1
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
2
|
Gottlieb N, Li TY, Young AH, Stokes PRA. The 5-HT7 receptor system as a treatment target for mood and anxiety disorders: A systematic review. J Psychopharmacol 2023; 37:1167-1181. [PMID: 37994803 PMCID: PMC10714716 DOI: 10.1177/02698811231211228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Preclinical animal and preliminary human studies indicate that 5-HT7 antagonists have the potential as a new treatment approach for mood and anxiety disorders. In this systematic review, we aimed to review the relationship between the 5-HT7 receptor system and mood and anxiety disorders, and to explore the pharmacology and therapeutic potential of medications that target the 5-HT7 receptor for their treatment. METHODS Medline, Cochrane Library, EMBASE, PsycINFO databases, the National Institute of Health website Clinicaltrials.gov, controlled-trials.com, and relevant grey literature were used to search for original research articles, and reference lists of included articles were then hand searched. RESULTS Sixty-four studies were included in the review: 52 animal studies and 12 human studies. Studies used a variety of preclinical paradigms and questionnaires to assess change in mood, and few studies examined sleep or cognition. Forty-four out of 47 (44/47) preclinical 5-HT7 modulation studies identified potential antidepressant effects and 20/23 studies identified potential anxiolytic effects. In clinical studies, 5/7 identified potential antidepressant effects in major depressive disorder, 1/2 identified potential anxiolytic effects in generalized anxiety disorder, and 3/3 identified potential antidepressant effects in bipolar disorders. CONCLUSION While there is some evidence that the 5-HT7 receptor system may be a potential target for treating mood and anxiety disorders, many agents included in the review also bind to other receptors. Further research is needed using drugs that bind specifically to 5-HT7 receptors to examine treatment proof of concept further.
Collapse
Affiliation(s)
- Natalie Gottlieb
- Natalie Gottlieb, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul RA Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
3
|
Vinchurney MD, Dhokne MD, Kotagale N, Umekar MJ, Taksande B. Agmatine prevents the manifestation of impulsive burying and depression-like behaviour in progesterone withdrawn female rats. Horm Behav 2023; 152:105361. [PMID: 37163843 DOI: 10.1016/j.yhbeh.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/24/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by various physical and affective symptoms, including anxiety, irritability, anhedonia, social withdrawal, and depression. The present study investigated the role of the agmatinergic system in animal model of progesterone withdrawal in female rats. Chronic progesterone exposure of female rats for 21 days and its abrupt withdrawal showed enhanced marble burying, increased immobility time, and reduced no. of entries in open arm as compared to control animals. The progesterone withdrawal-induced enhanced marble burying anxiety and immobility time was significantly attenuated by agmatine (5-20 mg/kg, i.p.), and its endogenous modulators like L-arginine (100 mg/kg, i.p.), amino-guanidine (25 mg/kg, i.p.) and arcaine (50 mg/kg, i.p.) by their once-daily administration from day 14-day 21 of the protocol. We have also analysed the levels of agmatine, progesterone, and inflammatory cytokines in the hippocampal region of progesterone withdrawn rats. There was a significant decline in agmatine and progesterone levels and an elevation in cytokine levels in the hippocampal region of progesterone withdrawn rats compared to the control animals. In conclusion, the present studies suggest the importance of the endogenous agmatinergic system in progesterone withdrawal-induced anxiety-like and depression-like behaviour. The data also projects agmatine as a potential therapeutic target for the premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- Madhura Dixit Vinchurney
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Mrunali D Dhokne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, M.S. 444604, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, M.S. 441 002, India.
| |
Collapse
|
4
|
Moreira LKS, Moreira CVL, Custódio CHX, Dias MLP, Rosa DA, Ferreira-Neto ML, Colombari E, Costa EA, Fajemiroye JO, Pedrino GR. Post-partum depression: From clinical understanding to preclinical assessments. Front Psychiatry 2023; 14:1173635. [PMID: 37143780 PMCID: PMC10151489 DOI: 10.3389/fpsyt.2023.1173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
Collapse
Affiliation(s)
| | | | | | - Matheus L. P. Dias
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Daniel A. Rosa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elson A. Costa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - James O. Fajemiroye
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
- Graduate Program in Pharmaceutical Sciences, Campus Arthur Wesley Archibald, Evangelical University of Goiás, Anápolis, Brazil
- *Correspondence: James O. Fajemiroye,
| | - Gustavo R. Pedrino
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| |
Collapse
|
5
|
Dhillon HK, Singh T, Goel RK. Ferulic acid inhibits catamenial epilepsy through modulation of female hormones. Metab Brain Dis 2022; 37:2827-2838. [PMID: 35932441 DOI: 10.1007/s11011-022-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Approximately 40% of women with epilepsy experience perimenstrual seizure exacerbation, referred to as catamenial epilepsy. These seizures result from cyclic changes in circulating progesterone and estradiol levels and there is no effective treatment for this form of intractable epilepsy. We artificially increased progesterone levels and neurosteroid levels (pseudo-pregnancy) in adult Swiss albino female mice (19-23 g) by injecting them with pregnant mares' serum gonadotropin (5 IU s.c.), followed by human chorionic gonadotropin (5 IU s.c.) after 46 h. After this, ferulic acid (25, 50, 100 mg/kg i.p.) treatment was given for 10 days. During treatment, progesterone, estradiol, and corticosterone levels were estimated in blood on days 1, 5, and 10. Neurosteroid withdrawal was induced by finasteride (50 mg/kg, i.p.) on treatment day 9. Twenty-four hours after finasteride administration (day 10 of treatment), seizure susceptibility was evaluated with the sub-convulsant pentylenetetrazol (PTZ) dose (40 mg/kg i.p.). Four to six hours after PTZ, animals were assessed for depression like phenotypes using tail-suspension test (TST). Four to six hours following TST, animals were euthanized, and discrete brain parts (cortex and hippocampus) were separated for estimation of norepinephrine, serotonin, and dopamine as well as glutamic acid decarboxylase (GAD) enzyme activity. PMSG and HCG treatment elevated progesterone and estradiol levels, assessed on days 1, 5, and 10 causing a state of pseudo-pregnancy. Treatment with finasteride increased seizure susceptibility and depression-like characteristics possibly due to decreased progesterone and elevated estrogen levels coupled with decreased monoamine and elevated corticosterone levels. Ferulic acid treatment, on the other hand, significantly decreased seizure susceptibility and depression like behavior, possibly because of increased progesterone, restored estradiol, corticosterone, monoamines, and GAD enzyme activity. We concluded anticonvulsant effect of ferulic acid in a mouse model of catamenial epilepsy, evidenced by favourable seizure attenuation and curative effect on the circulating progesterone, estradiol, and corticosterone levels along with restorative effect on GAD enzyme activity and monoamine levels.
