1
|
Bartholomew SK, Winslow W, Sharma R, Pathak KV, Tallino S, Judd JM, Leon H, Turk J, Pirrotte P, Velazquez R. Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice. J Neuroinflammation 2024; 21:316. [PMID: 39633366 PMCID: PMC11619132 DOI: 10.1186/s12974-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined. METHODS We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period. RESULTS We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma. CONCLUSION Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha K Bartholomew
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Savannah Tallino
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Hector Leon
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Julie Turk
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Fraile-Ramos J, Reig-Vilallonga J, Giménez-Llort L. Glomerular Hypertrophy and Splenic Red Pulp Degeneration Concurrent with Oxidative Stress in 3xTg-AD Mice Model for Alzheimer's Disease and Its Exacerbation with Sex and Social Isolation. Int J Mol Sci 2024; 25:6112. [PMID: 38892297 PMCID: PMC11172848 DOI: 10.3390/ijms25116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The continuously expanding field of Alzheimer's disease (AD) research is now beginning to defocus the brain to take a more systemic approach to the disease, as alterations in the peripheral organs could be related to disease progression. One emerging hypothesis is organ involvement in the process of Aβ clearance. In the present work, we aimed to examine the status and involvement of the kidney as a key organ for waste elimination and the spleen, which is in charge of filtering the blood and producing lymphocytes, and their influence on AD. The results showed morphological and structural changes due to acute amyloidosis in the kidney (glomeruli area) and spleen (red pulp area and red/white pulp ratio) together with reduced antioxidant defense activity (GPx) in 16-month-old male and female 3xTg-AD mice when compared to their age- and sex-matched non-transgenic (NTg) counterparts. All these alterations correlated with the anxious-like behavioral phenotype of this mouse model. In addition, forced isolation, a cause of psychological stress, had a negative effect by intensifying genotype differences and causing differences to appear in NTg animals. This study further supports the relevance of a more integrative view of the complex interplay between systems in aging, especially at advanced stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Alveal-Mellado D, Giménez-Llort L. Use of Ordered Beta Regression Unveils Cognitive Flexibility Index and Longitudinal Cognitive Training Signatures in Normal and Alzheimer's Disease Pathological Aging. Brain Sci 2024; 14:501. [PMID: 38790478 PMCID: PMC11119991 DOI: 10.3390/brainsci14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues for analyzing continuous response data. Here, we applied this combined approach to investigate nuanced differences between the 3xTg-AD model of Alzheimer's disease (AD) and their C57BL/6 non-transgenic (NTg) counterparts with normal aging in a 5-day Morris Water Maze (MWM) test protocol. Our longitudinal study included 22 3xTg-AD mice and 15 NTg mice (both male and female) assessed at 12 and 16 months of age. By identifying and analyzing multiple swimming strategies during three different paradigms (cue, place task, and removal), we uncovered genotypic differences in all paradigms. Thus, the NTg group exhibited a higher percentage of direct search behaviors, while an association between circling episodes and 3xTg-AD animals was found. Furthermore, we also propose a novel metric-the "Cognitive Flexibility Index"-which proved sensitive in detecting sex-related differences. Overall, our integrated GLMMs-OBR approach provides a comprehensive insight into mouse behavior in the MWM test, shedding light on the effects of aging and AD pathology.
