1
|
Hernández-Frausto M, Galván EJ, López-Rubalcava C. Dopamine D1 receptors activation rescues hippocampal synaptic plasticity and cognitive impairments in the MK-801 neonatal schizophrenia model. Behav Brain Res 2025; 476:115250. [PMID: 39277140 DOI: 10.1016/j.bbr.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
2
|
Solano A, Lerner G, Griffa G, Deleglise A, Caffaro P, Riquelme L, Perez-Chada D, Della-Maggiore V. Sleep Consolidation Potentiates Sensorimotor Adaptation. J Neurosci 2024; 44:e0325242024. [PMID: 39074983 PMCID: PMC11376339 DOI: 10.1523/jneurosci.0325-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
Contrary to its well-established role in declarative learning, the impact of sleep on motor memory consolidation remains a subject of debate. Current literature suggests that while motor skill learning benefits from sleep, consolidation of sensorimotor adaptation (SMA) depends solely on the passage of time. This has led to the proposal that SMA may be an exception to other types of memories. Here, we addressed this ongoing controversy in humans through three comprehensive experiments using the visuomotor adaptation paradigm (N = 290, 150 females). In Experiment 1, we investigated the impact of sleep on memory retention when the temporal gap between training and sleep was not controlled. In line with the previous literature, we found that memory consolidates with the passage of time. In Experiment 2, we used an anterograde interference protocol to determine the time window during which SMA memory is most fragile and, thus, potentially most sensitive to sleep intervention. Our results show that memory is most vulnerable during the initial hour post-training. Building on this insight, in Experiment 3, we investigated the impact of sleep when it coincided with the critical first hour of memory consolidation. This manipulation unveiled a benefit of sleep (30% memory enhancement) alongside an increase in spindle density and spindle-SO coupling during NREM sleep, two well-established neural markers of sleep consolidation. Our findings reconcile seemingly conflicting perspectives on the active role of sleep in motor learning and point to common mechanisms at the basis of memory formation.
Collapse
Affiliation(s)
- Agustin Solano
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Gonzalo Lerner
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Guillermina Griffa
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Alvaro Deleglise
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Pedro Caffaro
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Luis Riquelme
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Daniel Perez-Chada
- Departamento de Medicina Interna, Servicio de Medicina Pulmonar y Sueño, Hospital Universitario Austral, Pilar, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
- Department of Neurology and Neurosurgery, McGill University Montreal, Quebec H3A2B4, Canada
- Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martin, San Martin, Buenos Aires, CP 1650, Argentina
| |
Collapse
|
3
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
4
|
Gupta S, Prithviraj M, Gangwar A, Rath RS. Impact of Sleep Duration, Quality, and Chronotype on Learning and Academic Performance: A Cross-Sectional Study Among First Year Medical Students of a Tertiary Care Institute. Cureus 2023; 15:e50413. [PMID: 38222241 PMCID: PMC10784715 DOI: 10.7759/cureus.50413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction The link between sleep and cognitive processes, such as memory and learning, continues to be one of the most intriguing and perplexing theories. Undergraduate medical students in their first year are particularly vulnerable to sleep disturbances. Academic achievement and learning have been linked to sleep patterns, which include not only the quantity and quality of sleep but also the timing of sleep in relation to the natural sleep onsets, or chronotypes. There have been conflicting reports on the outcomes of sleep and relatively fewer researches focused on the impact of chronotypes on learning and academic achievement among medical students. The current study thus sought to determine the chronotypes of medical students, evaluate the quantity and quality of sleep, and determine the impact of these factors on learning and academic performance. Methods The study was conducted in the Department of Physiology, All India Institute of Medical Sciences (AIIMS) Gorakhpur, India. Sleep health was assessed in 167 first-year medical students using the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), morningness-eveningness questionnaire (MEQ), and sleep log books. Learning and memory assessment was performed using Raven's progressive matrices test. Grade point average (GPA) was used to assess their academic performance. The relationship of sleep scores with GPA and RPM scores were obtained by linear regression analysis. One-way analysis of variance (ANOVA) and unpaired t-test were used to investigate other comparisons among categories of chronotypes and those of mean GPA. A p-value of <0.05 was considered as significant. Results The mean GPA and RPM scores obtained in the groups with PSQI ≥ 5 (2.67 ± 1.1, 49.51 ± 6.24, respectively) and PSQI < 5 (3.15 ± 0.59, 54.73 ± 4.01, respectively) and those in the group with ESS ≥ 10 (2.72 ± 1.17, 50.97 ± 5.92, respectively) and ESS < 10 (3.15 ± 0.6, 54.18 ± 3.91, respectively) varied with statistically significant differences (p < 0.05). Statistically significant R-squared values for the relationship of PSQI and ESS scores with RPM and GPA scores were obtained. No correlation between academic grades and chronotype was found. Poor GPA scores were found to be associated with reduced mean sleep duration for one week before the exams. Conclusion Learning and academic performance are negatively impacted by poor sleep quality and daytime sleep dysfunction. No definite evidence for the association of sleep chronotypes with the learning and memory could be attained. Higher test performance is more closely linked to the average sleep length over a duration of time preceding the exams.
Collapse
Affiliation(s)
- Sangeeta Gupta
- Physiology, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Manoj Prithviraj
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Anil Gangwar
- Physiology, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Rama S Rath
- Community Medicine, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| |
Collapse
|
5
|
Bolsius YG, Heckman PRA, Paraciani C, Wilhelm S, Raven F, Meijer EL, Kas MJH, Ramirez S, Meerlo P, Havekes R. Recovering object-location memories after sleep deprivation-induced amnesia. Curr Biol 2023; 33:298-308.e5. [PMID: 36577400 DOI: 10.1016/j.cub.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.