Collapse
Affiliation(s)
- Harleen Kaur Dhillon
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, College Station, United States of America
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, 147002, Patiala, Punjab, India.
| |
Collapse
|
6
|
Kamishoyosan Alleviates Anxiety-like Behavior in a Premenstrual Syndrome Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2801784. [PMID: 36276857 PMCID: PMC9586730 DOI: 10.1155/2022/2801784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Kamishoyosan (KSS) is a traditional Japanese Kampo medicine that is prescribed for hormonal change-induced mood disorders including premenstrual syndrome (PMS). In clinical studies, KSS exhibited ameliorative effects on mood symptoms of PMS, such as anxiety and irritability. However, the mechanism underlying the beneficial effects of KSS is unclear. In the present study, we investigated the involvement of serotonergic machinery in the anxiolytic effects of KSS on hormonally-induced anxiety-like behavior in progesterone withdrawal (PWD) rats, which were used as a model of PMS. Female rats were injected with progesterone daily for 21 days. At 48 h after the final progesterone injection, anxiety-like behavior was evaluated using the elevated plus maze. KSS was administered orally to PWD rats 1 h prior to the test and significantly attenuated PWD-induced anxiety-like behavior. This ameliorative effect of KSS was reversed by WAY-100635, a serotonin (5-HT)1A receptor antagonist. The effect of KSS on serotonergic transmission in the prefrontal cortex of PWD rats was also evaluated using an in vivo microdialysis procedure. KSS significantly increased the extracellular 5-HT level in the prefrontal cortex of PWD rats. In conclusion, our results suggest that KSS alleviates PWD-induced anxiety-like behavior at least partly by activating 5-HT1A receptors and enhancing serotonergic transmission.
Collapse
|
7
|
Can animal models resemble a premenstrual dysphoric condition? Front Neuroendocrinol 2022; 66:101007. [PMID: 35623450 DOI: 10.1016/j.yfrne.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Around 80% of women worldwide suffer mild Premenstrual Disorders (PMD) during their reproductive life. Up to a quarter are affected by moderate to severe symptoms, and between 3% and 8% experience a severe form. It is classified as premenstrual syndrome (PMS) with predominantly physical symptoms and premenstrual dysphoric disorder (PMDD) with psychiatric symptoms. The present review analyzes the factors associated with PMD and the Hypothalamus-Pituitary-Ovarian or Hypothalamus-Pituitary-adrenal axis and discusses the main animal models used to study PMDD. Evidence shows that the ovarian hormones participate in PMDD symptoms, and several points of regulation of their synthesis, metabolism, and target sites could be altered. PMDD is complex and implies several factors that require consideration when this condition is modeled in animals. Of particular interest are those points related to areas that may represent opportunities to develop new approximations to understand the mechanisms involved in PMDD and possible treatments.
Collapse
|
8
|
Petrova N, Mukhin A. Mechanisms of action and clinical effects of vortioxetine. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:84-90. [DOI: 10.17116/jnevro202212206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
De Diego-Adeliño J, Crespo JM, Mora F, Neyra A, Iborra P, Gutiérrez-Rojas L, Salonia SF. Vortioxetine in major depressive disorder: from mechanisms of action to clinical studies. An updated review. Expert Opin Drug Saf 2021; 21:673-690. [PMID: 34964415 DOI: 10.1080/14740338.2022.2019705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Vortioxetine is a multimodal-acting antidepressant that provides improvements on cognitive function aside from antidepressants and anxiolytic effects. Vortioxetine has been found to be one of the most effective and best tolerated options for major depressive disorder (MDD) in head-to-head trials. AREAS COVERED The present review intends to gather the most relevant and pragmatic data of vortioxetine in MDD, specially focusing on new studies that emerged between 2015 and 2020. EXPERT OPINION Vortioxetine is the first antidepressant that has shown improvements both in depression and cognitive symptoms, due to the unique multimodal mechanism of action that combine the 5-HT reuptake inhibition with modulations of other key pre- and post-synaptic 5-HT receptors (agonism of 5-HT1A receptor, partial agonism of 5-HT1B receptor, and antagonism of 5-HT3, 5-HT1D and 5-HT7 receptors). This new mechanism of action can explain the dose-dependent effect and can be responsible for its effects on cognitive functioning and improved tolerability profile. Potential analgesic and anti-inflammatory properties observed in preclinical studies as well as interesting efficacy and tolerability results of clinical studies with specific target groups render it a promising therapeutic option for patients with MDD and concomitant conditions (as menopause symptoms, pain, inflammation, apathy, sleep and/or metabolic abnormalities).
Collapse
Affiliation(s)
- Javier De Diego-Adeliño
- Department of Psychiatry, Hospital de La Santa Creu I Sant Pau, Institut d'Investigació Biomèdica Sant Pau (Iib-sant Pau), Universitat Autònoma de Barcelona (Uab), Centro de Investigación Biomédica En Red de Salud Mental (Cibersam), Spain
| | - José Manuel Crespo
- Department of Psychiatry, Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Fernando Mora
- Department of Psychiatry, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Adrián Neyra
- Department of Psychiatry, Hospital de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Pedro Iborra
- Department of Psychiatry, San Juan University Hospital, Alicante, Spain
| | | | | |
Collapse
|
10
|
Pahwa P, Singh T, Goel RK. Anticonvulsant Effect of Asparagus racemosus Willd. in a Mouse Model of Catamenial Epilepsy. Neurochem Res 2021; 47:422-433. [PMID: 34623565 DOI: 10.1007/s11064-021-03455-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Asparagus racemosus Willd. (Family Liliaceae), also known as female reproductive tonic, is traditionally used across the Sub-Himalayan region in Uttarakhand, India for treatment of epilepsy and disorders of female reproductive system. Therefore, in this study, we investigated the anticonvulsant effect of A. racemosus in a mouse model of catamenial epilepsy. We artificially increased progesterone and neurosteroid levels (a state of pseudo-pregnancy) in adult Swiss albino female mice by injecting pregnant mares' serum gonadotropin (PMSG) (5 IU s.c.), followed by human chorionic gonadotropin (HCG) (5 IU s.c.) after 46 h. In the following 10 days, A. racemosus treatment was given along with measurement of progesterone, estradiol, and corticosterone levels in the blood. Neurosteroid withdrawal was induced by finasteride (50 mg/kg, i.p.) on treatment day 9. Twenty-four hours after finasteride administration (day 10 of treatment), seizure susceptibility was evaluated with the sub-convulsant pentylenetetrazole (PTZ) dose (40 mg/kg i.p.). Four hours after PTZ, animals were assessed for depression like phenotypes followed by euthanasia and separation of brain parts (cortex and hippocampus). The results showed that PMSG and HCG treatment elevated progesterone and estradiol levels. Treatment with finasteride increased seizure susceptibility and depression due to decreased progesterone and elevated estrogen levels coupled with decreased monoamine and elevated corticosterone levels. A. racemosus treatment, on the other hand, significantly decreased seizure susceptibility and depression like behaviors, possibly because of increased progesterone, restored estradiol, corticosterone, and monoamine levels. We concluded that herbal formulations using A. racemosus root extracts may be used as monotherapy or adjuvant therapy along with available AEDs for the better and safe management of catamenial epilepsy as well as comorbid depression.
