilities. These associations then weakened considerably before increasing exponentially from the second trial onwards, approaching a plateau. Similar performance-ability relationships were detected in the course of learning a music-unrelated motor task. Positive performance-ability associations emphasize the potential of learning new skills to produce positive cognitive and motor transfer effects. Consistent high-performance tasks that demand maximum effort from the participants could be very effective. However, interventions should be sufficiently long so that the transfer potential can be fully exploited.
Collapse
Affiliation(s)
- Florian Worschech
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| | - Edoardo Passarotto
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Hannah Losch
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Institute for Music Education Research, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
| | - Takanori Oku
- NeuroPiano Institute, Kyoto 600-8086, Japan
- College of Engineering and Design, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - André Lee
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar Technische Universität München, 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| |
Collapse
|
13
|
Roshchupkina L, Wens V, Coquelet N, Urbain C, de Tiege X, Peigneux P. Motor learning- and consolidation-related resting state fast and slow brain dynamics across wake and sleep. Sci Rep 2024; 14:7531. [PMID: 38553500 PMCID: PMC10980824 DOI: 10.1038/s41598-024-58123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Motor skills dynamically evolve during practice and after training. Using magnetoencephalography, we investigated the neural dynamics underpinning motor learning and its consolidation in relation to sleep during resting-state periods after the end of learning (boost window, within 30 min) and at delayed time scales (silent 4 h and next day 24 h windows) with intermediate daytime sleep or wakefulness. Resting-state neural dynamics were investigated at fast (sub-second) and slower (supra-second) timescales using Hidden Markov modelling (HMM) and functional connectivity (FC), respectively, and their relationship to motor performance. HMM results show that fast dynamic activities in a Temporal/Sensorimotor state network predict individual motor performance, suggesting a trait-like association between rapidly recurrent neural patterns and motor behaviour. Short, post-training task re-exposure modulated neural network characteristics during the boost but not the silent window. Re-exposure-related induction effects were observed on the next day, to a lesser extent than during the boost window. Daytime naps did not modulate memory consolidation at the behavioural and neural levels. These results emphasise the critical role of the transient boost window in motor learning and memory consolidation and provide further insights into the relationship between the multiscale neural dynamics of brain networks, motor learning, and consolidation.
Collapse
Affiliation(s)
- Liliia Roshchupkina
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- UNI - ULB Neuroscience Institute, Brussels, Belgium.
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium.
- Faculté des Sciences Psychologiques et de l'Éducation, Campus du Solbosch - CP 191, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Vincent Wens
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Nicolas Coquelet
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Charline Urbain
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
| | - Xavier de Tiege
- UNI - ULB Neuroscience Institute, Brussels, Belgium
- LN2T - Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, ULB, Brussels, Belgium
- Department of Functional Neuroimaging, Service of Nuclear Medicine, HUB - Hôpital Universitaire de Bruxelles, Hospital Erasme, Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN - Centre for Research in Cognition and Neurosciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- UNI - ULB Neuroscience Institute, Brussels, Belgium
| |
Collapse
|
14
|
Dyck S, Klaes C. Training-related changes in neural beta oscillations associated with implicit and explicit motor sequence learning. Sci Rep 2024; 14:6781. [PMID: 38514711 PMCID: PMC10958048 DOI: 10.1038/s41598-024-57285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Many motor actions we perform have a sequential nature while learning a motor sequence involves both implicit and explicit processes. In this work, we developed a task design where participants concurrently learn an implicit and an explicit motor sequence across five training sessions, with EEG recordings at sessions 1 and 5. This intra-subject approach allowed us to study training-induced behavioral and neural changes specific to the explicit and implicit components. Based on previous reports of beta power modulations in sensorimotor networks related to sequence learning, we focused our analysis on beta oscillations at motor-cortical sites. On a behavioral level, substantial performance gains were evident early in learning in the explicit condition, plus slower performance gains across training sessions in both explicit and implicit sequence learning. Consistent with the behavioral trends, we observed a training-related increase in beta power in both sequence learning conditions, while the explicit condition displayed stronger beta power suppression during early learning. The initially stronger beta suppression and subsequent increase in beta power specific to the explicit component, correlated with enhanced behavioral performance, possibly reflecting higher cortical excitability. Our study suggests an involvement of motor-cortical beta oscillations in the explicit component of motor sequence learning.
Collapse
Affiliation(s)
- Susanne Dyck
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| | - Christian Klaes
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- Neurosurgery, University hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
15
|
Jäger AP, Bailey A, Huntenburg JM, Tardif CL, Villringer A, Gauthier CJ, Nikulin V, Bazin P, Steele CJ. Decreased long-range temporal correlations in the resting-state functional magnetic resonance imaging blood-oxygen-level-dependent signal reflect motor sequence learning up to 2 weeks following training. Hum Brain Mapp 2024; 45:e26539. [PMID: 38124341 PMCID: PMC10915743 DOI: 10.1002/hbm.26539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Decreased long-range temporal correlations (LRTC) in brain signals can be used to measure cognitive effort during task execution. Here, we examined how learning a motor sequence affects long-range temporal memory within resting-state functional magnetic resonance imaging signal. Using the Hurst exponent (HE), we estimated voxel-wise LRTC and assessed changes over 5 consecutive days of training, followed by a retention scan 12 days later. The experimental group learned a complex visuomotor sequence while a complementary control group performed tightly matched movements. An interaction analysis revealed that HE decreases were specific to the complex sequence and occurred in well-known motor sequence learning associated regions including left supplementary motor area, left premotor cortex, left M1, left pars opercularis, bilateral thalamus, and right striatum. Five regions exhibited moderate to strong negative correlations with overall behavioral performance improvements. Following learning, HE values returned to pretraining levels in some regions, whereas in others, they remained decreased even 2 weeks after training. Our study presents new evidence of HE's possible relevance for functional plasticity during the resting-state and suggests that a cortical subset of sequence-specific regions may continue to represent a functional signature of learning reflected in decreased long-range temporal dependence after a period of inactivity.