Collapse
Affiliation(s)
- Youri G Bolsius
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Camilla Paraciani
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sophia Wilhelm
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Frank Raven
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Elroy L Meijer
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Martien J H Kas
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Peter Meerlo
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
7
|
Miyamoto D. Neural circuit plasticity for complex non-declarative sensorimotor memory consolidation during sleep. Neurosci Res 2022; 189:37-43. [PMID: 36584925 DOI: 10.1016/j.neures.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the brain actively consolidates long-term memory during sleep. Motor skill memory is a form of non-declarative procedural memory and can be coordinated with multi-sensory processing such as visual, tactile, and, auditory. Conversely, perception is affected by body movement signal from motor brain regions. Although both cortical and subcortical brain regions are involved in memory consolidation, cerebral cortex activity can be recorded and manipulated noninvasively or minimally invasively in humans and animals. NREM sleep, which is important for non-declarative memory consolidation, is characterized by slow and spindle waves representing thalamo-cortical population activity. In animals, electrophysiological recording, optical imaging, and manipulation approaches have revealed multi-scale cortical dynamics across learning and sleep. In the sleeping cortex, neural activity is affected by prior learning and neural circuits are continually reorganized. Here I outline how sensorimotor coordination is formed through awake learning and subsequent sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
8
|
Spencer RMC, Riggins T. Contributions of memory and brain development to the bioregulation of naps and nap transitions in early childhood. Proc Natl Acad Sci U S A 2022; 119:e2123415119. [PMID: 36279436 PMCID: PMC9636905 DOI: 10.1073/pnas.2123415119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transition from multiple sleep bouts each day to a single overnight sleep bout (i.e., nap transition) is a universal process in human development. Naps are important during infancy and early childhood as they enhance learning through memory consolidation. However, a normal part of development is the transition out of naps. Understanding nap transitions is essential in order to maximize early learning and promote positive long-term cognitive outcomes. Here, we propose a novel hypothesis regarding the cognitive, physiological, and neural changes that accompany nap transitions. Specifically, we posit that maturation of the hippocampal-dependent memory network results in more efficient memory storage, which reduces the buildup of homeostatic sleep pressure across the cortex (as reflected by slow-wave activity), and eventually, contributes to nap transitions. This hypothesis synthesizes evidence of bioregulatory mechanisms underlying nap transitions and sheds new light on an important window of change in development. This framework can be used to evaluate multiple untested predictions from the field of sleep science and ultimately, yield science-based guidelines and policies regarding napping in childcare and early education settings.
Collapse
Affiliation(s)
- Rebecca M. C. Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, MA 01003
- Neuroscience & Behavior Program, University of Massachusetts, Amherst, MA 01003
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| | - Tracy Riggins
- Department of Psychology, University of Maryland, College Park, MD 20742
| |
Collapse
|
9
|
Two distinct ways to form long-term object recognition memory during sleep and wakefulness. Proc Natl Acad Sci U S A 2022; 119:e2203165119. [PMID: 35969775 PMCID: PMC9407643 DOI: 10.1073/pnas.2203165119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.
Collapse
|
10
|
Fitzroy AB, Kainec KA, Seo J, Spencer RMC. Encoding and consolidation of motor sequence learning in young and older adults. Neurobiol Learn Mem 2021; 185:107508. [PMID: 34450244 DOI: 10.1016/j.nlm.2021.107508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Sleep benefits motor memory consolidation in young adults, but this benefit is reduced in older adults. Here we sought to understand whether differences in the neural bases of encoding between young and older adults contribute to aging-related differences in sleep-dependent consolidation of an explicit variant of the serial reaction time task (SRTT). Seventeen young and 18 older adults completed two sessions (nap, wake) one week apart. In the MRI, participants learned the SRTT. Following an afternoon interval either awake or with a nap (recorded with high-density polysomnography), performance on the SRTT was reassessed in the MRI. Imaging and behavioral results from SRTT performance showed clear sleep-dependent consolidation of motor sequence learning in older adults after a daytime nap, compared to an equal interval awake. Young adults, however, showed brain activity and behavior during encoding consistent with high SRTT performance prior to the sleep interval, and did not show further sleep-dependent performance improvements. Young adults did show reduced cortical activity following sleep, suggesting potential systems-level consolidation related to automatization. Sleep physiology data showed that sigma activity topography was affected by hippocampal and cortical activation prior to the nap in both age groups, and suggested a role of theta activity in sleep-dependent automatization in young adults. These results suggest that previously observed aging-related sleep-dependent consolidation deficits may be driven by aging-related deficiencies in fast learning processes. Here we demonstrate that when sufficient encoding strength is reached with additional training, older adults demonstrate intact sleep-dependent consolidation of motor sequence learning.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Kyle A Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Rebecca M C Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, United States.
| |
Collapse
|
11
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
12
|
Núñez-Ochoa MA, Chiprés-Tinajero GA, González-Domínguez NP, Medina-Ceja L. Causal relationship of CA3 back-projection to the dentate gyrus and its role in CA1 fast ripple generation. BMC Neurosci 2021; 22:37. [PMID: 34001031 PMCID: PMC8130286 DOI: 10.1186/s12868-021-00641-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pathophysiological evidence from temporal lobe epilepsy models highlights the hippocampus as the most affected structure due to its high degree of neuroplasticity and control of the dynamics of limbic structures, which are necessary to encode information, conferring to it an intrinsic epileptogenicity. A loss in this control results in observable oscillatory perturbations called fast ripples, in epileptic rats those events are found in CA1, CA3, and the dentate gyrus (DG), which are the principal regions of the trisynaptic circuit of the hippocampus. The present work used Granger causality to address which relationships among these three regions of the trisynaptic circuit are needed to cause fast ripples in CA1 in an in vivo model. For these purposes, male Wistar rats (210-300 g) were injected with a single dose of pilocarpine hydrochloride (2.4 mg/2 µl) into the right lateral ventricle and video-monitored 24 h/day to detect spontaneous and recurrent seizures. Once detected, rats were implanted with microelectrodes in these regions (fixed-recording tungsten wire electrodes, 60-μm outer diameter) ipsilateral to the pilocarpine injection. A total of 336 fast ripples were recorded and probabilistically characterized, from those fast ripples we made a subset of all the fast ripple events associated with sharp-waves in CA1 region (n = 40) to analyze them with Granger Causality. RESULTS Our results support existing evidence in vitro in which fast ripple events in CA1 are initiated by CA3 multiunit activity and describe a general synchronization in the theta band across the three regions analyzed DG, CA3, and CA1, just before the fast ripple event in CA1 have begun. CONCLUSION This in vivo study highlights the causal participation of the CA3 back-projection to the DG, a connection commonly overlooked in the trisynaptic circuit, as a facilitator of a closed-loop among these regions that prolongs the excitatory activity of CA3. We speculate that the loss of inhibitory drive of DG and the mechanisms of ripple-related memory consolidation in which also the CA3 back-projection to DG has a fundamental role might be underlying processes of the fast ripples generation in CA1.