Collapse
Affiliation(s)
- Priyanka Pahwa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.,Department of Neuroscience and Experimental Therapeutics, Health Science Center, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
11
|
Jacobson MH, Stein CR, Liu M, Ackerman MG, Blakemore JK, Long SE, Pinna G, Romay-Tallon R, Kannan K, Zhu H, Trasande L. Prenatal Exposure to Bisphenols and Phthalates and Postpartum Depression: The Role of Neurosteroid Hormone Disruption. J Clin Endocrinol Metab 2021; 106:1887-1899. [PMID: 33792735 PMCID: PMC8502446 DOI: 10.1210/clinem/dgab199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Postpartum depression (PPD) is a serious psychiatric disorder. While causes remain poorly understood, perinatal sex hormone fluctuations are an important factor, and allopregnanolone in particular has emerged as a key determinant. Although synthetic environmental chemicals such as bisphenols and phthalates are known to affect sex hormones, no studies have measured allopregnanolone and the consequences of these hormonal changes on PPD have not been interrogated. OBJECTIVE To investigate associations of repeated measures of urinary bisphenols and phthalates in early and midpregnancy with serum pregnenolone, progesterone, allopregnanolone, and pregnanolone concentrations in midpregnancy and PPD symptoms at 4 months postpartum. METHODS Prospective cohort study of 139 pregnant women recruited between 2016 and 2018. Bisphenols and phthalates were measured in early and midpregnancy urine samples. Serum sex steroid hormone concentrations were measured in midpregnancy. PPD was assessed at 4 months postpartum using the Edinburgh Postnatal Depression Scale (EPDS). Multiple informant models were fit using generalized estimating equations. Serum levels of allopregnanolone, progesterone, pregnanolone, and pregnenolone were examined as log-transformed continuous variables. PPD symptoms were examined as continuous EPDS scores and dichotomously with scores ≥10 defined as PPD. RESULTS Di-n-octyl phthalate (DnOP) and diisononyl phthalate (DiNP) metabolites were associated with reduced progesterone concentrations. Log-unit increases in ∑DnOP and ∑DiNP predicted 8.1% (95% CI -15.2%, -0.4%) and 7.7% (95% CI -13.3%, -1.7%) lower progesterone, respectively. ∑DnOP was associated with increased odds of PPD (odds ratio 1.48; 95% CI 1.04, 2.11). CONCLUSION Endocrine disrupting chemicals may influence hormonal shifts during pregnancy as well as contribute to PPD.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: Melanie Jacobson, Department of Pediatrics, Division of Environmental Pediatrics, New York University School of Medicine, 462 1st Avenue, Building A, 8th floor, Room 850, New York, NY 10016, USA.
| | - Cheryl R Stein
- Hassenfeld Children’s Hospital at NYU Langone; Department of Child and Adolescent Psychiatry, New York, NY 10016, USA
| | - Mengling Liu
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Marra G Ackerman
- Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer K Blakemore
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Sara E Long
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raquel Romay-Tallon
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Hongkai Zhu
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY 10016, USA
- Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Wagner School of Public Service, New York, NY 10012, USA
- NYU College of Global Public Health, New York, NY 10012, USA
| |
Collapse
|
12
|
Sherwood Brown E, McArdle M, Palka J, Bice C, Ivleva E, Nakamura A, McNutt M, Patel Z, Holmes T, Tipton S. A randomized, double-blind, placebo-controlled proof-of-concept study of ondansetron for bipolar and related disorders and alcohol use disorder. Eur Neuropsychopharmacol 2021; 43:92-101. [PMID: 33402258 DOI: 10.1016/j.euroneuro.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 01/17/2023]
Abstract
Bipolar disorder is associated with high rates of alcohol use disorder. However, little is known about the treatment of this dual diagnosis population. Previous studies suggest that ondansetron decreases alcohol use, particularly in people with specific single nucleotide polymorphism (SNP) alleles. A 12-week, randomized, double-blind, placebo-controlled trial of ondansetron was conducted in 70 outpatients with bipolar spectrum disorders and early onset alcohol use disorder. Outcome measures included alcohol use, assessed with the Timeline Followback method, Penn Alcohol Craving Scale (PACS), Hamilton Rating Scale for Depression (HRSD), Inventory of Depressive Symptomatology-Self-report, and Young Mania Rating Scale. SNPs rs1042173, rs1176713 and rs1150226 were explored as predictors of response. Participants had a mean age of 44.9 ± 9.4 years, were mostly men (60.0%), and African American (51.4%). Mean ondansetron exit dose was 3.23 ± 2.64 mg. No significant between-group differences in alcohol use measures were observed. However, a significant reduction in HRSD scores was observed (p = 0.045). Inclusion of SNPs increased effect sizes for some alcohol-related outcomes and the HRSD. Ondansetron was well tolerated. This proof-of-concept study is the first report on ondansetron in bipolar people with bipolar disorders and alcohol use disorder. Alcohol use did not demonstrate a significant between-group difference. However, the findings suggest that ondansetron may be associated with reduction in depressive symptom severity in persons with bipolar illnesses and alcohol use disorder. A larger trial is needed to examine the effects of ondansetron on bipolar depression.
Collapse
Affiliation(s)
- E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Meagan McArdle
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jayme Palka
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Collette Bice
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyson Nakamura
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Markey McNutt
- The Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zena Patel
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Traci Holmes
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shane Tipton
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Wei S, Geng X, Li Z, Xu K, Hu M, Wu H, Shi W, Qiao M. A forced swim-based rat model of premenstrual depression: effects of hormonal changes and drug intervention. Aging (Albany NY) 2020; 12:24357-24370. [PMID: 33229622 PMCID: PMC7762461 DOI: 10.18632/aging.202249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Premenstrual dysphoric disorder (PMDD), a form of premenstrual syndrome (PMS), is a severe health disturbance that affects a patient’s emotions; it is caused by periodic psychological symptoms, and its pathogenesis remains unclear. As depression-like symptoms are found in a majority of clinical cases, a reliable animal model of premenstrual depression is indispensable to understand the pathogenesis. Herein, we describe a novel rat model of premenstrual depression, based on the forced swimming test, with a regular estrous cycle. The results showed that in the estrous cycle, the depression-like behavior of rats occurred in the non-receptive phase and disappeared in the receptive phase. Following ovariectomy, the depression-like symptoms disappeared and returned after a hormone priming regimen. Moreover, fluoxetine, an anti-depressant, could reverse the behavioral symptoms in these model rats with normal estrous cycle. Further, the model rats showed significant changes in the serum levels of estrogen and progesterone, hippocampal levels of allopregnanolone, 5-hydroxytryptamine, norepinephrine, and γ-aminobutyric acid (GABA), and in the expression of GABAA receptor 4α subunit, all of which were reversed to physiological levels by fluoxetine. Overall, we established a reliable and standardized rat model of premenstrual depression, which may facilitate the elucidation of PMS/PMDD pathogenesis and development of related therapies.
Collapse
Affiliation(s)
- Sheng Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Ji’nan 250012, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| | - Hongyun Wu
- Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250011, China
| | - Wei Shi
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan 250011, China
| | - Mingqi Qiao
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
| |
Collapse
|
14
|
Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone - Friend or foe? Front Neuroendocrinol 2020; 59:100856. [PMID: 32730861 DOI: 10.1016/j.yfrne.2020.100856] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Estradiol is the "prototypic" sex hormone of women. Yet, women have another sex hormone, which is often disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual dysphoric disorder as well as contraception that women can use without risking mental health problems are still needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative.
Collapse
Affiliation(s)
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Eileen Luders
- School of Psychology, University of Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
15
|
Barak Y, Glue P. Progesterone loading as a strategy for treating postpartum depression. Hum Psychopharmacol 2020; 35:e2731. [PMID: 32250509 DOI: 10.1002/hup.2731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/16/2019] [Accepted: 03/12/2020] [Indexed: 01/18/2023]
Abstract
Postpartum depression (PPD) is a severe disorder that adversely impacts both mothers and infants. It is associated with significant morbidity and mortality and reported prevalence is 11.5% (Ko, Rockhill, Tong, Morrow, & Farr. (2017). MMWR Morbidity and Mortality Weekly Report, 66(6), 153-158). Although PPD's fundamental pathophysiology remains to be fully illuminated, the influence of changes in perinatal hormones such as allopregnanolone (an endogenous progesterone metabolite) are most promising avenues of research. Conventional treatments for PPD are aligned with treatment strategies for depressive disorders. Brexanolone is a small molecule, neuroactive steroid GABAA receptor allosteric modulator consisting of synthetic allopregnanolone and a solubilizing agent. In early 2019, brexanolone received approval in the United States for the treatment of PPD. Brexanolone is only available through a restricted program and is costly. Animal models demonstrate that progesterone prevents depression-like behaviors. However, studies of progesterone's effects in women suffering from PPD are few and inconclusive. We hypothesize that orally dosed progesterone will increase concentrations of allopregnanolone in the central nervous system, which should relieve symptoms of PPD.