Collapse
Affiliation(s)
- Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
Muntsant A, Castillo-Ruiz MDM, Giménez-Llort L. Survival Bias, Non-Lineal Behavioral and Cortico-Limbic Neuropathological Signatures in 3xTg-AD Mice for Alzheimer's Disease from Premorbid to Advanced Stages and Compared to Normal Aging. Int J Mol Sci 2023; 24:13796. [PMID: 37762098 PMCID: PMC10531136 DOI: 10.3390/ijms241813796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Pre-clinical research in aging is hampered by the scarcity of studies modeling its heterogeneity and complexity forged by pathophysiological conditions throughout the life cycle and under the sex perspective. In the case of Alzheimer's disease, the leading cause of dementia in older adults, we recently described in female wildtype and APP23 mice a survival bias and non-linear chronology of behavioral signatures from middle age to long life. Here, we present a comprehensive and multidimensional (physical, cognitive, and neuropsychiatric-like symptoms) screening and underlying neuropathological signatures in male and female 3xTg-AD mice at 2, 4, 6, 12, and 16 months of age and compared to their non-transgenic counterparts with gold-standard C57BL/6J background. Most variables studied detected age-related differences, whereas the genotype factor was specific to horizontal and vertical activities, thigmotaxis, coping with stress strategies, working memory, and frailty index. A sex effect was predominantly observed in classical emotional variables and physical status. Sixteen-month-old mice exhibited non-linear age- and genotype-dependent behavioral signatures, with higher heterogeneity in females, and worsened in naturalistically isolated males, suggesting distinct compensatory mechanisms and survival bias. The underlying temporal and spatial progression of Aβ and tau pathologies pointed to a relevant cortico-limbic substrate roadmap: premorbid intracellular Aβ immunoreactivity and pSer202/pThr205 tau phosphorylation in the amygdala and ventral hippocampus, and the entorhinal cortex and ventral hippocampus as the areas most affected by Aβ plaques. Therefore, depicting phenotypic signatures and neuropathological correlates can be critical to unveiling preventive/therapeutic research and intervention windows and studying adaptative behaviors and maladaptive responses relevant to psychopathology.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | | | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
5
|
Baeta-Corral R, De la Fuente M, Giménez-Llort L. Sex-dependent worsening of NMDA-induced responses, anxiety, hypercortisolemia, and organometry of early peripheral immunoendocrine impairment in adult 3xTg-AD mice and their long-lasting ontogenic modulation by neonatal handling. Behav Brain Res 2023; 438:114189. [PMID: 36343697 DOI: 10.1016/j.bbr.2022.114189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The neuroimmunomodulation hypothesis for Alzheimer's disease (AD) postulates that alterations in the innate immune system triggered by damage signals result in adverse effects on neuronal functions. The peripheral immune system and neuroimmunoendocrine communication are also impaired. Here we provide further evidence using a longitudinal design that also studied the long-lasting effects of an early life sensorial intervention (neonatal handling, from postnatal day 1-21) in 6-month-old (early stages of the disease) male and female 3xTg-AD mice compared to age- and sex-matched non-transgenic (NTg) mice with normal aging. The behavioral patterns elicited by the direct exposure to an open field, and the motor depression response evoked by NMDA (25 mg/kg, i.p) were found correlated to the organometry of peripheral immune-endocrine organs (thymus involution, splenomegaly, and adrenal glands' hypertrophy) and increased corticosterone levels, suggesting their potential value for diagnostic and biomonitoring.The NMDA-induced immediate and depressant motor activity and endocrine (corticosterone) responses were sensitive to sex and AD-genotype, suggesting worse endogenous susceptibility/neuroprotective response to glutamatergic excitotoxicity in males and in the AD-genotype. 3xTg-AD females showed a reduced immediate response, whereas the NTg showed higher responsiveness to subsequent NMDA-induced depressant effect than their male counterparts. The long-lasting ontogenic modulation by handling was shown as a potentiation of NMDA-depressant effect in NTg males and females, while sex × treatment effects were found in 3xTg-AD mice. Finally, NMDA-induced corticosterone showed sex, genotype and interaction effects with sexual dimorphism enhanced in the AD-genotype, suggesting different endogenous vulnerability/neuroprotective capacities and modulation of the neuroimmunoendocrine system.
Collapse
Affiliation(s)
- R Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M De la Fuente
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain
| | - L Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
6
|
Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms231810816. [PMID: 36142737 PMCID: PMC9501136 DOI: 10.3390/ijms231810816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.