Collapse
Affiliation(s)
- Miguel A Núñez-Ochoa
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Gustavo A Chiprés-Tinajero
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Nadia P González-Domínguez
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
- Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
13
|
Jing W, Xia Y, Li M, Cui Y, Chen M, Xue M, Guo D, Biswal BB, Yao D. State-independent and state-dependent patterns in the rat default mode network. Neuroimage 2021; 237:118148. [PMID: 33984491 DOI: 10.1016/j.neuroimage.2021.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
Resting-state studies have typically assumed constant functional connectivity (FC) between brain regions, and these parameters of interest provide meaningful descriptions of the functional organization of the brain. A number of studies have recently provided evidence pointing to dynamic FC fluctuations in the resting brain, especially in higher-order regions such as the default mode network (DMN). The neural activities underlying dynamic FC remain poorly understood. Here, we recorded electrophysiological signals from DMN regions in freely behaving rats. The dynamic FCs between signals within the DMN were estimated by the phase locking value (PLV) method with sliding time windows across vigilance states [quiet wakefulness (QW) and slow-wave and rapid eye movement sleep (SWS and REMS)]. Factor analysis was then performed to reveal the hidden patterns within the DMN. We identified distinct spatial FC patterns according to the similarities between their temporal dynamics. Interestingly, some of these patterns were vigilance state-dependent, while others were independent across states. The temporal contributions of these patterns fluctuated over time, and their interactive relationships were different across vigilance states. These spatial patterns with dynamic temporal contributions and combinations may offer a flexible framework for efficiently integrating information to support cognition and behavior. These findings provide novel insights into the dynamic functional organization of the rat DMN.
Collapse
Affiliation(s)
- Wei Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Mingming Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miaomiao Xue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103, United States.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
de França Malheiros MAS, Castelo-Branco R, de Medeiros PHS, de Lima Marinho PE, da Silva Rodrigues Meurer Y, Barbosa FF. Conspecific Presence Improves Episodic-Like Memory in Rats. Front Behav Neurosci 2021; 14:572150. [PMID: 33519391 PMCID: PMC7844209 DOI: 10.3389/fnbeh.2020.572150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A number of studies have provided evidence that animals, including rats, remember past episodes. However, few experiments have addressed episodic-like memory from a social perspective. In the present study, we evaluated Wistar rats in the WWWhen/ELM task as single setups and in dyads, applying a long retention interval. We also investigated behaviors that could subserve the emergence of this type of memory. We found that only rats tested in the social setting were able to recollect an integrated episodic-like memory that lasted 24 h. Additionally, rats in dyads presented higher levels of exploration during the task. When exposed to the testing environment, the dyads exhibited affiliative behavior toward each other and presented fewer anxiety-like responses. Our findings indicate that the presence of a conspecific could act as a facilitating factor in memory evaluations based on spontaneous exploration of objects and provide empirical support for applying more naturalistic settings in investigations of episodic-like memory in rats.
Collapse
Affiliation(s)
- Maria Augustta Sobral de França Malheiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Rochele Castelo-Branco
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Paulo Henrique Santos de Medeiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Pedro Emmílio de Lima Marinho
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Flávio Freitas Barbosa
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
15
|
Sharma R, Sahota P, Thakkar MM. Short-term sleep deprivation immediately after contextual conditioning inhibits BDNF signaling and disrupts memory consolidation in predator odor trauma mice model of PTSD. Brain Res 2020; 1750:147155. [PMID: 33069732 DOI: 10.1016/j.brainres.2020.147155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric illness affecting > 7 million people every year in the US. Recently, we have shown that the mouse model of predator odor trauma (POT) displayed contextual conditioning and core features of PTSD including sleep disturbances (hyperarousal) and retrieval of traumatic memories following exposure to objective reminders (re-experiencing). PTSD is a disorder of memory function. Since memory consolidation requires the expression of BDNF along with an activation of MAPK/pERK signaling pathway in limbic brain structures (hippocampus and amygdala) and sleep favors memory consolidation, we hypothesized that short-term sleep deprivation (SD, 3 h), immediately after contextual conditioning will attenuate molecular correlates of memory consolidation, sleep disturbances, and memory consolidation. We performed two experiments in adult male C57BL/6J mice to test our hypothesis. Experiment 1 determined the effects of SD on contextual conditioning and changes in sleep wakefulness. Experiment 2 determined the effects of SD on contextual conditioning-induced changes in the expression of BDNF and pERK in hippocampus and amygdala. SD immediately after contextual conditioning (POT + SD group) significantly attenuated sleep disturbances, memory retrieval, and expression of pERK and BDNF in the hippocampus and amygdala as compared to POT-SD group (no SD after contextual conditioning). No significant differences were observed between POT + SD, NOC-SD (no contextual conditioning + no SD), and NOC + SD (no contextual conditioning + SD) groups. Memory consolidation requires sleep and the expression of pERK and BDNF in hippocampus and amygdala immediately after contextual conditioning in POT model of PTSD in mice.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, United States
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, United States
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, United States.