Collapse
Affiliation(s)
- Yoram Barak
- Department of Psychological Medicine, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| |
Collapse
|
16
|
Zhang H, Geng X, Li Z, Li Y, Xu K, Wu H, Xie J, Sun P, Wei S, Qiao M. Paeonol at Certain Doses Alleviates Aggressive and Anxiety-Like Behaviours in Two Premenstrual Dysphoric Disorder Rat Models. Front Psychiatry 2020; 11:295. [PMID: 32351418 PMCID: PMC7174695 DOI: 10.3389/fpsyt.2020.00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe form of premenstrual syndrome (PMS), a common mental health disturbance associated with several periodic psychological symptoms in women. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PMS/PMDD patients; however, side effects are inevitable, especially in long-term treatment. In previous studies, the natural compound paeonol in Moutan Cortex was found to play effective roles in central nervous system disorders with its anti-inflammatory, anti-oxidant, and neuroprotective effects. Consequently, we assume that paeonol might produce positive effects in the treatment of PMS/PMDD. In this study, the open-field test (OFT) and elevated plus maze (EPM) and light dark box (LDB) tests were performed in mice to determine the optimal dose of paeonol for treating anxiety. Then, paeonol was used to treat the progesterone withdrawal (PWD) and resident intruder paradigm (RIP) rat models of PMDD. Using these two reliable models, the OFT and EPM, LDB, and composite aggressive tests were performed to evaluate the effect of the drug on behavioural symptoms of PMDD. From the dosage screening results, the optimal anti-anxiety dose of paeonol was identified as 17.5 mg/kg/d for 7 days. With regard to the effect of paeonol on PMDD rat models, a significantly improvement was found in the behavioural symptoms, but the effective dose varied in different models. For the PWD model rats, treatment with 6.05 mg/kg paeonol could significantly improve anxiety and irritability, while that with 24.23 mg/kg paeonol resulted in anxiety-like effects in behavioural tests. In RIP model rats, treatment with 12.11 mg/kg paeonol demonstrated excellent effects in improving anxiety, particularly irritable emotional behaviour. In conclusion, our study indicates that paeonol is a potential therapeutic compound for PMS/PMDD; it is a drug option that helps establish dosage guidance for treatment of this condition.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zifa Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Yaqiong Li
- Bozhou Institute of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine Sciences, Bozhou, China
| | - Kaiyong Xu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Hongyun Wu
- No. 3 Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, China
| | - Peng Sun
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Mingqi Qiao
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
17
|
Burke NN, Li Y, Deaver DR, Finn DP, Roche M, Eyerman DJ, Sanchez C, Kelly JP. Chronic administration of buprenorphine in combination with samidorphan produces sustained effects in olfactory bulbectomised rats and Wistar-Kyoto rats. J Psychopharmacol 2019; 33:1620-1627. [PMID: 31512988 DOI: 10.1177/0269881119872203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The combination of buprenorphine, a partial mu-opioid receptor agonist and a functional kappa-opioid receptor antagonist, with samidorphan, a functional mu-opioid receptor antagonist, is being developed as an adjunct therapy for major depressive disorder, in order to harness the mood-enhancing effects of opioids without unwanted side-effects such as a risk of addiction. Acute and subacute administration of the combination of buprenorphine and samidorphan is effective in reducing forced swim immobility in the Wistar-Kyoto rat, but the chronic effects have not been examined. AIMS AND METHODS The purpose of this study was to assess if chronic (14-day) administration of buprenorphine (0.1 mg/kg, subcutaneous) alone or in combination with samidorphan (0.3 mg/kg, subcutaneous) maintains antidepressant-like activity in the olfactory bulbectomised rat model and the Wistar-Kyoto rat, two models that exhibit ongoing behavioural deficits in tests commonly used to study effects of antidepressants. RESULTS Olfactory bulbectomised-induced hyperactivity was attenuated by chronic administration of buprenorphine alone and in combination with samidorphan, to that of sham control activity levels. Neither buprenorphine nor samidorphan altered stress-associated defecation in sham or olfactory bulbectomised rats in the open field. In Wistar-Kyoto rats, buprenorphine alone significantly reduced forced swim immobility and increased locomotor activity three hours post-final dosing. Buprenorphine plus samidorphan significantly reduced forced swim immobility without changing locomotor activity at this time point. Buprenorphine alone also significantly reduced forced swim immobility 24 h post-final dosing. CONCLUSION Chronic treatment of buprenorphine alone or buprenorphine plus samidorphan is effective in reversing behavioural deficits in distinct non-clinical paradigms. These non-clinical results complement the antidepressant effect of this combination observed in clinical studies.
Collapse
Affiliation(s)
- Nikita N Burke
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | - Yan Li
- Alkermes Inc., Waltham, MA, USA
| | | | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - John P Kelly
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| |
Collapse
|
18
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
19
|
Domingues K, Lima FB, Linder AE, Melleu FF, Poli A, Spezia I, Suman PR, Theindl LC, Lino de Oliveira C. Sexually dimorphic responses of rats to fluoxetine in the forced swimming test are unrelated to the function of the serotonin transporter in the brain. Synapse 2019; 74:e22130. [PMID: 31449695 DOI: 10.1002/syn.22130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023]
Abstract
Due to the prevalence of depression in women, female rats may be a better models for antidepressant research than males. In male rats, fluoxetine inhibited the serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) which is reducing the immobility time in the repeated forced swimming test (rFST). The performance of female rats in this test is unknown. In this study, responses of male and female rats in the rFST under chronic treatment with fluoxetine and the function of SERT in their brains were examined. Wistar rats received oral fluoxetine (females: 0, 1, 2.5, or 5 mg kg-1 day-1 ; males: 0 or 2.5 mg kg-1 day-1 ; in sucrose 10%, 1.5 ml/rat) 1 hr before the test daily for 12 days over the course of the rFST. rFST consisted of a 15 min pretest followed by 5 min sessions of swimming at 1 (test), 7 (retest 1), and 14 (retest 2) days later. SERT functioning was assessed by ex vivo assays of the frontal cortex and hippocampus of rats. Fluoxetine reduced immobility time of males in the rFST while it failed to do so in females. In vitro treatment with fluoxetine inhibited the uptake of 5-HT of both sexes similarly, while in vivo chronic administration of fluoxetine failed to do so. In summary, rats responded to the chronic treatment with fluoxetine in a sexually dimorphic fashion during the rFST despite the functioning of SERT in their brains remaining equally unchanged. Hence, our data suggest that sexually dimorphic responses to fluoxetine in rFST may be unrelated to the function of SERT in rat brains.
Collapse
Affiliation(s)
- Karolina Domingues
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Aurea Elizabeth Linder
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernando Falkenburger Melleu
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Anicleto Poli
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Inaê Spezia
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Patrick Remus Suman
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Laís Cristina Theindl
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
20
|
Bennabi D, Haffen E, Van Waes V. Vortioxetine for Cognitive Enhancement in Major Depression: From Animal Models to Clinical Research. Front Psychiatry 2019; 10:771. [PMID: 31780961 PMCID: PMC6851880 DOI: 10.3389/fpsyt.2019.00771] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Vortioxetine has already shown its efficacy in the acute and long-term treatment of major depressive disorder (MDD) and its potential interest in the prevention of relapse. The aim of this study was to review the current status of knowledge regarding its cognitive effects. Methods: We conducted a review of key data obtained from preclinical behavioral models and clinical trials in MDD focusing on vortioxetine-induced cognitive changes. Results: In animals, acute and chronic administration of vortioxetine improves performance on objective measures that cover a broad range of cognitive domains. In human, vortioxetine appears to be a useful treatment option in MDD patients with cognitive dysfunction. Conclusion: Vortioxetine constitutes a promising treatment for treatment of cognitive impairment in MDD, but its place in the therapeutic armamentarium still needs to be determined.