Collapse
|
7
|
Muntsant A, Giménez-Llort L. Crosstalk of Alzheimer’s disease-phenotype, HPA axis, splenic oxidative stress and frailty in late-stages of dementia, with special concerns on the effects of social isolation: A translational neuroscience approach. Front Aging Neurosci 2022; 14:969381. [PMID: 36185472 PMCID: PMC9520301 DOI: 10.3389/fnagi.2022.969381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Coping with emotional stressors strongly impacts older people due to their age-related impaired neuroendocrine and immune systems. Elevated cortisol levels seem to be associated with an increased risk of cognitive decline and dementia. In Alzheimer’s disease (AD), alterations in the innate immune system result in crosstalk between immune mediators and neuronal and endocrine functions. Besides, neuropsychiatric symptoms such as depression, anxiety, or agitation are observed in most patients. Here, we studied the psychophysiological response to intrinsic (AD-phenotype) and extrinsic (anxiogenic tests) stress factors and their relation to liver, kidneys, heart, and spleen oxidative status in 18-months-old female gold-standard C57BL/6 mice and 3xTg-AD mice model for AD. The emotional, cognitive, and motor phenotypes were assessed under three different anxiogenic conditions. Survival, frailty index, and immunoendocrine status (corticosterone levels and oxidative stress of peripheral organs) were evaluated. Genotype differences in neuropsychiatric-like profiles and cognitive disfunction in 3xTg-AD females that survived beyond advanced stages of the disease persisted despite losing other behavioral and hypothalamic–pituitary–adrenal (HPA) physiological differences. A secondary analysis studied the impact of social isolation, naturally occurring in 3xTg-AD mice due to the death of cage mates. One month of isolation modified hyperactivity and neophobia patterns and disrupt the obsessive-compulsive disorder-like digging ethogram. Frailty index correlated with spleen organometrics in all groups, whereas two AD-specific salient functional correlations were identified: (1) Levels of corticosterone with worse performance in the T-maze, (2) and with a lower splenic GPx antioxidant enzymatic activity, which may suppose a potent risk of morbidity and mortality in AD.
Collapse
Affiliation(s)
- Aida Muntsant
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Lydia Giménez-Llort,
| |
Collapse
|
8
|
Bengoetxea de Tena I, Moreno-Rodríguez M, Llorente-Ovejero A, Monge-Benito S, Martínez-Gardeazabal J, Onandia-Hinchado I, Manuel I, Giménez-Llort L, Rodríguez-Puertas R. HANDLING AND NOVEL OBJECT RECOGNITION MODULATE FEAR RESPONSE AND ENDOCANNABINOID SIGNALING IN NUCLEUS BASALIS MAGNOCELLULARIS. Eur J Neurosci 2022; 55:1532-1546. [PMID: 35266590 PMCID: PMC9313565 DOI: 10.1111/ejn.15642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Storage of aversive memories is of utmost importance for survival, allowing animals to avoid upcoming similar stimuli. However, without reinforcement, the learned avoidance response gradually decreases over time. Although the molecular mechanisms controlling this extinction process are not well known, there is evidence that the endocannabinoid system plays a key role through CB1 receptor‐mediated modulation of cholinergic signaling. In this study, we measured fear extinction throughout 7 months using naïve rats, assessed in passive avoidance (PA) test in a non‐reinforced manner. Then, we evaluated the effect of gentle handling and non‐aversive novel object recognition test (NORT) on the extinction and expression of fear memories by measuring passive avoidance responses. Neurochemical correlates were analyzed by functional autoradiography for cannabinoid, cholinergic, and dopaminergic receptors. Despite results showing a gradual decrease of passive avoidance response, it did not fully disappear even after 7 months, indicating the robustness of this process. Meanwhile, in rats that received gentle handling or performed NORT after receiving the PA aversive stimulus, extinction occurred within a week. In contrast, gentle handling performed before receiving the aversive stimulus exacerbated fear expression and triggered escape response in PA. The neurochemical analysis showed increased cannabinoid and cholinergic activity in the nucleus basalis magnocellularis (NBM) in rats that had performed only PA, as opposed to rats that received gentle handling before PA. Additionally, a correlation between CB1 mediated‐signaling in the NBM and freezing in PA was found, suggesting that the endocannabinoid system might be responsible for modulating fear response induced by aversive memories.