| |
Collapse
|
16
|
Sawangjit A, Oyanedel CN, Niethard N, Born J, Inostroza M. Deepened sleep makes hippocampal spatial memory more persistent. Neurobiol Learn Mem 2020; 173:107245. [DOI: 10.1016/j.nlm.2020.107245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/28/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
17
|
Coutanche MN, Koch GE, Paulus JP. Influences on memory for naturalistic visual episodes: sleep, familiarity, and traits differentially affect forms of recall. Learn Mem 2020; 27:284-291. [PMID: 32540918 PMCID: PMC7301751 DOI: 10.1101/lm.051300.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
The memories we form are composed of information that we extract from multifaceted episodes. Static stimuli and paired associations have proven invaluable stimuli for understanding memory, but real-life events feature spatial and temporal dimensions that help form new retrieval paths. We ask how the ability to recall semantic, temporal, and spatial aspects (the "what, when, and where") of naturalistic episodes is affected by three influences-prior familiarity, postencoding sleep, and individual differences-by testing their influence on three forms of recall: cued recall, free recall, and the extent that recalled details are recombined for a novel prompt. Naturalistic videos of events with rare animals were presented to 115 participants, randomly assigned to receive a 12- or 24-h delay with sleep and/or wakefulness. Participants' immediate and delayed recall was tested and coded by its spatial, temporal, and semantic content. We find that prior familiarity with items featured in events improved cued recall, but not free recall, particularly for temporal and spatial details. In contrast, postencoding sleep, relative to wakefulness, improved free recall, but not cued recall, of all forms of content. Finally, individuals with higher trait scores in the Survey of Autobiographical Memory spontaneously incorporated more spatial details during free recall, and more event details (at a trend level) in a novel recombination recall task. These findings show that prior familiarity, postencoding sleep, and memory traits can each enhance a different form of recall. More broadly, this work highlights that recall is heterogeneous in response to different influences on memory.
Collapse
Affiliation(s)
- Marc N Coutanche
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Griffin E Koch
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - John P Paulus
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
18
|
Bertrand SJ, Zhang Z, Patel R, O'Ferrell C, Punjabi NM, Kudchadkar SR, Kannan S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp Neurol 2020; 327:113212. [PMID: 31987835 DOI: 10.1016/j.expneurol.2020.113212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022]
Abstract
Sleep fragmentation is an increase in sleep-wake transitions without an overall decrease in total sleep time. Sleep fragmentation is well documented during acute and chronic hospitalization and can result in delirium and memory problems in children. Sleep fragmentation is also often noted in neurodevelopmental disorders. However, it is unclear how sleep fragmentation independent of disease affects brain development and function. We hypothesized that acute sleep fragmentation during the neonatal period in otherwise healthy animals would result in neuroinflammation and would be associated with abnormalities in cognitive development. The orbital shaker method was used to fragment sleep for 72 h in postnatal day 3 New Zealand white rabbit kits (fragmentation group). To control for maternal separation, the sham group was separated from the dam and maintained in the same conditions without undergoing sleep fragmentation. A naïve control group remained with the dam. Kits underwent behavioral testing with novel object recognition and spontaneous alternation T-maze tests at 2-3 weeks post-fragmentation and were sacrificed 3-50 days after fragmentation. Sleep fragmentation resulted in acute and chronic changes in microglial morphology in the hippocampus and cortex, and regional differences in mRNA expression of pro- and anti-inflammatory cytokines at 3, 7 and 50 days post-fragmentation. Impaired novel object recognition and a longer latency in T-maze task completion were noted in the fragmented kits. This was in spite of normalization of sleep architecture noted at 2 months of age in these kits. The results indicate that transient neonatal sleep fragmentation results in short-term and long-term immune alterations in the brain, along with diminished performance in cognitive tasks long-term.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Ruchit Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Caroline O'Ferrell
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Naresh M Punjabi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Sapna R Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, United States of America; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, United States of America.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
19
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
20
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
21
|
Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019; 22:1598-1610. [PMID: 31451802 DOI: 10.1038/s41593-019-0467-3] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Puchkova AN. [Learning during sleep: pitfalls, advances and promises]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:8-14. [PMID: 31317909 DOI: 10.17116/jnevro20191190428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sleep plays a crucial role in memory consolidation. Research dedicated to learning during sleep is based on a theory that new information can be also acquired in a sleep state. This review covers the studies that aim to form new memory traces during sleep that persist into wakefulness or try to uncover the mechanisms of such learning. The possibility of associative, perceptive and other forms of learning, primarily implicit learning, is shown.
Collapse
Affiliation(s)
- A N Puchkova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow ,Russia
| |
Collapse
|
23
|
Hayashi T, Oguro M, Sato N. Involvement of the retrosplenial cortex in the processing of the temporal aspect of episodic-like memory in rats. Neurosci Res 2019; 154:52-55. [PMID: 31132374 DOI: 10.1016/j.neures.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
To investigate the effects of retrosplenial cortex (RSC) lesions on episodic-like memory, we used four types of object recognition tasks. What task examined memory of object identities. Where task examined memory of object locations. When task examined memory of the temporal order of presented objects. Episodic task examined the integrated memory of the identity, location, and temporal order of presented objects. Rats with the RSC lesions preferred novel objects in the What and Where tasks, whereas they showed no such preference in the When and Episodic tasks, suggesting that rats with the RSC lesions have deficits in memory for temporal order and that this might cause deficits in episodic-like memory.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Masashi Oguro
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan.