Collapse
Affiliation(s)
- Djamila Bennabi
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
21
|
Gonda X, Sharma SR, Tarazi FI. Vortioxetine: a novel antidepressant for the treatment of major depressive disorder. Expert Opin Drug Discov 2018; 14:81-89. [DOI: 10.1080/17460441.2019.1546691] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary
- MTA-SE Neurochemistry and Neuropsychopharmacology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - Samata R. Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women’s Hospital, Boston, USA
| | - Frank I. Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, USA
| |
Collapse
|
22
|
Repeated forced-swimming test in intact female rats: behaviour, oestrous cycle and enriched environment. Behav Pharmacol 2018; 29:509-518. [PMID: 29595539 DOI: 10.1097/fbp.0000000000000403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Psychopharmacology used animal models to study the effects of drugs on brain and behaviour. The repeated forced-swimming test (rFST), which is used to assess the gradual effects of antidepressants on rat behaviour, was standardized only in males. Because of the known sex differences in rats, experimental conditions standardized for males may not apply to female rats. Therefore, the present work aimed to standardize experimental and housing conditions for the rFST in female rats. Young or adult Wistar female rats were housed in standard or enriched environments for different experimental periods. As assessed in tested and nontested females, all rats had reached sexual maturity by the time behavioural testing occurred. The rFST consisted of a 15-min session of forced swimming (pretest), followed by 5-min sessions at 1 (test), 7 (retest 1) and 14 days (retest 2) later. The oestrous cycle was registered immediately before every behavioural session. All sessions were videotaped for further analysis. The immobility time of female rats remained similar over the different sessions of rFST independent of the age, the phase of the oestrous cycle or the housing conditions. These data indicate that rFST in female Wistar rats may be reproducible in different experimental conditions.
Collapse
|
23
|
Chen F, Danladi J, Ardalan M, Elfving B, Müller HK, Wegener G, Sanchez C, Nyengaard JR. A Critical Role of Mitochondria in BDNF-Associated Synaptic Plasticity After One-Week Vortioxetine Treatment. Int J Neuropsychopharmacol 2018; 21. [PMID: 29514282 PMCID: PMC6007239 DOI: 10.1093/ijnp/pyy022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Preclinical studies have indicated that antidepressant effect of vortioxetine involves increased synaptic plasticity and promotion of spine maturation. Mitochondria dysfunction may contribute to the pathophysiological basis of major depressive disorder. Taking into consideration that vortioxetine increases spine number and dendritic branching in hippocampus CA1 faster than fluoxetine, we hypothesize that new spines induced by vortioxetine can rapidly form functional synapses by mitochondrial support, accompanied by increased brain-derived neurotrophic factor signaling. METHODS Rats were treated for 1 week with vortioxetine or fluoxetine at pharmacologically relevant doses. Number of synapses and mitochondria in hippocampus CA1 were quantified by electron microscopy. Brain-derived neurotrophic factor protein levels were visualized with immunohistochemistry. Gene and protein expression of synapse and mitochondria-related markers were investigated with real-time quantitative polymerase chain reaction and immunoblotting. RESULTS Vortioxetine increased number of synapses and mitochondria significantly, whereas fluoxetine had no effect after 1-week dosing. BDNF levels in hippocampus DG and CA1 were significantly higher after vortioxetine treatment. Gene expression levels of Rac1 after vortioxetine treatment were significantly increased. There was a tendency towards increased gene expression levels of Drp1 and protein levels of Rac1. However, both gene and protein levels of c-Fos were significantly decreased. Furthermore, there was a significant positive correlation between BDNF levels and mitochondria and synapse numbers. CONCLUSION Our results imply that mitochondria play a critical role in synaptic plasticity accompanied by increased BDNF levels. Rapid changes in BDNF levels and synaptic/mitochondria plasticity of hippocampus following vortioxetine compared with fluoxetine may be ascribed to vortioxetine's modulation of serotonin receptors.
Collapse
Affiliation(s)
- Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Fenghua Chen, Department of Clinical Medicine - Translational Neuropsychiatry Unit, Skovagervej 2, 8240 Risskov, Denmark ()
| | - Jibrin Danladi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Department of Clinical Medicine - Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
- Alkermes, Biotechnology, Waltham, MA
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Hlavacova N, Li Y, Pehrson A, Sanchez C, Bermudez I, Csanova A, Jezova D, Franklin M. Effects of vortioxetine on biomarkers associated with glutamatergic activity in an SSRI insensitive model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:332-338. [PMID: 29269186 DOI: 10.1016/j.pnpbp.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the antidepressant activity of vortioxetine in a tryptophan (TRP) depletion female rat model of depression and compare it to that of paroxetine using doses that fully occupy the serotonin transporter (SERT). We evaluated the effects of vortioxetine on potential biomarkers associated with TRP depletion including serum aldosterone, corticosterone and IL-6 levels together with indirect indicators of glutamate neurotransmission. Female Sprague-Dawley rats were randomized to control, low TRP, low TRP/paroxetine or low TRP/vortioxetine groups. Vortioxetine and paroxetine were administered via diet (10mg/kg/day) and drinking water (10mg/kg/day) respectively for 14days. Vortioxetine but not paroxetine reversed TRP depletion-induced depressive-like behavior. Vortioxetine reduced TRP depletion-induced increases of serum corticosterone, aldosterone, IL-6 and N-methyl-d-aspartate and α7-nicotinic acetylcholine receptor expression in the amygdala and hippocampus, respectively. Paroxetine demonstrated little effect except a reduction of aldosterone. Vortioxetine but not paroxetine reversed TRP depletion-induced reductions of serum and brain kynurenic acid. In conclusion, vortioxetine, but not paroxetine, enabled reversals of TRP depletion-induced changes of depression-like behavior and markers of glutamatergic activity. These observations support the hypothesis that vortioxetine's antidepressant activity may involve mechanisms beyond SERT inhibition.
Collapse
Affiliation(s)
- N Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Y Li
- Department of Neuroscience, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - A Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - C Sanchez
- Department of Neuroscience, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - I Bermudez
- School of Life Sciences, Oxford Brookes University, Oxford, UK
| | - A Csanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - D Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Franklin
- School of Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
25
|
Reprint of: Contrasting effects of vortioxetine and paroxetine on pineal gland biochemistry in a tryptophan-depletion model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:339-342. [PMID: 29277417 DOI: 10.1016/j.pnpbp.2017.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Abstract
We studied the effects of the multi-modal antidepressant, vortioxetine and the SSRI, paroxetine on pineal melatonin and monoamine synthesis in a sub-chronic tryptophan (TRP) depletion model of depression based on a low TRP diet. Female Sprague-Dawley rats were randomised to groups a) control, b) low TRP diet, c) low TRP diet+paroxetine and d) low TRP diet+vortioxetine. Vortioxetine was administered via the diet (0.76mg/kg of food weight) and paroxetine via drinking water (10mg/kg/day) for 14days. Both drugs resulted in SERT occupancies >90%. Vortioxetine significantly reversed TRP depletion-induced reductions of pineal melatonin and serotonin (5-HT) and significantly increased pineal noradrenaline NA. Paroxetine did none of these things. Other studies suggest pineal melatonin synthesis may involve N-methyl-d-aspartate (NMDA) receptors and glutamatergic modulation. Here observed changes may be mediated via vortioxetine's strong 5-HT reuptake blocking action together with possible additional effects on glutamate neurotransmission in the pineal via NMDA receptor-modulation and possibly with added impetus from increased NA output.