Collapse
Affiliation(s)
- Anna‐Thekla P. Jäger
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- Brain Language LabFreie Universität BerlinBerlinGermany
| | - Alexander Bailey
- Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Julia M. Huntenburg
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck Institute for Biological CyberneticsTuebingenGermany
| | - Christine L. Tardif
- Department of Biomedical EngineeringMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMontrealQuébecCanada
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Center for Stroke Research Berlin (CSB)Charité—Universitätsmedizin BerlinBerlinGermany
- Clinic for Cognitive NeurologyLeipzigGermany
- Leipzig University Medical Centre, IFB Adiposity DiseasesLeipzigGermany
- Collaborative Research Centre 1052‐A5University of LeipzigLeipzigGermany
| | - Claudine J. Gauthier
- Department of Physics/School of HealthConcordia UniversityMontrealQuébecCanada
- Montreal Heart InstituteMontrealQuébecCanada
| | - Vadim Nikulin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Pierre‐Louis Bazin
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Faculty of Social and Behavioral SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Christopher J. Steele
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Psychology/School of HealthConcordia UniversityMontrealQuébecCanada
| |
Collapse
|
16
|
Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, Tahmasian M. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol Rev 2024; 34:277-298. [PMID: 36857010 PMCID: PMC10920454 DOI: 10.1007/s11065-023-09588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 03/02/2023]
Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
Collapse
Affiliation(s)
- Narges Naghibi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nadia Jahangiri
- Faculty of Psychology & Education, Allameh Tabataba'i University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine Research, Structural and functional organisation of the brain (INM-1), Jülich Research Center, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jennifer T Coull
- Laboratoire de Neurosciences Cognitives (UMR 7291), Aix-Marseille Université & CNRS, Marseille, France
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Liu W, Cheng X, Rao J, Yu J, Lin Z, Wang Y, Wang L, Li D, Liu L, Gao R. Motor imagery therapy improved upper limb motor function in stroke patients with hemiplegia by increasing functional connectivity of sensorimotor and cognitive networks. Front Hum Neurosci 2024; 18:1295859. [PMID: 38439937 PMCID: PMC10910033 DOI: 10.3389/fnhum.2024.1295859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Background Motor imagery therapy (MIT) showed positive effects on upper limbs motor function. However, the mechanism by which MIT improves upper limb motor function is not fully understood. Therefore, our purpose was to investigate the changes in functional connectivity (FC) within and outside the sensorimotor network (SMN) induced by MIT associated with improvement in upper limb motor function in stroke patients. Methods A total of 26 hemiplegic stroke patients were randomly divided into MIT (n = 13) and control (n = 13) groups. Fugl-Meyer Assessment Upper Extremity Scale (FMA-UL), Modified Barthel Index (MBI) and resting-state functional magnetic resonance imaging (rs-fMRI) were evaluated in the two groups before treatment and 4 weeks after treatment. The efficacy of MIT on motor function improvement in stroke patients with hemiplegia was evaluated by comparing the FMA-UL and MBI scores before and after treatment in the two groups. Furthermore, the FC within the SMN and between the SMN and the whole brain was measured and compared before and after different treatment methods in stroke patients. The correlation analysis between the improvement of upper limbs motor function and changes in FC within the SMN and between the SMN and the whole brain was examined. Results The FCs between ipsilesional primary motor cortex (M1.I) and contralateral supplementary motor area (SMA.C), M1.I and ipsilesional SMA (SMA.I), and SMA.C and contralateral dorsolateral premotor cortex (DLPM.C) significantly increased in the control group but decreased in the MIT group; while the FC between SMA.C and contralateral primary somatosensory cortex (S1.C) significantly increased in the control group but showed no significant difference in the MIT group. The FCs between M1.I and the ipsilesional hippocampal gyrus and ipsilesional middle frontal gyrus significantly decreased in the control group but increased in the MIT group; while the FC in the contralateral anterior cingulate cortex significantly increased in the MIT group but there was no significant difference in the control group. The results of the correlation analysis showed that the differences in abnormal intra-FCs within the SMN negatively correlated with the differences in FMA and MBI, and the difference in abnormal inter-FCs of the SMN positively correlated with the differences in FMA and MBI. Conclusions MIT can improve upper limb motor function and daily activities of stroke patients, and the improvement effect of conventional rehabilitation therapy (CRT) combined with MIT is significantly higher than that of CRT alone. CRT may improve the upper limb motor function of stroke patients with hemiplegia mainly through the functional reorganization between SMN, while MIT may mainly increase the interaction between SMN and other brain networks.
Collapse
Affiliation(s)
- Wan Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Cheng
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiawen Yu
- Department of Rehabilitation, Changzhou Ruihong Hospital, Changzhou, China
| | - Zhiqiang Lin
- Graduate Department, Nanjing Sports Institute, Nanjing, China
| | - Yao Wang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lulu Wang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Danhui Li
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Run Gao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Olszewska AM, Gaca M, Droździel D, Widlarz A, Herman AM, Marchewka A. Understanding functional brain reorganization for naturalistic piano playing in novice pianists. J Neurosci Res 2024; 102:e25312. [PMID: 38400578 DOI: 10.1002/jnr.25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Learning to play the piano is a unique complex task, integrating multiple sensory modalities and higher order cognitive functions. Longitudinal neuroimaging studies on adult novice musicians show training-related functional changes in music perception tasks. The reorganization of brain activity while actually playing an instrument was studied only on a very short time frame of a single fMRI session, and longer interventions have not yet been performed. Thus, our aim was to investigate the dynamic complexity of functional brain reorganization while playing the piano within the first half year of musical training. We scanned 24 novice keyboard learners (female, 18-23 years old) using fMRI while they played increasingly complex musical pieces after 1, 6, 13, and 26 weeks of training. Playing music evoked responses bilaterally in the auditory, inferior frontal, and supplementary motor areas, and the left sensorimotor cortex. The effect of training over time, however, invoked widespread changes encompassing the right sensorimotor cortex, cerebellum, superior parietal cortex, anterior insula and hippocampus, among others. As the training progressed, the activation of these regions decreased while playing music. Post hoc analysis revealed region-specific time-courses for independent auditory and motor regions of interest. These results suggest that while the primary sensory, motor, and frontal regions are associated with playing music, the training decreases the involvement of higher order cognitive control and integrative regions, and basal ganglia. Moreover, training might affect distinct brain regions in different ways, providing evidence in favor of the dynamic nature of brain plasticity.
Collapse
Affiliation(s)
- Alicja M Olszewska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Droździel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Widlarz
- Department of Choir Conducting and Singing, Music Education and Rhythmics, The Chopin University of Music, Warsaw, Poland
| | - Aleksandra M Herman
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Zhang X, Feng Y, Chen Z, Long J. Altered functional connectivity in the hippocampal and striatal systems after motor sequence learning consolidation in medial temporal lobe epilepsy individuals. J Neurophysiol 2024; 131:294-303. [PMID: 38230870 DOI: 10.1152/jn.00376.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Both the hippocampal and striatal systems participate in motor sequence learning (MSL) in healthy subjects, and the prominent role of the hippocampal system in sleep-related consolidation has been demonstrated. However, some pathological states may change the functional dominance between these two systems in MSL consolidation. To better understand the functional performance within these two systems under the pathological condition of hippocampal impairment, we compared the functional differences after consolidation between patients with left medial temporal lobe epilepsy (LmTLE) and healthy control subjects (HCs). We assessed participants' performance on the finger-tapping task (FTT) during acquisition (on day 1) and after consolidation during sleep (on day 2). All participants underwent an MRI scan (T1 and resting state) before each FTT. We found that the LmTLE group showed performance deficits in offline consolidation compared to the HC group. The LmTLE group exhibited structural changes, such as decreased gray matter volume (GMV) in the left hippocampus and increased GMV in the right putamen (striatum). Our results also revealed that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the HC group, it was only evident in the striatum-related functional loop in the LmTLE group. Our findings indicated that LmTLE patients may rely more on the striatal system for offline consolidation because of structural impairments in the hippocampus. Additionally, this compensatory mechanism may not fully substitute for the role of the impaired hippocampus itself.NEW & NOTEWORTHY Motor sequence learning (MSL) relies on both the hippocampal and striatal systems, but whether functional performance is altered after MSL consolidation when the hippocampus is impaired remains unknown. Our results indicated that whereas the main effect of consolidation was observed in the hippocampus-related functional connection in the healthy control (HC) group, it was only evident in the striatum-related functional loop in the left medial temporal lobe epilepsy (LmTLE) group.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yanyun Feng
- Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Pazhou Lab, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Favila N, Gurney K, Overton PG. Role of the basal ganglia in innate and learned behavioural sequences. Rev Neurosci 2024; 35:35-55. [PMID: 37437141 DOI: 10.1515/revneuro-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Integrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
Collapse
Affiliation(s)
- Natalia Favila
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Kevin Gurney
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Paul G Overton
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| |
Collapse
|
21
|
Li X, Jin M, Zhang N, Hongman W, Fu L, Qi Q. Neural correlates of fine motor grasping skills: Longitudinal insights into motor cortex activation using fNIRS. Brain Behav 2024; 14:e3383. [PMID: 38376039 PMCID: PMC10784192 DOI: 10.1002/brb3.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Motor learning is essential for performing specific tasks and progresses through distinct stages, including the rapid learning phase (initial skill acquisition), the consolidation phase (skill refinement), and the stable performance phase (skill mastery and maintenance). Understanding the cortical activation dynamics during these stages can guide targeted rehabilitation interventions. METHODS In this longitudinal randomized controlled trial, functional near-infrared spectroscopy was used to explore the temporal dynamics of cortical activation in hand-related motor learning. Thirty-one healthy right-handed individuals were randomly assigned to perform either easy or intricate motor tasks with their non-dominant hand over 10 days. We conducted 10 monitoring sessions to track cortical activation in the right hemisphere (according to lateralization principles, the primary hemisphere for motor control) and evaluated motor proficiency concurrently. RESULTS The study delineated three stages of nondominant hand motor learning: rapid learning (days 1 and 2), consolidation (days 3-7), and stable performance (days 8-10). There was a power-law enhancement of motor skills correlated with learning progression. Sustained activation was observed in the supplementary motor area (SMA) and parietal lobe (PL), whereas activation in the right primary motor cortex (M1R) and dorsolateral prefrontal cortex (PFCR) decreased. These cortical activation patterns exhibited a high correlation with the augmentation of motor proficiency. CONCLUSIONS The findings suggest that early rehabilitation interventions, such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS), could be optimally directed at M1 and PFC in the initial stages. In contrast, SMA and PL can be targeted throughout the motor learning process. This research illuminates the path for developing tailored motor rehabilitation interventions based on specific stages of motor learning. NEW AND NOTEWORTHY In an innovative approach, our study uniquely combines a longitudinal design with the robustness of generalized estimating equations (GEEs). With the synergy of functional near-infrared spectroscopy (fNIRS) and the Minnesota Manual Dexterity Test (MMDT) paradigm, we precisely trace the evolution of neural resources during complex, real-world fine-motor task learning. Centering on right-handed participants using their nondominant hand magnifies the intricacies of right hemisphere spatial motor processing. We unravel the brain's dynamic response throughout motor learning stages and its potent link to motor skill enhancement. Significantly, our data point toward the early-phase rehabilitation potential of TMS and transcranial direct current stimulation on the M1 and PFC regions. Concurrently, SMA and PL appear poised to benefit from ongoing interventions during the entire learning curve. Our findings carve a path for refined motor rehabilitation strategies, underscoring the importance of timely noninvasive brain stimulation treatments.