| |
Collapse
|
24
|
Sleep deprivation impairs cognitive performance in zebrafish: A matter of fact? Behav Processes 2018; 157:656-663. [DOI: 10.1016/j.beproc.2018.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
|
25
|
The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 2018; 564:109-113. [PMID: 30429612 DOI: 10.1038/s41586-018-0716-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
There is a long-standing division in memory research between hippocampus-dependent memory and non-hippocampus-dependent memory, as only the latter can be acquired and retrieved in the absence of normal hippocampal function1,2. Consolidation of hippocampus-dependent memory, in particular, is strongly supported by sleep3-5. Here we show that the formation of long-term representations in a rat model of non-hippocampus-dependent memory depends not only on sleep but also on activation of a hippocampus-dependent mechanism during sleep. Rats encoded non-hippocampus-dependent (novel-object recognition6-8) and hippocampus-dependent (object-place recognition) memories before a two-hour period of sleep or wakefulness. Memory was tested either immediately thereafter or remotely (after one or three weeks). Whereas object-place recognition memory was stronger for rats that had slept after encoding (rather than being awake) at both immediate and remote testing, novel-object recognition memory profited from sleep only three weeks after encoding, at which point it was preserved in rats that had slept after encoding but not in those that had been awake. Notably, inactivation of the hippocampus during post-encoding sleep by intrahippocampal injection of muscimol abolished the sleep-induced enhancement of remote novel-object recognition memory. By contrast, muscimol injection before remote retrieval or memory encoding had no effect on test performance, confirming that the encoding and retrieval of novel-object recognition memory are hippocampus-independent. Remote novel-object recognition memory was associated with spindle activity during post-encoding slow-wave sleep, consistent with the view that neuronal memory replay during slow-wave sleep contributes to long-term memory formation. Our results indicate that the hippocampus has an important role in long-term consolidation during sleep even for memories that have previously been considered hippocampus-independent.
Collapse
|
26
|
Chronic Consumption of Fructose Induces Behavioral Alterations by Increasing Orexin and Dopamine Levels in the Rat Brain. Nutrients 2018; 10:nu10111722. [PMID: 30423806 PMCID: PMC6265759 DOI: 10.3390/nu10111722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
It has been widely described that chronic intake of fructose causes metabolic alterations which can be associated with brain function impairment. In this study, we evaluated the effects of fructose intake on the sleep–wake cycle, locomotion, and neurochemical parameters in Wistar rats. The experimental group was fed with 10% fructose in drinking water for five weeks. After treatment, metabolic indicators were quantified in blood. Electroencephalographic recordings were used to evaluate the sleep architecture and the spectral power of frequency bands. Likewise, the locomotor activity and the concentrations of orexin A and monoamines were estimated. Our results show that fructose diet significantly increased the blood levels of glucose, cholesterol, and triglycerides. Fructose modified the sleep–wake cycle of rats, increasing the waking duration and conversely decreasing the non-rapid eye movement sleep. Furthermore, these effects were accompanied by increases of the spectral power at different frequency bands. Chronic consumption of fructose caused a slight increase in the locomotor activity as well as an increase of orexin A and dopamine levels in the hypothalamus and brainstem. Specifically, immunoreactivity for orexin A was increased in the ventral tegmental area after the intake of fructose. Our study suggests that fructose induces metabolic changes and stimulates the activity of orexinergic and dopaminergic neurons, which may be responsible for alterations of the sleep–wake cycle.
Collapse
|
27
|
Rosier M, Le Barillier L, Meunier D, El Yacoubi M, Malleret G, Salin PA. Post-learning paradoxical sleep deprivation impairs reorganization of limbic and cortical networks associated with consolidation of remote contextual fear memory in mice. Sleep 2018; 41:5115189. [DOI: 10.1093/sleep/zsy188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marius Rosier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Léa Le Barillier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - David Meunier
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
- Dycog, Lyon Neuroscience Research Center, CH Le Vinatier, Bron, France
- IMPACT, Lyon Neuroscience Research Center, Bron Cedex, France
- NEUROPAIN, Lyon Neuroscience Research Center, Hôpital Neurologique, Bron Cedex, France
- CMO, Lyon Neuroscience Research Center, Lyon Cedex, France
| | - Malika El Yacoubi
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| | - Paul-Antoine Salin
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité, France
| |
Collapse
|
28
|
Maboudi K, Ackermann E, de Jong LW, Pfeiffer BE, Foster D, Diba K, Kemere C. Uncovering temporal structure in hippocampal output patterns. eLife 2018; 7:34467. [PMID: 29869611 PMCID: PMC6013258 DOI: 10.7554/elife.34467] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/14/2018] [Indexed: 12/02/2022] Open
Abstract
Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals’ positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory.
Collapse
Affiliation(s)
- Kourosh Maboudi
- Departmentof Anesthesiology, University of Michigan, Ann Arbor, United States.,Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Etienne Ackermann
- Department of Electrical and Computer Engineering, Rice University, Houston, United States
| | - Laurel Watkins de Jong
- Departmentof Anesthesiology, University of Michigan, Ann Arbor, United States.,Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Brad E Pfeiffer
- Department of Neuroscience, University of Texas Southwestern, Dallas, United States
| | - David Foster
- Department of Psychology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Kamran Diba
- Departmentof Anesthesiology, University of Michigan, Ann Arbor, United States.,Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, United States
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, United States
| |
Collapse
|
29
|
Oyanedel CN, Sawangjit A, Born J, Inostroza M. Sleep-dependent consolidation patterns reveal insights into episodic memory structure. Neurobiol Learn Mem 2018; 160:67-72. [PMID: 29783060 DOI: 10.1016/j.nlm.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
Episodic memory formation is considered a genuinely hippocampal function. Its study in rodents has relied on two different task paradigms, i.e. the so called "what-where-when" (WW-When) task and "what-where-which" (WW-Which) task. The WW-When task aims to assess the memory for an episode as an event bound into its context defined by spatial and distinct temporal information, the WW-Which task lacks the temporal component and introduces, instead, an "occasion setter" marking the broader contextual configuration in which the event occurred. Whether both tasks measure episodic memory in an equivalent manner in terms of recollection has been controversially discussed. Here, we compared in two groups of rats the consolidating effects of sleep on episodic-like memory between both task paradigms. Sampling and test phases were separated by a 90-min morning retention interval which did or did not allow for spontaneous sleep. Results show that sleep is crucial for the consolidation of the memory on both tasks. However, consolidating effects of sleep were stronger for the WW-Which than WW-When task. Comparing performance during the post-sleep test phase revealed that WW-When memory only gradually emerged during the 3-min test period whereas WW-Which memory was readily expressed already from the first minute onward. Separate analysis of the temporal and spatial components of WW-When performance showed that the delayed episodic memory on this task originated from the temporal component which also did not emerge until the third minute of the test phase, whereas the spatial component already showed up in the first minute. In conclusion, sleep differentially affects consolidation on the two episodic-like memory tasks, with the delayed expression of WW-When memory after sleep resulting from preferential coverage of temporal aspects by this task.