Collapse
Affiliation(s)
- I Bengoetxea de Tena
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - M Moreno-Rodríguez
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - A Llorente-Ovejero
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - S Monge-Benito
- Dept. Audiovisual Communication and Advertising, Fac. of Social Sciences and Communication, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - J Martínez-Gardeazabal
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Onandia-Hinchado
- Dept. Clinical and Health Psychology and Research Methodology, Fac. of Psychology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - I Manuel
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - L Giménez-Llort
- Dept. Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - R Rodríguez-Puertas
- Dept. Pharmacology, Fac. of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
9
|
Bareiss SK, Johnston T, Lu Q, Tran TD. The effect of exercise on early sensorimotor performance alterations in the 3xTg-AD model of Alzheimer's disease. Neurosci Res 2022; 178:60-68. [PMID: 35033583 DOI: 10.1016/j.neures.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/29/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is characterized by a progressive decline in cognitive function; however, recent evidence suggests that non-cognitive sensorimotor and psychomotor symptoms accompany early stages of the disease in humans and AD models. Although exercise is emerging as an important therapeutic to combat AD progression, little is known about the effect of exercise on sensorimotor domain functions. The purpose of this study was to determine if early sensorimotor symptoms accompany deficits in Morris water maze (MWM) performance in the 3xTg-AD model, and investigate if exercise could protect against early behavioral decline. 3xTg-AD and wild-type (WT) control mice were subjected to 12 weeks of moderate intensity wheel running or remained sedentary. At 6 months of age, animals underwent a series of sensorimotor and MWM testing. 3xTg-AD mice displayed deficits in sensorimotor function (beam traversal, spontaneous activity, and adhesive removal) and MWM performance. Interestingly, 3xTg-AD animals exhibited increased freezing and unusual shaking/tremoring behaviors not displayed by WT controls. Exercise improved beam traversal, adhesive removal, and reduced the unusual motor-related behaviors in 3xTg-AD mice. Our study shows that sensorimotor symptoms coincide with deficits in MWM performance, and suggest that exercise may mitigate deficits associated with early disease in 3xTg-AD mice.
Collapse
Affiliation(s)
- Sonja K Bareiss
- Department of Physical Therapy, School of Rehabilitation and Movement Sciences, Bellarmine University, Louisville, KY 40205, United States; Department of Neurological Surgery, University of Louisville, United States; The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, East Carolina University, United States.
| | - Tyler Johnston
- Department of Physical Therapy, East Carolina University, Greenville, NC 27834, United States.
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, United States; The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, East Carolina University, United States.
| | - Tuan D Tran
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, East Carolina University, United States; Department of Psychology East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
10
|
Marín-Pardo D, Giménez-Llort L. Olfactory Signatures in the Food Finding Test in Mice With Normal and Alzheimer's Disease-Pathological Aging With Special Concerns on the Effects of Social Isolation. Front Neurosci 2021; 15:733984. [PMID: 34675767 PMCID: PMC8523944 DOI: 10.3389/fnins.2021.733984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
The temporal course and the severity of the involution of sensory systems through aging can be critical since they ensure the ability to perceive and recognize the world. In older people, sensory impairments significantly increase their risk of biological, psychological, and social impoverishment. Besides this, olfactory loss is considered an early biomarker in Alzheimer’s disease (AD) neurodegenerative process. Here we studied olfactory ethograms in middle-aged male and female gold-standard C57BL/6 mice and 3xTg-AD mice, a genetic model of AD that presents cognitive dysfunction and a conspicuous neuropsychiatric-like phenotype. A paradigm involving 1-day food deprivation was used to investigate the ethological patterns shown in the olfactory inspection of a new cage and the sniffing, finding, and eating of hidden food pellets. The sniffing–find–eat temporal patterns were independent of the loss of weight and unveiled (fast) olfactory signatures in Alzheimer’s disease, differing from those (slow progressive) in normal aging. Male 3xTg-AD mice exhibited an early signature than female mice, opposite to animals with normal aging. The sequence of actions was correlated in male and female 3xTg-AD mice in contrast to control mice. Social isolation, naturally occurring in male 3xTg-AD due to the death of cage mates, emphasized their olfactory patterns and disrupted the behavioral correlates. The paradigm provided distinct contextual, sex, and genotype olfactory ethogram signatures useful to investigate olfactory function in normal and AD-pathological aging. Isolation had an impact on enhancing the changes in the olfactory signature here described, for the first time, in the 3xTg-AD model of Alzheimer’s disease.