Collapse
Affiliation(s)
- Xiaoli Li
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Minxia Jin
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Nan Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Wei Hongman
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - LianHui Fu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - Qi Qi
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| |
Collapse
|
22
|
Post EM, Kraemer WJ. Physiological Mechanisms That Impact Exercise Adaptations for Individuals With Down Syndrome. J Strength Cond Res 2023; 37:e646-e655. [PMID: 38015740 DOI: 10.1519/jsc.0000000000004658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Post, EM, and Kraemer, WJ. Physiological mechanisms that impact exercise adaptations for individuals with Down syndrome. J Strength Cond Res 37(12): e646-e655, 2023-Down syndrome (DS) is the most common chromosomal disorder diagnosed in the United States since 2014. There is a wide range of intellectual severities, with the average IQ of individuals with DS at approximately 50 and adults without intellectual delay at approximately 70-130. Individuals with DS vary from mild to severe cognitive impairment, depending on the phenotypic penetration on the 21st chromosome, with the average cognitive capacity equivalent to a cognitive functioning of an 8- to 9-year-old child. To have successful health, all aspects of health must be considered (i.e., overall health, fitness, and social). Both aerobic training and resistance training (RT) are favored for a healthy lifestyle. Resistance training specifically can help improve motor function and overall activities of daily living. Although many motivational and environmental barriers for individuals with DS can make exercising difficult, there are many ways to overcome those barriers (both intrinsically and extrinsically). Individuals with DS should strive for 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity aerobic exercise a week or a combination of both. The individual should also strive for 2 or more days a week of strengthening activities, such as RT, involving all muscle groups. These activities will help improve many aspects of life, leading to a better quality of life. Regular group exercise activity can help increase self-confidence and success socially in life. This review will focus on the underlying biological mechanisms related to DS, their influence on exercise, and the roles exercise plays in mediating positive health, physical fitness, and social lifestyle outcomes.
Collapse
Affiliation(s)
- Emily M Post
- Department of Health and Sports Science, Otterbein University, Westerville, Ohio
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut; and
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia
| |
Collapse
|
23
|
Darainy M, Manning TF, Ostry DJ. Disruption of somatosensory cortex impairs motor learning and retention. J Neurophysiol 2023; 130:1521-1528. [PMID: 37964765 DOI: 10.1152/jn.00231.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
This study tests for a function of the somatosensory cortex, that, in addition to its role in processing somatic afferent information, somatosensory cortex contributes both to motor learning and the stabilization of motor memory. Continuous theta-burst magnetic stimulation (cTBS) was applied, before force-field training to disrupt activity in either the primary somatosensory cortex, primary motor cortex, or a control zone over the occipital lobe. Tests for retention and relearning were conducted after a 24 h delay. Analysis of movement kinematic measures and force-channel trials found that cTBS to somatosensory cortex disrupted both learning and subsequent retention, whereas cTBS to motor cortex had little effect on learning but possibly impaired retention. Basic movement variables are unaffected by cTBS suggesting that the stimulation does not interfere with movement but instead disrupts changes in the cortex that are necessary for learning. In all experimental conditions, relearning in an abruptly introduced force field, which followed retention testing, showed extensive savings, which is consistent with previous work suggesting that more cognitive aspects of learning and retention are not dependent on either of the cortical zones under test. Taken together, the findings are consistent with the idea that motor learning is dependent on learning-related activity in the somatosensory cortex.NEW & NOTEWORTHY This study uses noninvasive transcranial magnetic stimulation to test the contribution of somatosensory and motor cortex to human motor learning and retention. Continuous theta-burst stimulation is applied before learning; participants return 24 h later to assess retention. Disruption of the somatosensory cortex is found to impair both learning and retention, whereas disruption of the motor cortex has no effect on learning. The findings are consistent with the idea that motor learning is dependent upon learning-related plasticity in somatosensory cortex.
Collapse
Affiliation(s)
- Mohammad Darainy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Timothy F Manning
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - David J Ostry
- Department of Psychology, McGill University, Montreal, Quebec, Canada
- Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
24
|
Voegtle A, Terlutter C, Nikolai K, Farahat A, Hinrichs H, Sweeney-Reed CM. Suppression of Motor Sequence Learning and Execution Through Anodal Cerebellar Transcranial Electrical Stimulation. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1152-1165. [PMID: 36239839 PMCID: PMC10657296 DOI: 10.1007/s12311-022-01487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cerebellum (CB) and primary motor cortex (M1) have been associated with motor learning, with different putative roles. Modulation of task performance through application of transcranial direct current stimulation (TDCS) to brain structures provides causal evidence for their engagement in the task. Studies evaluating and comparing TDCS to these structures have provided conflicting results, however, likely due to varying paradigms and stimulation parameters. Here we applied TDCS to CB and M1 within the same experimental design, to enable direct comparison of their roles in motor sequence learning. We examined the effects of anodal TDCS during motor sequence learning in 60 healthy participants, randomly allocated to CB-TDCS, M1-TDCS, or Sham stimulation groups during a serial reaction time task. Key to the design was an equal number of repeated and random sequences. Reaction times (RTs) to implicitly learned and random sequences were compared between groups using ANOVAs and post hoc t-tests. A speed-accuracy trade-off was excluded by analogous analysis of accuracy scores. An interaction was observed between whether responses were to learned or random sequences and the stimulation group. Post hoc analyses revealed a preferential slowing of RTs to implicitly learned sequences in the group receiving CB-TDCS. Our findings provide evidence that CB function can be modulated through transcranial application of a weak electrical current, that the CB and M1 cortex perform separable functions in the task, and that the CB plays a specific role in motor sequence learning during implicit motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Clara Terlutter
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Katharina Nikolai
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Amr Farahat
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation With Max Planck Society, Deutschordenstr. 46, 60528, Frankfurt, Frankfurt am Main, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department of Neurology, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Department of Neurology, Neurocybernetics and Rehabilitation, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences - CBBS, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
25
|
de Rond V, D'Cruz N, Hulzinga F, McCrum C, Verschueren S, de Xivry JJO, Nieuwboer A. Neural correlates of weight-shift training in older adults: a randomized controlled study. Sci Rep 2023; 13:19609. [PMID: 37949995 PMCID: PMC10638445 DOI: 10.1038/s41598-023-46645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Mediolateral weight-shifting is an important aspect of postural control. As it is currently unknown whether a short training session of mediolateral weight-shifting in a virtual reality (VR) environment can improve weight-shifting, we investigated this question and also probed the impact of practice on brain activity. Forty healthy older adults were randomly allocated to a training (EXP, n = 20, age = 70.80 (65-77), 9 females) or a control group (CTR, n = 20, age = 71.65 (65-82), 10 females). The EXP performed a 25-min weight-shift training in a VR-game, whereas the CTR rested for the same period. Weight-shifting speed in both single- (ST) and dual-task (DT) conditions was determined before, directly after, and 24 h after intervention. Functional Near-Infrared Spectroscopy (fNIRS) assessed the oxygenated hemoglobin (HbO2) levels in five cortical regions of interest. Weight-shifting in both ST and DT conditions improved in EXP but not in CTR, and these gains were retained after 24 h. Effects transferred to wider limits of stability post-training in EXP versus CTR. HbO2 levels in the left supplementary motor area were significantly increased directly after training in EXP during ST (change < SEM), and in the left somatosensory cortex during DT (change > SEM). We interpret these changes in the motor coordination and sensorimotor integration areas of the cortex as possibly learning-related.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Nicholas D'Cruz
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Christopher McCrum
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Motor Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), Leuven, Belgium.