Collapse
Affiliation(s)
- Carlos N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
30
|
Abstract
AbstractHumans are highly social animals who critically need to remember information from social episodes in order to successfully navigate future social interactions. We propose that such episodic memories about social encounters are processed during sleep, following the learning experience, with sleep abstracting and consolidating social gist knowledge (e.g., beliefs, first impressions, or stereotypes) about others that supports relationships and interpersonal communication.
Collapse
|
31
|
Blaskovich B, Szőllősi Á, Gombos F, Racsmány M, Simor P. The Benefit of Directed Forgetting Persists After a Daytime Nap: The Role of Spindles and Rapid Eye Movement Sleep in the Consolidation of Relevant Memories. Sleep 2017; 40:2732008. [PMID: 28364418 DOI: 10.1093/sleep/zsw076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives We aimed to investigate the effect of directed forgetting instruction on memory retention after a 2-hour delay involving a daytime nap or an equivalent amount of time spent awake. We examined the associations between sleep-specific oscillations and the retention of relevant and irrelevant study materials. Methods We applied a list-method directed forgetting paradigm manipulating the perceived relevance of previously encoded lists of words. Participants were randomly assigned to either a nap or an awake group, and to a remember or a forget subgroup. The remember and the forget subgroups were both instructed to study two consecutive lists of words, although, the forget subgroup was manipulated to forget the first list and memorize only the second one. Participants were 112 healthy individuals (44 men; Mage = 21.4 years, SD = 2.4). Results A significant directed forgetting effect emerged after a 2-hour delay both in the awake and sleep conditions; however, the effect was more pronounced within the sleep group. The benefit of directed forgetting, that is, relatively enhanced recall of relevant words in the forget group, was evidenced only in those participants that reached rapid eye movement (REM) phase. Non-rapid eye movement (NREM) sigma power was correlated with memory performance for the relevant (second) list, and sleep spindle amplitude was associated with the retention of both lists. These associations, however, were detected only within the forget subgroup. REM duration correlated with recall performance for the relevant (second) list within the forget subgroup, and with recall performance for the first list within the remember subgroup. Conclusions A directed forgetting effect persists after a 2-hour delay spent awake or asleep. Spindle-related activity and subsequent REM sleep might selectively facilitate the processing of memories that are considered to be relevant for the future.
Collapse
Affiliation(s)
- Borbála Blaskovich
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Szőllősi
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Mihály Racsmány
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Frontostriatal System Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Simor
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary
| |
Collapse
|
32
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
33
|
Wang JY, Weber FD, Zinke K, Noack H, Born J. Effects of Sleep on Word Pair Memory in Children - Separating Item and Source Memory Aspects. Front Psychol 2017; 8:1533. [PMID: 28943858 PMCID: PMC5594220 DOI: 10.3389/fpsyg.2017.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Word paired-associate learning is a well-established task to demonstrate sleep-dependent memory consolidation in adults as well as children. Sleep has also been proposed to benefit episodic features of memory, i.e., a memory for an event (item) bound into the spatiotemporal context it has been experienced in (source). We aimed to explore if sleep enhances word pair memory in children by strengthening the episodic features of the memory, in particular. Sixty-one children (8-12 years) studied two lists of word pairs with 1 h in between. Retrieval testing comprised cued recall of the target word of each word pair (item memory) and recalling in which list the word pair had appeared in (source memory). Retrieval was tested either after 1 h (short retention interval) or after 11 h, with this long retention interval covering either nocturnal sleep or daytime wakefulness. Compared with the wake interval, sleep enhanced separate recall of both word pairs and the lists per se, while recall of the combination of the word pair and the list it had appeared in remained unaffected by sleep. An additional comparison with adult controls (n = 37) suggested that item-source bound memory (combined recall of word pair and list) is generally diminished in children. Our results argue against the view that the sleep-induced enhancement in paired-associate learning in children is a consequence of sleep specifically enhancing the episodic features of the memory representation. On the contrary, sleep in children might strengthen item and source representations in isolation, while leaving the episodic memory representations (item-source binding) unaffected.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Graduate School of Neural and Behavioral Sciences, University of TübingenTübingen, Germany
| | - Frederik D. Weber
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Hannes Noack
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- Department of Psychiatry and Psychotherapy, University of TübingenTübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of TübingenTübingen, Germany
| |
Collapse
|
34
|
Drieskens DC, Neves LR, Pugliane KC, de Souza IBMB, Lima ÁDC, Salvadori MGDSS, Ribeiro AM, Silva RH, Barbosa FF. CA1 inactivation impairs episodic-like memory in rats. Neurobiol Learn Mem 2017; 145:28-33. [PMID: 28843666 DOI: 10.1016/j.nlm.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Abstract
Episodic memory was initially believed to be unique to humans. However, studies demonstrate that nonhuman species discriminate items based on the triad what, where and when. Here we addressed the role of the dorsal hippocampal subfield CA1 in an integrative what-where-when task in Wistar rats. We performed bilateral inactivation of dorsal CA1 with the GABAA agonist muscimol previously to the task. As expected, sham-operated animals recollected an integrative memory for objects (what), their places (where) and temporal order (when). However, the inactivation of CA1 impaired the performance of the three components of episodic-like memory. In addition, total time of objects exploration and distance traveled were not different between groups, indicating that rats had similar levels of motivation, thus, alterations in exploration does not account for impaired locomotor performance. Altogether, our data provides evidence that CA1 plays an important role in episodic-like memory.