Collapse
|
26
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
27
|
Wang Y, Tang L, Yin W, Chen J, Leng T, Zheng X, Zhu W, Zhang H, Qiu P, Yang X, Yan G, Hu H. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry. ANAL SCI 2018; 32:981-8. [PMID: 27682404 DOI: 10.2116/analsci.32.981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Youqiong Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Franklin M, Hlavacova N, Li Y, Bermudez I, Csanova A, Sanchez C, Jezova D. Contrasting effects of vortioxetine and paroxetine on pineal gland biochemistry in a tryptophan-depletion model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:499-502. [PMID: 28802861 DOI: 10.1016/j.pnpbp.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
We studied the effects of the multi-modal antidepressant, vortioxetine and the SSRI, paroxetine on pineal melatonin and monoamine synthesis in a sub-chronic tryptophan (TRP) depletion model of depression based on a low TRP diet. Female Sprague-Dawley rats were randomised to groups a) control, b) low TRP diet, c) low TRP diet+paroxetine and d) low TRP diet+vortioxetine. Vortioxetine was administered via the diet (0.76mg/kg of food weight) and paroxetine via drinking water (10mg/kg/day) for 14days. Both drugs resulted in SERT occupancies >90%. Vortioxetine significantly reversed TRP depletion-induced reductions of pineal melatonin and serotonin (5-HT) and significantly increased pineal noradrenaline NA. Paroxetine did none of these things. Other studies suggest pineal melatonin synthesis may involve N-methyl-d-aspartate (NMDA) receptors and glutamatergic modulation. Here observed changes may be mediated via vortioxetine's strong 5-HT reuptake blocking action together with possible additional effects on glutamate neurotransmission in the pineal via NMDA receptor-modulation and possibly with added impetus from increased NA output.
Collapse
Affiliation(s)
- M Franklin
- Department of Biology and Biomedical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| | - N Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Centre of the Slovak, Academy of Sciences, Bratislava, Slovakia
| | - Y Li
- Lundbeck Research USA, Department of Biological Research, Paramus, NJ, USA
| | - I Bermudez
- Department of Biology and Biomedical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - A Csanova
- Institute of Experimental Endocrinology, Biomedical Research Centre of the Slovak, Academy of Sciences, Bratislava, Slovakia
| | - C Sanchez
- Lundbeck Research USA, Department of Biological Research, Paramus, NJ, USA
| | - D Jezova
- Institute of Experimental Endocrinology, Biomedical Research Centre of the Slovak, Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
29
|
Sowa-Kućma M, Pańczyszyn-Trzewik P, Misztak P, Jaeschke RR, Sendek K, Styczeń K, Datka W, Koperny M. Vortioxetine: A review of the pharmacology and clinical profile of the novel antidepressant. Pharmacol Rep 2017; 69:595-601. [DOI: 10.1016/j.pharep.2017.01.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
|
30
|
Qiu ZK, Zhang GH, Zhong DS, He JL, Liu X, Chen JS, Wei DN. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats. Sci Rep 2017; 7:6266. [PMID: 28740098 PMCID: PMC5524961 DOI: 10.1038/s41598-017-06552-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to investigate the mechanisms underlying the antidepressant-like effects of puerarin via the chronic unpredictable stress (CUS) procedure in rats. Similar to Sertraline (Ser), Chronic treatment of puerarin (60 and 120 mg/kg, i.g) elicited the antidepressant-like effects by reversing the decreased sucrose preference in sucrose preference test (SPT), by blocking the increased latency to feed in novelty-suppressed feeding test (NSFT) and the increased immobility time in forced swimming test (FST) without affecting locomotor activity. However, acute puerarin treatment did not ameliorate the antidepressant- and anxiolytic- like effects in FST and NSFT, respectively. In addition, enzyme linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemical detection (HPLC-ECD) showed that chronic treatment of puerarin (60 and 120 mg/kg, i.g) reversed the decreased levels of progesterone, allopregnanolone, serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus of post-CUS rats. Furthermore, puerarin (60 and 120 mg/kg, i.g) blocked the increased corticotropin releasing hormone (CRH), corticosterone (Cort) and adrenocorticotropic hormone (ACTH). Collectively, repeated administration of puerarin alleviated the behavioral deficits induced by chronic stress which was associated with the biosynthesis of neurosteroids, normalization of serotonergic system and preventing HPA axis dysfunction.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China
| | - De-Sheng Zhong
- Department of Pharmacy, Hui Zhou Municipal Centre Hospital, Huizhou, Guangdong, P.R. China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, P.R. China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, P.R. China
- Academy of Military Medical Sciences, Beijing, 100850, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China.
| | - Da-Nian Wei
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
31
|
Eskelund A, Li Y, Budac DP, Müller HK, Gulinello M, Sanchez C, Wegener G. Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior. J Neurochem 2017; 142:118-131. [DOI: 10.1111/jnc.14043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Affiliation(s)
| | - Yan Li
- Lundbeck Research US; Paramus New Jersey USA
| | | | | | - Maria Gulinello
- Behavioral Core Facility; Department of Neuroscience; Albert Einstein College of Medicine; Bronx New York USA
| | - Connie Sanchez
- Translational Neuropsychiatry Unit; Risskov Denmark
- Lundbeck Research US; Paramus New Jersey USA
| | | |
Collapse
|
32
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
33
|
Li Y, Sanchez C, Gulinello M. Distinct Antidepressant-Like and Cognitive Effects of Antidepressants with Different Mechanisms of Action in Middle-Aged Female Mice. Int J Neuropsychopharmacol 2017; 20:510-515. [PMID: 28158336 PMCID: PMC5458342 DOI: 10.1093/ijnp/pyx004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cognitive dysfunction is among the key symptoms of major depressive disorder and can be affected by antidepressants. Cognitive decline also occurs in normal aging. The effects of different antidepressants on affective and cognitive domains in older subjects are seldom assessed simultaneously. METHODS Healthy middle-aged female mice received vehicle or antidepressant (vortioxetine, vilazodone, duloxetine, or fluoxetine) at therapeutic doses. After 1 month treatment, mice were accessed for visuospatial memory and depression-like behavior. A separate cohort of mice received 3 months of treatment and was test for recognition memory and depression-like behavior. RESULTS After 1 month treatment, vortioxetine improved visuospatial memory and reduced depression-like behavior. Vilazodone reduced depression-like behavior. Duloxetine and fluoxetine were ineffective in both tests. After 3 months treatment, vortioxetine reduced depression-like behavior without affecting recognition memory, while fluoxetine impaired recognition memory. Duloxetine and vilazodone had no effect in both tests. CONCLUSION Different antidepressants have distinct effects in middle-aged female mice.