| |
Collapse
|
26
|
Firouzi M, Baetens K, Saeys M, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. Differential effects of conventional and high-definition transcranial direct-current stimulation of the motor cortex on implicit motor sequence learning. Eur J Neurosci 2023; 58:4181-4194. [PMID: 37864365 DOI: 10.1111/ejn.16173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Manon Saeys
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Jette, Belgium
- Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
27
|
Arikawa E, Kubota M, Haraguchi T, Takata M, Natsugoe S. Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1673. [PMID: 37763792 PMCID: PMC10536444 DOI: 10.3390/medicina59091673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: In stroke rehabilitation, the use of either implicit or explicit learning as a motor learning approach during dual tasks is common, but it is unclear which strategy is more beneficial. This study aims to determine the benefits of implicit versus explicit motor learning approaches in patients with stroke. Materials and Methods: Seventeen patients with stroke and 21 control participants were included. Motor learning was evaluated using the Serial Reaction Time Task (SRTT) in the context of dual-task conditions. The SRTT was conducted on two separate days: one day for implicit learning conditions and the other day for explicit learning conditions. Under the explicit learning conditions, a task rule was given to the participants before they started the task, but not under the implicit learning conditions. Learning scores were calculated for both implicit and explicit learning, and these scores were then compared within groups for patients with stroke and controls. We calculated the difference in learning scores between implicit and explicit learning and conducted a correlation analysis with the Trail Making Test (TMT) Parts A and B. Results: Learning scores on the SRTT were not different between implicit and explicit learning in controls but were significantly greater in patients with stroke for implicit learning than for explicit learning. The difference in learning scores between implicit and explicit learning in patients with stroke was correlated with TMT-A and showed a correlation trend with TMT-B. Conclusions: Implicit learning approaches may be effective in the acquisition of motor skills with dual-task demands in post-stroke patients with deficits in attention and working memory.
Collapse
Affiliation(s)
- Eito Arikawa
- Graduate School of Health Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan;
- General Rehabilitation Center, Kajikionsen Hospital, 4714, Kida, Kajiki, Aira City, Kagoshima 899-5241, Japan
| | - Masatomo Kubota
- Department of Occupational Therapy, School of Health Science, Factory of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomoko Haraguchi
- General Rehabilitation Center, Kajikionsen Hospital, 4714, Kida, Kajiki, Aira City, Kagoshima 899-5241, Japan
| | - Masachika Takata
- General Rehabilitation Center, Kajikionsen Hospital, 4714, Kida, Kajiki, Aira City, Kagoshima 899-5241, Japan
| | - Shoji Natsugoe
- General Rehabilitation Center, Kajikionsen Hospital, 4714, Kida, Kajiki, Aira City, Kagoshima 899-5241, Japan
| |
Collapse
|
28
|
Widjaja JH, Sloan DC, Hauger JA, Muntean BS. Customizable Open-Source Rotating Rod (Rotarod) Enables Robust Low-Cost Assessment of Motor Performance in Mice. eNeuro 2023; 10:ENEURO.0123-23.2023. [PMID: 37673671 PMCID: PMC10484359 DOI: 10.1523/eneuro.0123-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 09/08/2023] Open
Abstract
Reliable measurements of motor learning and coordination in mice are fundamental aspects of neuroscience research. Despite the advent of deep-learning approaches for motor assessment, performance testing on a rotating rod (rotarod) has remained a staple in the neuroscientist's toolbox. Surprisingly, commercially available rotarod instruments offer limited experimental flexibility at a relatively high cost. In order to address these concerns, we engineered a highly-customizable, low-budget rotarod device with increased functionality. Here, we present a detailed guide to assemble this rotarod using simple materials. Our apparatus incorporates a variation of interchangeable rod sizes and designs which provides for adjustable testing sensitivity. Moreover, our rotarod is driven by open-source software enabling bespoke acceleration ramps and sequences. Finally, we report the strengths and weaknesses of each rod design following multiday testing on cohorts of C57BL/6 mice. We expect explorations in deviant rod types to provide a foundation for the development of increasingly sensitive models for motor performance testing along with low-budget alternatives for the research community.
Collapse
Affiliation(s)
- Josephine H Widjaja
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Douglas C Sloan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Joseph A Hauger
- Department of Chemistry and Physics, College of Science and Mathematics, Augusta University, Augusta, GA 30912
| | - Brian S Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
29
|
Herzog R, Bolte C, Radecke JO, von Möller K, Lencer R, Tzvi E, Münchau A, Bäumer T, Weissbach A. Neuronavigated Cerebellar 50 Hz tACS: Attenuation of Stimulation Effects by Motor Sequence Learning. Biomedicines 2023; 11:2218. [PMID: 37626715 PMCID: PMC10452137 DOI: 10.3390/biomedicines11082218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan-Ole Radecke
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathinka von Möller
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebekka Lencer
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hohe Bleichen 8, 20354 Hamburg, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Yang CJ, Yu HY, Hong TY, Shih CH, Yeh TC, Chen LF, Hsieh JC. Trait representation of embodied cognition in dancers pivoting on the extended mirror neuron system: a resting-state fMRI study. Front Hum Neurosci 2023; 17:1173993. [PMID: 37492559 PMCID: PMC10364845 DOI: 10.3389/fnhum.2023.1173993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Dance is an art form that integrates the body and mind through movement. Dancers develop exceptional physical and mental abilities that involve various neurocognitive processes linked to embodied cognition. We propose that dancers' primary trait representation is movement-actuated and relies on the extended mirror neuron system (eMNS). Methods A total of 29 dancers and 28 non-dancer controls were recruited. A hierarchical approach of intra-regional and inter-regional functional connectivity (FC) analysis was adopted to probe trait-like neurodynamics within and between regions in the eMNS during rest. Correlation analyses were employed to examine the associations between dance training, creativity, and the FC within and between different brain regions. Results Within the eMNS, dancers exhibited increased intra-regional FC in various brain regions compared to non-dancers. These regions include the left inferior frontal gyrus, left ventral premotor cortex, left anterior insula, left posterior cerebellum (crus II), and bilateral basal ganglia (putamen and globus pallidus). Dancers also exhibited greater intrinsic inter-regional FC between the cerebellum and the core/limbic mirror areas within the eMNS. In dancers, there was a negative correlation observed between practice intensity and the intrinsic FC within the eMNS involving the cerebellum and basal ganglia. Additionally, FCs from the basal ganglia to the dorsolateral prefrontal cortex were found to be negatively correlated with originality in dancers. Discussion Our results highlight the proficient communication within the cortical-subcortical hierarchy of the eMNS in dancers, linked to the automaticity and cognitive-motor interactions acquired through training. Altered functional couplings in the eMNS can be regarded as a unique neural signature specific to virtuoso dancers, which might predispose them for skilled dancing performance, perception, and creation.