Collapse
Affiliation(s)
- Davi Carvalho Drieskens
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Lívia Rodrigues Neves
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Karen Cristina Pugliane
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Ingrid Brasilino Montenegro Bento de Souza
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Behavioral Pharmacology Laboratory, Department of Biophysics and Pharmacology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Álvaro da Costa Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mirian Graciela da Silva Stiebbe Salvadori
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Laboratory of Psychopharmacology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Regina Helena Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Flávio Freitas Barbosa
- Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil; Laboratory of Psychopharmacology, Universidade Federal da Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
35
|
Pinheiro-da-Silva J, Tran S, Silva PF, Luchiari AC. Good night, sleep tight: The effects of sleep deprivation on spatial associative learning in zebrafish. Pharmacol Biochem Behav 2017; 159:36-47. [PMID: 28652199 DOI: 10.1016/j.pbb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022]
Abstract
Learning and memory are vital to an animal's survival, and numerous factors can disrupt cognitive performance. Sleep is an evolutionarily conserved physiological process known to be important for the consolidation of learning and memory. The zebrafish has emerged as a powerful model organism sharing organizational and functional characteristics with other vertebrates, providing great translational relevance. In our study, we used a simple spatial associative learning task to quantify the effects of sleep deprivation (partial vs. total) on learning performance in zebrafish, using an animated conspecific shoal image as a reward. Control animals maintained on a regular light:dark cycle were able to acquire the association between the unconditioned and conditioned stimulus, reinforcing zebrafish as a valid and reliable model for appetitive conditioning tasks. Notably, sleep deprivation did not alter the perception of and response to the conspecific image. In contrast, although partial sleep deprivation did not impair cognitive performance, total sleep deprivation significantly impaired performance on the associative learning task. Our results suggest that sleep is important for learning and memory, and that the effects of sleep deprivation on these processes can be investigated in zebrafish.
Collapse
Affiliation(s)
| | - Steven Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priscila Fernandes Silva
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
36
|
Borquez M, Contreras MP, Vivaldi E, Born J, Inostroza M. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory. Front Behav Neurosci 2017; 11:74. [PMID: 28491027 PMCID: PMC5405121 DOI: 10.3389/fnbeh.2017.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/10/2017] [Indexed: 11/19/2022] Open
Abstract
Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.
Collapse
Affiliation(s)
| | - María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Ennio Vivaldi
- Instituto de Ciencias Biomédicas, Universidad de ChileSantiago, Chile
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany.,Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Departamento de Psicología, Universidad de ChileSantiago, Chile.,Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| |
Collapse
|
37
|
Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. J Neurosci 2017; 37:3555-3567. [PMID: 28264977 PMCID: PMC5373134 DOI: 10.1523/jneurosci.3213-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod).
Collapse
|
38
|
Sawangjit A, Kelemen E, Born J, Inostroza M. Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context. Front Behav Neurosci 2017; 11:28. [PMID: 28270755 PMCID: PMC5319304 DOI: 10.3389/fnbeh.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered.
Collapse
Affiliation(s)
- Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Eduard Kelemen
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; National Institute of Mental HealthKlecany, Czechia
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM)Tübingen, Germany; Centre for Integrative Neuroscience, University of TübingenTübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany; Departamento de Psicología, Universidad de ChileSantiago, Chile
| |
Collapse
|
39
|
Sandoval M, Leclerc JA, Gómez RL. Words to Sleep On: Naps Facilitate Verb Generalization in Habitually and Nonhabitually Napping Preschoolers. Child Dev 2017; 88:1615-1628. [PMID: 28128457 DOI: 10.1111/cdev.12723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A nap soon after encoding leads to better learning in infancy. However, whether napping plays the same role in preschoolers' learning is unclear. In Experiment 1 (N = 39), 3-year-old habitual and nonhabitual nappers learned novel verbs before a nap or a period of wakefulness and received a generalization test examining word extension to novel actors after 24 hr. Only habitual and nonhabitual nappers who napped after learning generalized 24 hr later. In Experiment 2 (N = 40), children learned the same verbs but were tested within 2-3 min of training. Here, habitual and nonhabitual nappers retained the mappings but did not generalize. The results suggest that naps consolidate weak learning that habitual and nonhabitual nappers would otherwise forget over periods of wakefulness.
Collapse
|
40
|
Himmer L, Müller E, Gais S, Schönauer M. Sleep-mediated memory consolidation depends on the level of integration at encoding. Neurobiol Learn Mem 2017; 137:101-106. [DOI: 10.1016/j.nlm.2016.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/26/2022]
|
41
|
The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical. PLoS Biol 2017; 15:e2000531. [PMID: 28085883 PMCID: PMC5234779 DOI: 10.1371/journal.pbio.2000531] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/14/2016] [Indexed: 01/06/2023] Open
Abstract
While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations-context preexposure or interference during memory retrieval-differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure.
Collapse
|
42
|
Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep. Sleep 2016; 39:2173-2188. [PMID: 27748246 DOI: 10.5665/sleep.6322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. METHODS We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. RESULTS We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. CONCLUSIONS These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.