Collapse
Affiliation(s)
- Yan Li
- Lundbeck Research USA, Paramus, New Jersey (Drs Li and Sanchez); Behavioral Core Facility, Neuroscience Dept., Albert Einstein College of Medicine (Dr Gulinello)
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey (Drs Li and Sanchez); Behavioral Core Facility, Neuroscience Dept., Albert Einstein College of Medicine (Dr Gulinello)
| | - Maria Gulinello
- Lundbeck Research USA, Paramus, New Jersey (Drs Li and Sanchez); Behavioral Core Facility, Neuroscience Dept., Albert Einstein College of Medicine (Dr Gulinello)
| |
Collapse
|
34
|
David DJ, Tritschler L, Guilloux JP, Gardier AM, Sanchez C, Gaillard R. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. Encephale 2016; 42:1S12-23. [PMID: 26879252 DOI: 10.1016/s0013-7006(16)30015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are extensively used for the treatment of major depressive disorder (MDD). SSRIs are defined as indirect receptor agonists since the activation of postsynaptic receptors is a consequence of an increase in extracellular concentrations of serotonin (5-HT) mediated by the blockade of serotonin transporter. The activation of some serotoninergic receptors (5-HT1A, post-synaptic, 5-HT1B post-synaptic, 5-HT2B, and 5-HT4), but not all (5-HT1A, pre-synaptic, 5-HT1B pre-synaptic, 5-HT2A, 5-HT2C, 5-HT3, and probably 5-HT6), induces anxiolytic/antidepressive - like effects. Targetting specifically some of them could potentially improve the onset of action and/or efficacy and/or prevent MD relapse. Vortioxetine (Brintellix, 1- [2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a novel multi-target antidepressant drug approved by the Food and Drug Administration (FDA) and by European Medicines Agency. Its properties are markedly different from the extensively prescribed SSRIs. Compared to the SSRIs, vortioxetine is defined as a multimodal antidepressant drug since it is not only a serotonin reuptake inhibitor, but also a 5-HT1D, 5-HT3, 5-HT7 receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist. This specific pharmacological profile enables vortioxetine to affect not only the serotoninergic and noradrenergic systems, but also the histaminergic, cholinergic, gamma-butyric acid (GABA) ergic and glutamatergic ones. Thus, vortioxetine not only induces antidepressant-like or anxiolytic-like activity but also improves cognitive parameters in several animal models. Indeed, vortioxetine was shown to improve working memory, episodic memory, cognitive flexibility and spatial memory in young adult rodents and also in old animal models. These specific effects of the vortioxetine are of interest considering that cognitive dysfunction is a common comorbidity to MDD. Altogether, even though this molecule still needs to be investigated further, especially in the insufficient-response to antidepressant drugs, vortioxetine is already an innovative therapeutic option for the treatment of major depression.
Collapse
Affiliation(s)
- D J David
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - L Tritschler
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - J-P Guilloux
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - A M Gardier
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - C Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - R Gaillard
- Service Hospitalo-Universitaire - Addictologie, Centre Hospitalier Sainte Anne, 1, rue Cabanis, 75674 Paris cedex 14, France.
| |
Collapse
|
35
|
Tian B, Wang XL, Huang Y, Chen LH, Cheng RX, Zhou FM, Guo R, Li JC, Liu T. Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats. Sci Rep 2016; 6:36286. [PMID: 27824106 PMCID: PMC5099756 DOI: 10.1038/srep36286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Although 5-HT has been implicated in cholestatic itch and antinociception, two common phenomena in patients with cholestatic disease, the roles of 5-HT receptor subtypes are unclear. Herein, we investigated the roles of 5-HT receptors in itch and antinociception associated with cholestasis, which was induced by common bile duct ligation (BDL) in rats. 5-HT-induced enhanced scratching and antinociception to mechanical and heat stimuli were demonstrated in BDL rats. 5-HT level in the skin and spinal cord was significantly increased in BDL rats. Quantitative RT-PCR analysis showed 5-HT1B, 5-HT1D, 5-HT2A, 5-HT3A, 5-HT5B, 5-HT6, and 5-HT7 were up-regulated in peripheral nervous system and 5-HT1A, 5-HT1F, 5-HT2B, and 5-HT3A were down-regulated in the spinal cord of BDL rats. Intradermal 5-HT2, 5-HT3, and 5-HT7 receptor agonists induced scratching in BDL rats, whereas 5-HT3 agonist did not induce scratching in sham rats. 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 agonists or antagonists suppressed itch in BDL rats. 5-HT1A agonist attenuated, but 5-HT1A antagonist enhanced antinociception in BDL rats. 5-HT2 and 5-HT3 agonists or antagonists attenuated antinociception in BDL rats. Our data suggested peripheral and central 5-HT system dynamically participated in itch and antinociception under cholestasis condition and targeting 5-HT receptors may be an effective treatment for cholestatic itch.
Collapse
Affiliation(s)
- Bin Tian
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xue-Long Wang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Ruo-Xiao Cheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Feng-Ming Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ran Guo
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jun-Cheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
36
|
du Jardin KG, Liebenberg N, Müller HK, Elfving B, Sanchez C, Wegener G. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. Psychopharmacology (Berl) 2016; 233:2813-25. [PMID: 27236785 DOI: 10.1007/s00213-016-4327-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE The mechanisms mediating ketamine's antidepressant effect have only been partly resolved. Recent preclinical reports implicate serotonin (5-hydroxytryptamine; 5-HT) in the antidepressant-like action of ketamine. Vortioxetine is a multimodal-acting antidepressant that is hypothesized to exert its therapeutic activity through 5-HT reuptake inhibition and modulation of several 5-HT receptors. OBJECTIVES The objective of this study was to evaluate the therapeutic-like profiles of S-ketamine, vortioxetine, and the serotonin reuptake inhibitor fluoxetine in response to manipulation of 5-HT tone. METHOD Flinders Sensitive Line (FSL) rats, a genetic model of depression, were depleted of 5-HT by repeated administration of 4-chloro-DL-phenylalanine methyl ester HCl (pCPA). Using pCPA-pretreated and control FSL rats, we investigated the acute and sustained effects of S-ketamine (15 mg/kg), fluoxetine (10 mg/kg), or vortioxetine (10 mg/kg) on recognition memory and depression-like behavior in the object recognition task (ORT) and forced swim test (FST), respectively. RESULTS The behavioral phenotype of FSL rats was unaffected by 5-HT depletion. Vortioxetine, but not fluoxetine or S-ketamine, acutely ameliorated the memory deficits of FSL rats in the ORT irrespective of 5-HT tone. No sustained effects were observed in the ORT. In the FST, all three drugs demonstrated acute antidepressant-like activity but only S-ketamine had sustained effects. Unlike vortioxetine, the antidepressant-like responses of fluoxetine and S-ketamine were abolished by 5-HT depletion. CONCLUSIONS These observations suggest that the acute and sustained antidepressant-like effects of S-ketamine depend on endogenous stimulation of 5-HT receptors. In contrast, the acute therapeutic-like effects of vortioxetine on memory and depression-like behavior may be mediated by direct activity at 5-HT receptors.
Collapse
Affiliation(s)
- Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, NJ, 07652, USA
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.,School of Pharmacy (Pharmacology), North-West University, 11 Hoffman St, Potchefstroom, 2531, South Africa
| |
Collapse
|
37
|
du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex. Eur J Pharmacol 2016; 786:29-35. [PMID: 27235984 DOI: 10.1016/j.ejphar.2016.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has been shown to induce a rapid antidepressant effect in treatment-resistant patients. Vortioxetine is a multimodal-acting antidepressant that exert its therapeutic activity through serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibition and modulation of several 5-HT receptors. In clinical trials, vortioxetine improves depression symptoms and cognitive dysfunction. Neuroplasticity as well as serotonergic and glutamatergic signaling attain significant roles in depression pathophysiology and antidepressant responses. Here, we investigate the effects of ketamine and vortioxetine on gene expression related to serotonergic and glutamatergic neurotransmission as well as neuroplasticity and compare them to those of the selective serotonin reuptake inhibitor fluoxetine. Rats were injected with fluoxetine (10mg/kg), ketamine (15mg/kg), or vortioxetine (10mg/kg) at 2, 8, 12, or 27h prior to harvesting of the frontal cortex and hippocampus. mRNA levels were measured by real-time quantitative polymerase chain reaction (qPCR). The main finding was that vortioxetine enhanced plasticity-related gene expression (Mtor, Mglur1, Pkcα, Homer3, Spinophilin, and Synapsin3) in the frontal cortex at 8h after a single dose. Ingenuity pathway analysis of this subset of data identified a biological network that was engaged by vortioxetine and is plausibly associated with neuroplasticity. Transcript levels had returned to baseline levels 12h after injection. Only minor effects on gene expression were found for ketamine or fluoxetine. In conclusion, acute vortioxetine, but not fluoxetine or ketamine, transiently increased plasticity-related gene expression in the frontal cortex. These effects may be ascribed to the direct 5-HT receptor activities of vortioxetine.