Collapse
Affiliation(s)
- Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei City, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
31
|
Blanchet M, Prince F. Mediolateral Postural Control Mechanisms and Proprioception Improve With Kicking Sports Training During Adolescence. Pediatr Exerc Sci 2023:1-9. [PMID: 37391194 DOI: 10.1123/pes.2020-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 07/02/2023]
Abstract
Sensorimotor stimulation during the sensitive period is crucial for proper brain development. Kicking sports (KS) training stimulates these sensorimotor functions. The purpose of this study was to investigate if incorporating specific sensorimotor stimulation in mediolateral axis and proprioceptive inputs during KS training will improve the specific sensorimotor performance in adolescents. We assessed stability limits in 13 KS practitioners and 20 control participants. Starting from an upright position, subjects were asked to lean as far as possible (forward, backward, rightward, and leftward). Three sensory conditions were tested: (1) eyes open, (2) eyes closed, and (3) eyes closed while standing on a foam mat. We analyzed the maximal center of pressure excursion and the root means square of the center of pressure displacements. Results showed that KS group had smaller root means square and larger maximal center of pressure excursions than those of control participants in mediolateral axis in all sensory conditions. Furthermore, the results also revealed a significant smaller root means square excursion in KS group under foam mat condition compared to control group ML axis. This study provides evidence that KS training improved the lateral balance control and proprioceptive integration.
Collapse
Affiliation(s)
- Mariève Blanchet
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC,Canada
| | - François Prince
- Département de chirurgie, Faculté de médecine, Université de Montréal, Montréal, QC,Canada
- Institut national du sport du Québec, Montréal, QC,Canada
| |
Collapse
|
32
|
Kinany N, Khatibi A, Lungu O, Finsterbusch J, Büchel C, Marchand-Pauvert V, Ville DVD, Vahdat S, Doyon J. Decoding cerebro-spinal signatures of human behavior: application to motor sequence learning. Neuroimage 2023; 275:120174. [PMID: 37201642 DOI: 10.1016/j.neuroimage.2023.120174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Mapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked. Although the recent advent of functional magnetic resonance imaging (fMRI) sequences that can simultaneously target the brain and spinal cord has opened up new avenues for studying these mechanisms at multiple levels of the CNS, research to date has been limited to inferential univariate techniques that cannot fully unveil the intricacies of the underlying neural states. To address this, we propose to go beyond traditional analyses and instead use a data-driven multivariate approach leveraging the dynamic content of cerebro-spinal signals using innovation-driven coactivation patterns (iCAPs). We demonstrate the relevance of this approach in a simultaneous brain-spinal cord fMRI dataset acquired during motor sequence learning (MSL), to highlight how large-scale CNS plasticity underpins rapid improvements in early skill acquisition and slower consolidation after extended practice. Specifically, we uncovered cortical, subcortical and spinal functional networks, which were used to decode the different stages of learning with a high accuracy and, thus, delineate meaningful cerebro-spinal signatures of learning progression. Our results provide compelling evidence that the dynamics of neural signals, paired with a data-driven approach, can be used to disentangle the modular organization of the CNS. While we outline the potential of this framework to probe the neural correlates of motor learning, its versatility makes it broadly applicable to explore the functioning of cerebro-spinal networks in other experimental or pathological conditions.
Collapse
Affiliation(s)
- N Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.
| | - A Khatibi
- Center of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - O Lungu
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - C Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - V Marchand-Pauvert
- Sorbonne Université, Inserm, CNRS, Laboratoire d'Imagerie biomédicale, Paris F-75006, France
| | - D Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1211, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - S Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, FL 32611, United States
| | - J Doyon
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Lo LLH, Lee EHM, Hui CLM, Chong CSY, Chang WC, Chan SKW, Lin JJ, Lo WTL, Chen EYH. Effect of high-endurance exercise intervention on sleep-dependent procedural memory consolidation in individuals with schizophrenia: a randomized controlled trial. Psychol Med 2023; 53:1708-1720. [PMID: 34615565 DOI: 10.1017/s0033291721003196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Little is known about the effects of physical exercise on sleep-dependent consolidation of procedural memory in individuals with schizophrenia. We conducted a randomized controlled trial (RCT) to assess the effectiveness of physical exercise in improving this cognitive function in schizophrenia. METHODS A three-arm parallel open-labeled RCT took place in a university hospital. Participants were randomized and allocated into either the high-intensity-interval-training group (HIIT), aerobic-endurance exercise group (AE), or psychoeducation group for 12 weeks, with three sessions per week. Seventy-nine individuals with schizophrenia spectrum disorder were contacted and screened for their eligibility. A total of 51 were successfully recruited in the study. The primary outcome was sleep-dependent procedural memory consolidation performance as measured by the finger-tapping motor sequence task (MST). Assessments were conducted during baseline and follow-up on week 12. RESULTS The MST performance scored significantly higher in the HIIT (n = 17) compared to the psychoeducation group (n = 18) after the week 12 intervention (p < 0.001). The performance differences between the AE (n = 16) and the psychoeducation (p = 0.057), and between the AE and the HIIT (p = 0.999) were not significant. Yet, both HIIT (p < 0.0001) and AE (p < 0.05) showed significant within-group post-intervention improvement. CONCLUSIONS Our results show that HIIT and AE were effective at reverting the defective sleep-dependent procedural memory consolidation in individuals with schizophrenia. Moreover, HIIT had a more distinctive effect compared to the control group. These findings suggest that HIIT may be a more effective treatment to improve sleep-dependent memory functions in individuals with schizophrenia than AE alone.
Collapse
Affiliation(s)
| | - Edwin Ho Ming Lee
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Wing Chung Chang
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sherry Kit Wa Chan
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jessie Jingxia Lin
- Neuroscience and Neurological Rehabilitation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | - Eric Yu Hai Chen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
34
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Involvement of the prefrontal cortex in motor sequence learning: A functional near-infrared spectroscopy (fNIRS) study. Brain Cogn 2023; 166:105940. [PMID: 36621187 DOI: 10.1016/j.bandc.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Our previous functional near-infrared spectroscopy (fNIRS) study on motor sequence learning (Polskaia et al., 2020) did not detect the same decrease in activity in the left dorsolateral prefrontal cortex (DLPFC) associated with movement automaticity, as reported by Wu et al. (2004). This was partly attributed to insufficient practice time to reach neural efficiency. Therefore, we sought to expand on our previous work to better understand the contribution of the prefrontal cortex (PFC) to motor sequence learning by examining learning across a longer period of time. Participants were randomly assigned to one of two groups: control or trained. fNIRS was acquired at three time points: pre-test, post-test, and retention. Participants performed four sequences (S1, S2, S3, and S4) of right-hand finger tapping. The trained group also underwent four days of practice of S1 and S2. No group differences in the left DLPFC and ventrolateral (VLPFC) were found between sessions for S1 and S2. Our findings revealed increased contribution from the right VLPFC in post-test for the trained group, which may reflect the active retrieval of explicit information from long-term memory. Our results suggest that despite additional practice time, explicit motor sequence learning requires the continued involvement of the PFC.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Canada.