Collapse
Affiliation(s)
- Daniela Marín-Pardo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Castillo-Mariqueo L, Pérez-García MJ, Giménez-Llort L. Modeling Functional Limitations, Gait Impairments, and Muscle Pathology in Alzheimer's Disease: Studies in the 3xTg-AD Mice. Biomedicines 2021; 9:1365. [PMID: 34680482 PMCID: PMC8533188 DOI: 10.3390/biomedicines9101365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Gait impairments in Alzheimer's disease (AD) result from structural and functional deficiencies that generate limitations in the performance of activities and restrictions in individual's biopsychosocial participation. In a translational way, we have used the conceptual framework proposed by the International Classification of Disability and Health Functioning (ICF) to classify and describe the functioning and disability on gait and exploratory activity in the 3xTg-AD animal model. We developed a behavioral observation method that allows us to differentiate qualitative parameters of psychomotor performance in animals' gait, similar to the behavioral patterns observed in humans. The functional psychomotor evaluation allows measuring various dimensions of gait and exploratory activity at different stages of disease progression in dichotomy with aging. We included male 3xTg-AD mice and their non-transgenic counterpart (NTg) of 6, 12, and 16 months of age (n = 45). Here, we present the preliminary results. The 3xTg-AD mice show more significant functional impairment in gait and exploratory activity quantitative variables. The presence of movement limitations and muscle weakness mark the functional decline related to the disease severity stages that intensify with increasing age. Motor performance in 3xTg-AD is accompanied by a series of bizarre behaviors that interfere with the trajectory, which allows us to infer poor neurological control. Additionally, signs of physical frailty accompany the functional deterioration of these animals. The use of the ICF as a conceptual framework allows the functional status to be described, facilitating its interpretation and application in the rehabilitation of people with AD.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - M. José Pérez-García
- Department of Neuroscience, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Gloria Y, Ceyzériat K, Tsartsalis S, Millet P, Tournier BB. Dopaminergic dysfunction in the 3xTg-AD mice model of Alzheimer's disease. Sci Rep 2021; 11:19412. [PMID: 34593951 PMCID: PMC8484608 DOI: 10.1038/s41598-021-99025-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid (Aβ) protein aggregation and neurofibrillary tangles accumulation, accompanied by neuroinflammation. With all the therapeutic attempts targeting these biomarkers having been unsuccessful, the understanding of early mechanisms involved in the pathology is of paramount importance. Dopaminergic system involvement in AD has been suggested, particularly through the appearance of dopaminergic dysfunction-related neuropsychiatric symptoms and an overall worsening of cognitive and behavioral symptoms. In this study, we reported an early dopaminergic dysfunction in a mouse model presenting both amyloid and Tau pathology. 3xTg-AD mice showed an increase of postsynaptic D2/3R receptors density in the striatum and D2/3-autoreceptors in SN/VTA cell bodies. Functionally, a reduction of anxiety-like behavior, an increase in locomotor activity and D2R hyper-sensitivity to quinpirole stimulation have been observed. In addition, microglial cells in the striatum showed an early inflammatory response, suggesting its participation in dopaminergic alterations. These events are observed at an age when tau accumulation and Aβ deposits in the hippocampus are low. Thus, our results suggest that early dopaminergic dysfunction could have consequences in behavior and cognitive function, and may shed light on future therapeutic pathways of AD.