Collapse
Affiliation(s)
- Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; Lundbeck US LLC, 215 College Rd, Paramus, NJ 07652, USA
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; School of Pharmacy (Pharmacology), North-West University, 11 Hoffman St, Potchefstroom 2531, South Africa
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| |
Collapse
|
38
|
Hsieh JT, Lei B, Sheng H, Venkatraman T, Lascola CD, Warner DS, James ML. Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage. Neuroendocrinology 2016; 103:518-30. [PMID: 26356626 DOI: 10.1159/000440883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats. METHODS ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridial collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h after injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, proinflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury. RESULTS Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened in progesterone-treated females (p = 0.028 and p = 0.008, respectively). Progesterone decreased cerebral edema (p = 0.04), microglial activation/macrophage recruitment (p < 0.001), and proinflammatory transcription factor phosphorylated nuclear factor-x03BA;B p65 expression (p = 0.0038) in males but not females, independent of tumor necrosis factor-α, interleukin-6, and toll-like receptor-4 expression. Cerebral perfusion was increased in progesterone-treated males at 4 h (p = 0.043) but not 24 h after injury. Hemorrhage volume, arterial blood gases, glucose, and systolic blood pressure were not affected. CONCLUSIONS Progesterone administration improved early neurobehavioral recovery and decreased secondary neuroinflammation after ICH in male rats. Paradoxically, progesterone worsened neurobehavioral recovery and did not modify neuroinflammation in female rats. Future work should isolate mechanisms of sex-specific progesterone effects after ICH.
Collapse
|
39
|
Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 2015; 135:70-82. [DOI: 10.1016/j.pbb.2015.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
40
|
Garnock-Jones KP, Lyseng-Williamson KA. Vortioxetine in major depressive disorder: a guide to its use in the EU. DRUGS & THERAPY PERSPECTIVES 2015. [DOI: 10.1007/s40267-015-0217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol 2015; 95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022]
|
42
|
Citraro R, Leo A, De Fazio P, De Sarro G, Russo E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol 2015; 172:3177-88. [PMID: 25754610 DOI: 10.1111/bph.13121] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Two of the most relevant unmet needs in epilepsy are represented by the development of disease-modifying drugs able to affect epileptogenesis and/or the study of related neuropsychiatric comorbidities. No systematic study has investigated the effects of chronic treatment with antipsychotics or antidepressants on epileptogenesis. However, such drugs are known to influence seizure threshold. EXPERIMENTAL APPROACH We evaluated the effects of an early long-term treatment (ELTT; 17 weeks), started before seizure onset (P45), with fluoxetine (selective 5-HT-reuptake inhibitor), duloxetine (dual-acting 5-HT-noradrenaline reuptake inhibitor), haloperidol (typical antipsychotic drug), risperidone and quetiapine (atypical antipsychotic drugs) on the development of absence seizures and comorbid depressive-like behaviour in the WAG/Rij rat model. Furthermore, we studied the effects of these drugs on established absence seizures in adult (6-month-old) rats after a chronic 7 weeks treatment. KEY RESULTS ELTT with all antipsychotics did not affect the development of seizures, whereas, both ELTT haloperidol (1 mg · kg(-1) day(-1)) and risperidone (0.5 mg · kg(-1) day(-1)) increased immobility time in the forced swimming test and increased absence seizures only in adult rats (7 weeks treatment). In contrast, both fluoxetine (30 mg · kg(-1) day(-1)) and duloxetine (10-30 mg · kg(-1) day(-1)) exhibited clear antiepileptogenic effects. Duloxetine decreased and fluoxetine increased absence seizures in adult rats. Duloxetine did not affect immobility time; fluoxetine 30 mg · kg(-1) day(-1) reduced immobility time while at 10 mg · kg(-1) day(-1) an increase was observed. CONCLUSIONS AND IMPLICATIONS In this animal model, antipsychotics had no antiepileptogenic effects and might worsen depressive-like comorbidity, while antidepressants have potential antiepileptogenic effects even though they have limited effects on comorbid depressive-like behaviour.
Collapse
Affiliation(s)
- Rita Citraro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Pasquale De Fazio
- Psichiatry Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Pharmacology Unit, Science of Health Department School of Medicine and Surgery, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| |
Collapse
|
43
|
Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015; 9:37. [PMID: 25750611 PMCID: PMC4335177 DOI: 10.3389/fnins.2015.00037] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany ; Leipzig Research Center for Civilization Diseases, University of Leipzig Leipzig, Germany ; Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig Leipzig, Germany ; Berlin School of Mind and Brain, Mind and Brain Institute Berlin, Germany
| | - Julia Sacher
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Clinic of Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
44
|
Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol Ther 2015; 145:43-57. [DOI: 10.1016/j.pharmthera.2014.07.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/21/2022]
|
45
|
Tritschler L, Felice D, Colle R, Guilloux JP, Corruble E, Gardier AM, David DJ. Vortioxetine for the treatment of major depressive disorder. Expert Rev Clin Pharmacol 2014; 7:731-45. [DOI: 10.1586/17512433.2014.950655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Amitriptyline reverses hyperalgesia and improves associated mood-like disorders in a model of experimental monoarthritis. Behav Brain Res 2014; 265:12-21. [DOI: 10.1016/j.bbr.2014.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 02/01/2023]
|
47
|
Katona CL, Katona CP. New generation multi-modal antidepressants: focus on vortioxetine for major depressive disorder. Neuropsychiatr Dis Treat 2014; 10:349-54. [PMID: 24570588 PMCID: PMC3933721 DOI: 10.2147/ndt.s39544] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vortioxetine is a novel antidepressant with effects on multiple 5-HT receptors and on the serotonin transporter. This paper reviews preclinical and clinical evidence regarding its mechanism of action, its tolerability, and its efficacy in treating major depression. Clinical studies indicate that vortioxetine is effective in the treatment of major depression, though there is no suggestion of superiority over active comparators. There may be a clinically meaningful advantage in terms of tolerability.
Collapse
Affiliation(s)
| | - Cara P Katona
- North Central London Psychiatry Training Programme, London, UK
| |
Collapse
|
48
|
McAllister CE, Mi Z, Mure M, Li Q, Muma NA. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus. Neuroendocrinology 2014; 100:228-39. [PMID: 25402859 PMCID: PMC4305009 DOI: 10.1159/000369467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.
Collapse
Affiliation(s)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, University of Kansas
| | - Minae Mure
- Department of Chemistry, University of Kansas
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, University of Kansas
- Corresponding Author: Nancy A. Muma, Malott Hall Rm 5064, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7572, , Telephone: +1 785 864 4002, Fax: +1 785 864 5219
| |
Collapse
|
49
|
|