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Canada.
| |
Collapse
|
35
|
Individual differences in procedural learning are associated with fiber specific white matter microstructure of the superior cerebellar peduncles in healthy adults. Cortex 2023; 161:1-12. [PMID: 36871479 DOI: 10.1016/j.cortex.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
Functional neuroimaging has consistently implicated the fronto-basal ganglia-cerebellar circuit in procedural learning-defined as the incidental acquisition of sequence information through repetition. Limited work has probed the role of white matter fiber pathways that connect the regions in this network, such as the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), in explaining individual differences in procedural learning. High angular diffusion weighted imaging was acquired from 20 healthy adults aged 18-45 years. Fixel-based analysis was performed to extract specific measures of white matter microstructure (fiber density; FD) and macrostructure (fiber cross-section; FC), from the SCP and STPMT. These fixel metrics were correlated with performance on the serial reaction time (SRT) task, and sensitivity to the sequence was indexed by the difference in reaction time between the final block of sequence trials and the randomized block (namely, the 'rebound effect'). Analyses revealed a significant positive relationship between FD and the rebound effect in segments of both the left and right SCP (pFWE < .05). That is, increased FD in these tracts was associated with greater sensitivity to the sequence on the SRT task. No significant associations were detected between fixel metrics in the STPMT and the rebound effect. Our results support the likely role of white matter organization in the basal ganglia-cerebellar circuit in explaining individual differences in procedural learning.
Collapse
|
36
|
Neurological soft signs are associated with reduced medial-lateral postural control in adolescent athletes. J Neurol Sci 2023; 445:120516. [PMID: 36702068 DOI: 10.1016/j.jns.2022.120516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neurological soft signs (NSS) are minor deviations from the norm in motor performance that are commonly assessed using neurological examinations. NSS may be of clinical relevance for evaluating the developmental status of adolescents. Here we investigate whether quantitative force plate measures may add relevant information to observer-based neurological examinations. METHODS Male adolescent athletes (n = 141) aged 13-16 years from three European sites underwent a neurological examination including 28 tests grouped into six functional clusters. The performance of tests and functional clusters was rated as optimal/non-optimal resulting in NSS+/NSS- groups and a continuous total NSS score. Participants performed a postural control task on a Balance Tracking System measured as path length, root mean square and sway area. ANCOVAs were applied to test for group differences in postural control between the NSS+ and NSS- group, and between optimal/non-optimal performance on a cluster- and test-level. Moreover, we tested for correlations between the total NSS score and postural control variables. RESULTS There was no significant overall difference between the NSS+ and NSS- group in postural control. However, non-optimal performing participants in the diadochokinesis test swayed significantly more in the medial-lateral direction than optimal performing participants. Moreover, a lower total NSS score was associated with reduced postural control in the medial-lateral direction. CONCLUSION Our findings demonstrate that NSS are related to postural control in adolescent athletes. Thus, force plate measures may add a quantitative, objective measurement of postural control to observer-based qualitative assessments, and thus, may complement clinical testing.
Collapse
|
37
|
Meyer GP, da Silva BS, Bandeira CE, Tavares MEA, Cupertino RB, Oliveira EP, Müller D, Kappel DB, Teche SP, Vitola ES, Rohde LA, Rovaris DL, Grevet EH, Bau CHD. Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD. Eur Arch Psychiatry Clin Neurosci 2023; 273:15-24. [PMID: 35279744 DOI: 10.1007/s00406-022-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in embryonic development. It is especially represented among GWAS hits for neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. While several functional studies are underway to understand the consequences of FOXP2 variation, this study aims to expand previous findings to clinically and genetically related phenotypes and neuroanatomical features among subjects with ADHD. The sample included 407 adults with ADHD and 463 controls. Genotyping was performed on the Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-wide approach was adopted to evaluate the combined effects of FOXP2 variants (n = 311) on ADHD status, severity, comorbidities, and personality traits. Independent risk variants presenting potential functional effects were further tested for association with cortical surface areas in a subsample of cases (n = 87). The gene-wide analyses within the ADHD sample showed a significant association of the FOXP2 gene with harm avoidance (P = 0.001; PFDR = 0.015) and nominal associations with hyperactivity symptoms (P = 0.026; PFDR = 0.130) and antisocial personality disorder (P = 0.026; PFDR = 0.130). An insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated with the three outcomes and nominally with the surface area of superior parietal and anterior cingulate cortices. Our results extend and refine previous GWAS findings pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly those involving underlying symptomatic domains of self-regulation and inhibitory control. Taken together, the available evidence may constitute promising insights into the puzzle of the FOXP2-related pathophysiology.
Collapse
Affiliation(s)
- Gabriela Pessin Meyer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Santos da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cibele Edom Bandeira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Eduarda Araujo Tavares
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduarda Pereira Oliveira
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diana Müller
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Djenifer B Kappel
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales
| | - Stefania Pigatto Teche
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Schneider Vitola
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo Instituto de Ciencias Biomedicas, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,ADHD Outpatient Program, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
38
|
Yoshioka A, Tanabe HC, Nakagawa E, Sumiya M, Koike T, Sadato N. The Role of the Left Inferior Frontal Gyrus in Introspection during Verbal Communication. Brain Sci 2023; 13:brainsci13010111. [PMID: 36672092 PMCID: PMC9856826 DOI: 10.3390/brainsci13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Conversation enables the sharing of our subjective experiences through verbalizing introspected thoughts and feelings. The mentalizing network represents introspection, and successful conversation is characterized by alignment through imitation mediated by the mirror neuron system (MNS). Therefore, we hypothesized that the interaction between the mentalizing network and MNS mediates the conversational exchange of introspection. To test this, we performed hyperscanning functional magnetic resonance imaging during structured real-time conversations between 19 pairs of healthy participants. The participants first evaluated their preference for and familiarity with a presented object and then disclosed it. The control was the object feature identification task. When contrasted with the control, the preference/familiarity evaluation phase activated the dorso-medial prefrontal cortex, anterior cingulate cortex, precuneus, left hippocampus, right cerebellum, and orbital portion of the left inferior frontal gyrus (IFG), which represents introspection. The left IFG was activated when the two participants' statements of introspection were mismatched during the disclosure. Disclosing introspection enhanced the functional connectivity of the left IFG with the bilateral superior temporal gyrus and primary motor cortex, representing the auditory MNS. Thus, the mentalizing system and MNS are hierarchically linked in the left IFG during a conversation, allowing for the sharing of introspection of the self and others.
Collapse
Affiliation(s)
- Ayumi Yoshioka
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| | - Eri Nakagawa
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Motofumi Sumiya
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Takahiko Koike
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| |
Collapse
|
39
|
Hsu G, Shereen AD, Cohen LG, Parra LC. Robust enhancement of motor sequence learning with 4 mA transcranial electric stimulation. Brain Stimul 2023; 16:56-67. [PMID: 36574814 PMCID: PMC10171179 DOI: 10.1016/j.brs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Motor learning experiments with transcranial direct current stimulation (tDCS) at 2 mA have produced mixed results. We hypothesize that tDCS boosts motor learning provided sufficiently high field intensity on the motor cortex. METHODS In a single-blinded design, 108 healthy participants received either anodal (N = 36) or cathodal (N = 36) tDCS at 4 mA total, or no stimulation (N = 36) while they practiced a 12-min sequence learning task. Anodal stimulation was delivered across four electrode pairs (1 mA each), with anodes above the right parietal lobe and cathodes above the right frontal lobe. Cathodal stimulation, with reversed polarities, served as an active control for sensation, while the no-stimulation condition established baseline performance. fMRI-localized targets on the primary motor cortex in 10 subjects were used in current flow models to optimize electrode placement for maximal field intensity. A single electrode montage was then selected for all participants. RESULTS We found a significant difference in performance with anodal vs. cathodal stimulation (Cohen's d = 0.71) and vs. no stimulation (d = 0.56). This effect persisted for at least 1 h, and subsequent learning for a new sequence and the opposite hand also improved. Sensation ratings were comparable in the active groups and did not exceed moderate levels. Current flow models suggest the new electrode montage can achieve stronger motor cortex polarization than alternative montages. CONCLUSION The present paradigm shows a medium to large effect size and is well-tolerated. It may serve as a go-to experiment for future studies on motor learning and tDCS.