Collapse
Affiliation(s)
- Yesica Gloria
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Stergios Tsartsalis
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Castillo-Mariqueo L, Giménez-Llort L. Kyphosis and bizarre patterns impair spontaneous gait performance in end-of-life mice with Alzheimer's disease pathology while gait is preserved in normal aging. Neurosci Lett 2021; 767:136280. [PMID: 34601039 DOI: 10.1016/j.neulet.2021.136280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The shorter life spans of mice provide an exceptional experimental gerontology scenario. We previously described increased bizarre (disruptive) behaviors in the 6-month-old 3xTg-AD mice model for Alzheimer's disease (AD), compared to C57BL/6J wildtype (NTg), when confronting new environments. In the present work, we evaluated spontaneous gait and exploratory activity at old age, using 16-month-old mice. Male sex was chosen since sex-dependent psychomotor effects of aging are stronger in NTg males than females and, at this age, male 3 × Tg-AD mice are close to an end-of-life status due to increased mortality rates. Mice's behavior was evaluated in a transparent test box during the neophobia response. Stretching, jumping, backward movements and bizarre circling were identified during the gait and exploratory activity. The results corroborate that in the face of novelty and recognition of places, old 3xTg-AD mice exhibit increased bizarre behaviors than mice with normal aging. Furthermore, bizarre circling and backward movements delayed the elicitation of locomotion and exploration, in an already frail scenario, as shown by highly prevalent kyphosis in both groups. Thus, the translational study of co-occurrence of psychomotor impairments and anxiety-like behaviors can be helpful for understanding and managing the progressive functional deterioration shown in aging, especially in AD.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Sex-Dependent Signatures, Time Frames and Longitudinal Fine-Tuning of the Marble Burying Test in Normal and AD-Pathological Aging Mice. Biomedicines 2021; 9:biomedicines9080994. [PMID: 34440198 PMCID: PMC8391620 DOI: 10.3390/biomedicines9080994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
The marble burying (MB) test, a classical test based on the natural tendency of rodents to dig in diverse substrates and to bury small objects, is sensitive to some intrinsic and extrinsic factors. Here, under emerging neuroethological quantitative and qualitative analysis, the MB performance of 12-month-old male and female 3xTg-AD mice for Alzheimer’s disease and age-matched counterparts of gold-standard C57BL6 strain with normal aging unveiled sex-dependent signatures. In addition, three temporal analyses, through the (1) time course of the performance, and (2) a repeated test schedule, identified the optimal time frames and schedules to detect sex- and genotype-dependent differences. Besides, a (3) longitudinal design from 12 to 16 months of age monitored the changes in the performance with aging, worsening in AD-mice, and modulation through the repeated test. In summary, the present results allow us to conclude that (1) the marble burying test is responsive to genotype, sex, aging, and its interactions; (2) the male sex was more sensitive to showing the AD-phenotype; (3) longitudinal assessment shows a reduction in females with AD pathology; (4) burying remains stable in repeated testing; (5) the time-course of marbles burying is useful; and (6) burying behavior most likely represents perseverative and/or stereotyped-like behavior rather than anxiety-like behavior in 3xTg-AD mice.
Collapse
|
15
|
Santana-Santana M, Bayascas JR, Giménez-Llort L. Fine-Tuning the PI3K/Akt Signaling Pathway Intensity by Sex and Genotype-Load: Sex-Dependent Homozygotic Threshold for Somatic Growth but Feminization of Anxious Phenotype in Middle-Aged PDK1 K465E Knock-In and Heterozygous Mice. Biomedicines 2021; 9:747. [PMID: 34203450 PMCID: PMC8301321 DOI: 10.3390/biomedicines9070747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
According to the Research Domain Criteria (RDoC), phenotypic differences among disorders may be explained by variations in the nature and degree of neural circuitry disruptions and/or dysfunctions modulated by several biological and environmental factors. We recently demonstrated the in vivo behavioral translation of tweaking the PI3K/Akt signaling, an essential pathway for regulating cellular processes and physiology, and its modulation through aging. Here we describe, for the first time, the in vivo behavioral impact of the sex and genetic-load tweaking this pathway. The anxiety-like phenotypes of 61 mature (11-14-month-old) male and female PDK1 K465E knock-in, heterozygous, and WT mice were studied. Forced (open-field) anxiogenic environmental conditions were sensitive to detect sex and genetic-load differences at middle age. Despite similar neophobia and horizontal activity among the six groups, females exhibited faster ethograms than males, with increased thigmotaxis, increased wall and bizarre rearing. Genotype-load unveiled increased anxiety in males, resembling female performances. The performance of mutants in naturalistic conditions (marble test) was normal. Homozygotic-load was needed for reduced somatic growth only in males. Factor interactions indicated the complex interplay in the elicitation of different negative valence system's items and the fine-tuning of PI3K/Akt signaling pathway intensity by genotype-load and sex.