Collapse
Affiliation(s)
- Nicolas Fraize
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Julien Carponcy
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Mickaël Antoine Joseph
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Jean-Christophe Comte
- Biphoton Internal Facility, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- Pathophysiology of the Neural Networks of the Sleep/Wake Cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France.,Pathophysiology of the Neural Networks of the Sleep/Wake Cycle, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Paul-Antoine Salin
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France.,Biphoton Internal Facility, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| | - Régis Parmentier
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, University Lyon 1, Lyon, France
| |
Collapse
|
43
|
Craig M, Butterworth K, Nilsson J, Hamilton CJ, Gallagher P, Smulders TV. How does intentionality of encoding affect memory for episodic information? ACTA ACUST UNITED AC 2016; 23:648-659. [PMID: 27918286 PMCID: PMC5066600 DOI: 10.1101/lm.041491.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/15/2016] [Indexed: 12/04/2022]
Abstract
Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a What-Where-When (WWW) episodic memory task involving the hiding and delayed recall of a number of items (what) in different locations (where) in temporally distinct sessions (when) and (2) unexpected tests probing memory for wider contextual information from the WWW task. Critically, some participants were informed that memory for WWW information would be subsequently probed (intentional group), while this came as a surprise for others (incidental group). The probing of contextual information came as a surprise for all participants. Participants also performed several measures of episodic and nonepisodic cognition from which common episodic and nonepisodic factors were extracted. Memory for target (WWW) and contextual information was superior in the intentional group compared with the incidental group. Memory for target and contextual information was unrelated to factors of nonepisodic cognition, irrespective of encoding intentionality. In addition, memory for target information was unrelated to factors of episodic cognition. However, memory for wider contextual information was related to some factors of episodic cognition, and these relationships differed between the intentional and incidental groups. Our results lead us to propose the hypothesis that intentional encoding of episodic information increases the coherence of the representation of the context in which the episode took place. This hypothesis remains to be tested.
Collapse
Affiliation(s)
- Michael Craig
- Department of Psychology, School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.,Institute of Neuroscience, Newcastle University, The Henry Wellcome Building for Neuroecology, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Karla Butterworth
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building for Neuroecology, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jonna Nilsson
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building for Neuroecology, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom.,Aging Research Center, Karolinska Institutet, Stockholm, SE-113 30, Sweden
| | - Colin J Hamilton
- Department of Psychology, Northumbria University, Northumberland Building, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Peter Gallagher
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building for Neuroecology, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Tom V Smulders
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building for Neuroecology, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
44
|
Miyamoto D, Hirai D, Fung CCA, Inutsuka A, Odagawa M, Suzuki T, Boehringer R, Adaikkan C, Matsubara C, Matsuki N, Fukai T, McHugh TJ, Yamanaka A, Murayama M. Top-down cortical input during NREM sleep consolidates perceptual memory. Science 2016; 352:1315-8. [DOI: 10.1126/science.aaf0902] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022]
|
45
|
Gómez RL, Edgin JO. The extended trajectory of hippocampal development: Implications for early memory development and disorder. Dev Cogn Neurosci 2016; 18:57-69. [PMID: 26437910 PMCID: PMC4808499 DOI: 10.1016/j.dcn.2015.08.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 11/29/2022] Open
Abstract
Hippocampus has an extended developmental trajectory, with refinements occurring in the trisynaptic circuit until adolescence. While structural change should suggest a protracted course in behavior, some studies find evidence of precocious hippocampal development in the first postnatal year and continuity in memory processes beyond. However, a number of memory functions, including binding and relational inference, can be cortically supported. Evidence from the animal literature suggests that tasks often associated with hippocampus (visual paired comparison, binding of a visuomotor response) can be mediated by structures external to hippocampus. Thus, a complete examination of memory development will have to rule out cortex as a source of early memory competency. We propose that early memory must show properties associated with full function of the trisynaptic circuit to reflect "adult-like" memory function, mainly (1) rapid encoding of contextual details of overlapping patterns, and (2) retention of these details over sleep-dependent delays. A wealth of evidence suggests that these functions are not apparent until 18-24 months, with behavioral discontinuities reflecting shifts in the neural structures subserving memory beginning approximately at this point in development. We discuss the implications of these observations for theories of memory and for identifying and measuring memory function in populations with typical and atypical hippocampal function.
Collapse
|
46
|
|
47
|
Lenck-Santini PP, Scott RC. Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a022772. [PMID: 26337111 DOI: 10.1101/cshperspect.a022772] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epilepsy is often associated with cognitive and behavioral impairments that can have profound impact on the quality of life of patients. Although the mechanisms of cognitive impairment are not completely understood, we make an attempt to describe, from a systems perspective, how information processing is affected in epilepsy disorders. The aim of this review is to (1) define the nature of cognitive deficits associated with epilepsy, (2) review fundamental systems-level mechanisms underlying information processing, and (3) describe how information processing is dysfunctional in epilepsy and investigate the relative contributions of etiology, seizures, and interictal discharges (IDs). We conclude that these mechanisms are likely to be important and deserve more detailed scrutiny in the future.
Collapse
Affiliation(s)
| | - Rodney C Scott
- Institute of Child Health, University College of London, London WC1N 3JH, United Kingdom
| |
Collapse
|
48
|
A critical appraisal of the what-where-when episodic-like memory test in rodents: Achievements, caveats and future directions. Prog Neurobiol 2015; 130:71-85. [DOI: 10.1016/j.pneurobio.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/07/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
|
49
|
Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory. Neurobiol Learn Mem 2015; 122:122-30. [DOI: 10.1016/j.nlm.2014.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 11/23/2022]
|
50
|
Vorster AP, Born J. Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev 2015; 50:103-19. [DOI: 10.1016/j.neubiorev.2014.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/04/2023]
|