Collapse
Affiliation(s)
- Gavin Hsu
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA.
| | - A Duke Shereen
- Advanced Science Research Center at the Graduate Center of the City University of New York, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, NY, USA
| |
Collapse
|
40
|
Metais A, Muller CO, Boublay N, Breuil C, Guillot A, Daligault S, Di Rienzo F, Collet C, Krolak-Salmon P, Saimpont A. Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Front Aging Neurosci 2022; 14:1060791. [PMID: 36570544 PMCID: PMC9780548 DOI: 10.3389/fnagi.2022.1060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.
Collapse
Affiliation(s)
- Angèle Metais
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Camille O. Muller
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,EuroMov Digital Health in Motion, Université Montpellier, IMT Mines Alès, Montpellier, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Sébastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Christian Collet
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,*Correspondence: Arnaud Saimpont,
| |
Collapse
|
41
|
Zhang J, Yin M, Shu D, Liu D. The establishment of the general microexpression recognition ability and its relevant brain activity. Front Hum Neurosci 2022; 16:894702. [PMID: 36569473 PMCID: PMC9774033 DOI: 10.3389/fnhum.2022.894702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Microexpressions are very transitory expressions lasting about 1/25∼1/2 s, which can reveal people's true emotions they try to hide or suppress. The PREMERT (pseudorandom ecological microexpression recognition test) could test the individual's microexpression recognition ability with six microexpression Ms (the mean of accuracy rates of a microexpression type under six expression backgrounds), and six microexpression SDs (the standard deviation of accuracy rates of this microexpression type under six expression backgrounds), but it and other studies did not explore the general microexpression recognition ability (the GMERA) or could not test the GMERA effectively. Therefore, the current study put forward and established the GMERA with the behavioral data of the PREMERT. The spontaneous brain activity in the resting state is a stable index to measure individual cognitive characteristics. Therefore, the current study explored the relevant resting-state brain activity of the GMERA indicators to prove that GMERA is an individual cognitive characteristic from brain mechanisms with the neuroimaging data of the PREMERT. The results showed that (1) there was a three-layer hierarchical structure in human microexpression recognition ability: The GMERA (the highest layer); recognition of a type of microexpression under different expression backgrounds (the second layer); and recognition of a certain microexpression under a certain expression background (the third layer). A common factor GMERA was extracted from the six microexpression types recognition in PREMERT. Four indicators of the GMERA were calculated from six microexpression Ms and six microexpression SDs, such as GMERAL (level of GMERA), GMERAF (fluctuation of GMERA), GMERAB (background effect of GMERA), and GMERABF (fluctuation of GMERAB), which had good parallel-forms reliability, calibration validity, and ecological validity. The GMERA provided a concise and comprehensive overview of the individual's microexpression recognition ability. The PREMERT was proved as a good test to measure the GMERA. (2) ALFFs (the amplitude of low-frequency fluctuations) in both eyes-closed and eyes-opened resting-states and ALFFs-difference could predict the four indicators of the GMERA. The relevant resting-state brain areas were some areas of the expression recognition network, the microexpression consciousness and attention network, and the motor network for the change from expression backgrounds to microexpression. (3) The relevant brain areas of the GMERA and different types of microexpression recognition belonged to the three cognitive processes, but the relevant brain areas of the GMERA were the "higher-order" areas to be more concise and critical than those of different types of microexpression recognition.
Collapse
Affiliation(s)
- Jianxin Zhang
- Jiangsu Province Engineering Research Center of Microexpression Intelligent Sensing and Security Prevention and Control, Nanjing, China,School of Education, Jiangnan University, Wuxi, China
| | - Ming Yin
- Jiangsu Province Engineering Research Center of Microexpression Intelligent Sensing and Security Prevention and Control, Nanjing, China,Jiangsu Police Institute, Nanjing, China
| | - Deming Shu
- School of Education, Soochow University, Soochow, China,*Correspondence: Deming Shu,
| | - Dianzhi Liu
- School of Education, Soochow University, Soochow, China,*Correspondence: Deming Shu,
| |
Collapse
|
42
|
Yokoi A, Weiler J. Pupil diameter tracked during motor adaptation in humans. J Neurophysiol 2022; 128:1224-1243. [PMID: 36197019 PMCID: PMC9722266 DOI: 10.1152/jn.00021.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Pupil diameter, under constant illumination, is known to reflect individuals' internal states, such as surprise about observation and environmental uncertainty. Despite the growing use of pupillometry in cognitive learning studies as an additional measure for examining internal states, few studies have used pupillometry in human motor learning studies. Here, we provide the first detailed characterization of pupil diameter changes in a short-term reach adaptation paradigm. We measured pupil changes in 121 human participants while they adapted to abrupt, gradual, or switching force field conditions. Sudden increases in movement error caused by the introduction/reversal of the force field resulted in strong phasic pupil dilation during movement accompanied by a transient increase in tonic premovement baseline pupil diameter in subsequent trials. In contrast, pupil responses were reduced when the force field was gradually introduced, indicating that large, unexpected errors drove the changes in pupil responses. Interestingly, however, error-induced pupil responses gradually became insensitive after experiencing multiple force field reversals. We also found an association between baseline pupil diameter and incidental knowledge of the gradually introduced perturbation. Finally, in all experiments, we found a strong co-occurrence of larger baseline pupil diameter with slower reaction and movement times after each rest break. Collectively, these results suggest that tonic baseline pupil diameter reflects one's belief about environmental uncertainty, whereas phasic pupil dilation during movement reflects surprise about a sensory outcome (i.e., movement error), and both effects are modulated by novelty. Our results provide a new approach for nonverbally assessing participants' internal states during motor learning.NEW & NOTEWORTHY Pupil diameter is known as a noninvasive window into individuals' internal states. Despite the growing use of pupillometry in cognitive learning studies, it receives little attention in motor learning studies. Here, we characterized the pupil responses in a short-term reach adaptation paradigm by measuring pupil diameter of human participants while they adapted to abrupt, gradual, or switching force field conditions. Our results demonstrate how surprise and uncertainty reflected in pupil diameter develop during motor adaptation.
Collapse
Affiliation(s)
- Atsushi Yokoi
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Jeffrey Weiler
- Schulich School of Medicine and Dentistry, Western University, London Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
- The Brain and Mind Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
43
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. Neural Correlates of Dual-Task Processing following Motor Sequence Learning: A Functional Near-Infrared Spectroscopy (fNIRS) Study. J Mot Behav 2022; 55:92-101. [PMID: 36210346 DOI: 10.1080/00222895.2022.2131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current study used functional near-infrared spectroscopy (fNIRS) to examine cerebral oxygenation changes in the prefrontal cortex (PFC) associated with dual-task processing before and after motor sequence learning. Participants performed self-initiated sequential finger movements that were 4 and 12 units in length with a visual letter-counting task. After practice, dual-task sequence-4 performance revealed decreased activity in the right dorsolateral PFC, medial PFC, and orbitofrontal cortex. However, dual-task sequence-12 performance revealed increased activity in the right ventrolateral PFC when compared to the left hemisphere. The findings suggest that dual-task interference was reduced following practice for dual-task sequence-4. The results also suggest that increased right hemisphere activation is needed to maintain performance when the primary sequential task (e.g., dual-task sequence-12) has a high level of difficulty.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Fraser
- Interdisciplinary School of Health Sciences, Faculty of Health Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|
45
|
Goodman SPJ, Immink MA, Marino FE. Hypohydration alters pre-frontal cortex haemodynamics, but does not impair motor learning. Exp Brain Res 2022; 240:2255-2268. [PMID: 35881154 PMCID: PMC9458583 DOI: 10.1007/s00221-022-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
It is unknown how hypohydration influences fine motor performance training and motor learning. Here, 30 participants (aged 19-46 years) were randomly assigned to a hypohydration (HYPO) or control (CON) group (both n = 15). Moderate hypohydration (~ 2.4% loss in body mass) was produced in HYPO via active dehydration before a 46 min fluid restricted rest period was undertaken. The conclusion of rest coincided with when CON attended the facilities. Both groups undertook a discrete sequence production task consisting of 6 training blocks, and returned ~ 300 min later to complete a delayed retention and transfer test while euhydrated. Bilateral pre-frontal cortex (PFC) haemodynamics were assessed using functional near-infrared spectroscopy throughout training and delayed learning assessments. Response time improved across training (P < 0.01) and was similar between the groups (both P = 0.22). Analysis of training PFC haemodynamics revealed a significant group by block interaction for oxygenated (O2Hb; P < 0.01), but not deoxygenated haemoglobin (P = 0.77). In training block 1, bilateral O2Hb was higher in HYPO (P = 0.02), while bilateral O2Hb increased in CON between blocks 2-3 and 5-6 (both P ≤ 0.03). During the delayed retention and transfer test, no group differences or interactions were found in response time, response error, or PFC haemodynamics (all P ≥ 0.27). Moderate hypohydration does increase PFC activation during motor skill learning, however, this appears to be transient and of little consequence to training or delayed retention or transfer performance.
Collapse
Affiliation(s)
- Stephen P J Goodman
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, Australia.
- School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | - Maarten A Immink
- Sport, Health, Physical Activity and Exercise Research Centre and College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Frank E Marino
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
46
|
Maudrich T, Kandt H, Ragert P, Kenville R. Whole-body sensorimotor skill learning in football players: No evidence for motor transfer effects. PLoS One 2022; 17:e0271412. [PMID: 35816510 PMCID: PMC9273065 DOI: 10.1371/journal.pone.0271412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Besides simple movement sequences, precise whole-body motor sequences are fundamental for top athletic performance. It has long been questioned whether athletes have an advantage when learning new whole-body motor sequences. In a previous study, we did not find any superior learning or transfer effects of strength and endurance athletes in a complex whole-body serial reaction time task (CWB-SRTT). In the present study, we aimed to extend this research by increasing the overlap of task requirements between CWB-SRTT and a specific sports discipline. For this purpose, we assessed differences between football players and non-athletes during motor sequence learning using CWB-SRTT. 15 non-athletes (CG) and 16 football players (FG) performed the CWB-SRTT over 2 days separated by one week. Median reaction times and movement times were analyzed as well as differences in sequence-specific CWB-SRTT learning rates and retention. Our findings did not reveal any differences in sequence-specific or non-sequence-specific improvement, nor retention rates between CG and FG. We speculate that this might relate to a predominately cognitive-induced learning effect during CWB-SRTT which negates the assumed motor advantage of the football players.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- * E-mail: (TM); (RK)
| | - Hannah Kandt
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Saxony, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- * E-mail: (TM); (RK)
| |
Collapse
|
47
|
Wilson MA, Greenwell D, Meek AW, Poston B, Riley ZA. Neuroenhancement of a dexterous motor task with Anodal tDCS. Brain Res 2022; 1790:147993. [PMID: 35760153 DOI: 10.1016/j.brainres.2022.147993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Motor skill learning can cause structural and functional changes in the primary motor cortex (M1) leading to cortical plasticity that can be associated with the performance change during the motor skill that is practiced. Similarly, anodal transcranial direct current stimulation (a-tDCS) has been shown to facilitate and enhance plasticity in M1, causing even greater motor skill improvement. By using a fine motor task (O'Connor Tweezer Dexterity Task) in combination with a-tDCS we theorized that a-tDCS could increase the speed of skill acquisition. Forty subjects were recruited and randomized into either a-tDCS or SHAM groups. Subjects completed a single session performing the O'Connor Tweezer Dexterity Task with their non-dominant hand while receiving either a-tDCS stimulation or SHAM stimulation of the hand region of M1. The time it took to place 50- pins was assessed before and after 20 minutes of practice with a-tDCS or SHAM. We found that both groups had similar pre-test performance (P=0.94) and they both had a similar amount of practice pins placed (P=0.69). However, the a-tDCS group had a greater improvement than the SHAM group (p=0.028) for overall learning from pretest to posttest. These results suggest that a-tDCS improved the rate of motor learning and fine motor task performance. These results are in line with previous research and demonstrate that a-tDCS applied to M1 can increase manual precision and steadiness needed for delicate tasks and could have implications in the advancement of surgical training as well as in athletic, military, and other occupational settings.
Collapse
Affiliation(s)
- Michaela A Wilson
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Davin Greenwell
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Anthony W Meek
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zachary A Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
48
|
Post EM, Kraemer WJ, Kackley ML, Caldwell LK, Volek JS, Sanchez BN, Focht BC, Newton RU, Häkkinen K, Maresh CM. The Effects of Resistance Training on Physical Fitness and Neuromotor-Cognitive Functions in Adults With Down Syndrome. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:927629. [PMID: 36189007 PMCID: PMC9397808 DOI: 10.3389/fresc.2022.927629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Adults with Down syndrome are an underserved population at high risk for a host of different pathologies from aging and lack of activity.
Collapse
Affiliation(s)
- Emily M. Post
- Department of Exercise Science, Ohio Dominican University, Columbus, OH, United States
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- Exercise Medicine Research Institute, and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- *Correspondence: William J. Kraemer
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Lydia K. Caldwell
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Barbara N. Sanchez
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Brian C. Focht
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Robert U. Newton
- Exercise Medicine Research Institute, and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Keijo Häkkinen
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Carl M. Maresh
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
49
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Klingner CM, Kattlun F, Krolopp L, Jochmann E, Volk GF, Brodoehl S, Guntinas-Lichius O, Witte OW, Dobel C. Shaping the Sensory-Motor Network by Short-Term Unresolvable Sensory-Motor Mismatch. Front Neurol 2022; 12:793662. [PMID: 35095737 PMCID: PMC8790475 DOI: 10.3389/fneur.2021.793662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022] Open
Abstract
Learning from errors as the main mechanism for motor adaptation has two fundamental prerequisites: a mismatch between the intended and performed movement and the ability to adapt motor actions. Many neurological patients are limited in their ability to transfer an altered motor representation into motor action due to a compromised motor pathway. Studies that have investigated the effects of a sustained and unresolvable mismatch over multiple days found changes in brain processing that seem to optimize the potential for motor learning (increased drive for motor adaptation and a weakening of the current implementation of motor programs). However, it remains unclear whether the observed effects can be induced experimentally and more important after shorter periods. Here, we used task-based and resting-state fMRI to investigate whether the known pattern of cortical adaptations due to a sustained mismatch can be induced experimentally by a short (20 min), but unresolvable, sensory–motor mismatch by impaired facial movements in healthy participants by transient facial tapping. Similar to long-term mismatch, we found plastic changes in a network that includes the striatal, cerebellar and somatosensory brain areas. However, in contrast to long-term mismatch, we did not find the involvement of the cerebral motor cortex. The lack of the involvement of the motor cortex can be interpreted both as an effect of time and also as an effect of the lack of a reduction in the motor error. The similar effects of long-term and short-term mismatch on other parts of the sensory–motor network suggest that the brain-state caused by long-term mismatch can be (at least partly) induced by short-term mismatch. Further studies should investigate whether short-term mismatch interventions can be used as therapeutic strategy to induce an altered brain-state that increase the potential for motor learning.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Fabian Kattlun
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Lena Krolopp
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Elisabeth Jochmann
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Gerd F Volk
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Dobel
- Clinic for Otorhinolaryngology, Jena University Hospital, Jena, Germany
| |
Collapse
|