Collapse
Affiliation(s)
- Mikel Santana-Santana
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - José-Ramón Bayascas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| |
Collapse
|
16
|
Giménez-Llort L, Marin-Pardo D, Marazuela P, Hernández-Guillamón M. Survival Bias and Crosstalk between Chronological and Behavioral Age: Age- and Genotype-Sensitivity Tests Define Behavioral Signatures in Middle-Aged, Old, and Long-Lived Mice with Normal and AD-Associated Aging. Biomedicines 2021; 9:biomedicines9060636. [PMID: 34199476 PMCID: PMC8228433 DOI: 10.3390/biomedicines9060636] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
New evidence refers to a high degree of heterogeneity in normal but also Alzheimer's disease (AD) clinical and temporal patterns, increased mortality, and the need to find specific end-of-life prognosticators. This heterogeneity is scarcely explored in very old male AD mice models due to their reduced survival. In the present work, using 915 (432 APP23 and 483 C57BL/6 littermates) mice, we confirmed the better survival curves in male than female APP23 mice and respective wildtypes, providing the chance to characterize behavioral signatures in middle-aged, old, and long-lived male animals. The sensitivity of a battery of seven paradigms for comprehensive screening of motor (activity and gait analysis), neuropsychiatric and cognitive symptoms was analyzed using a cohort of 56 animals, composed of 12-, 18- and 24-month-old male APP23 mice and wildtype littermates. Most variables analyzed detected age-related differences. However, variables related to coping with stress, thigmotaxis, frailty, gait, and poor cognition better discriminated the behavioral phenotype of male APP23 mice through the three old ages compared with controls. Most importantly, non-linear age- and genotype-dependent behavioral signatures were found in long-lived animals, suggesting crosstalk between chronological and biological/behavioral ages useful to study underlying mechanisms and distinct compensations through physiological and AD-associated aging.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-581-23-78
| | - Daniela Marin-Pardo
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain
| | - Paula Marazuela
- Vall d’Hebron Research Institute (VHIR), E-08035 Barcelona, Spain; (P.M.); (M.H.-G.)
| | | |
Collapse
|
17
|
Social Nesting, Animal Welfare, and Disease Monitoring. Animals (Basel) 2021; 11:ani11041079. [PMID: 33918975 PMCID: PMC8070261 DOI: 10.3390/ani11041079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Most standardized tools to evaluate welfare and disease progression in animals assess the individuals, while social behaviors are scarcely monitored, despite being useful to detecting acute illness and chronic and mental health problems. The main reason is that social behavior is complex and time-consuming. We are currently using the nests built by animals living together, a species-typical behavior naturally occurring in standard housing conditions, to monitor them. Here, we provide an example of its use to evaluate social deficits and the long-term effects of a neonatal tactile-proprioceptive sensorial treatment from postnatal day 1 to 21, in male and female adult mice modeling Alzheimer’s disease compared to mice with normal aging. Social nesting was worse in the mutants, mostly in males, since the number of days needed to build a perfect nest was longer or unsuccessful in a three-day test. Early life intervention was successful. Social nesting, easily included in housing routines, can be a useful tool to assess animal welfare, monitor disease progress, and evaluate potential risk factors and effects of preventive/therapeutical strategies. Other advantages, such as being a noninvasive, painless, simple, short, and low-cost, rend social nesting feasible to be implemented in most animal department settings. Abstract The assessment of welfare and disease progression in animal models is critical. Most tools rely on evaluating individual subjects, whereas social behaviors, also sensitive to acute illness, chronic diseases, or mental health, are scarcely monitored because they are complex and time-consuming. We propose the evaluation of social nesting, a species-typical behavior naturally occurring in standard housing conditions, for such behavioral monitoring. We provide an example of its use to evaluate social deficits and the long-term effects of neonatal tactile-proprioceptive sensorial stimulation from postnatal day 1 to 21, in male and female adult 3xTg-AD mice for Alzheimer’s disease compared to sex- and age-matched non-transgenic (NTg) counterparts with normal aging. Social nesting was sensitive to genotype (worse in 3xTg-AD mice), sex (worse in males), profile, and treatment (distinct time to observe the maximum score and incidence of the perfect nest). Since social nesting can be easily included in housing routines, this neuroethological approach can be useful for animal welfare, monitoring the disease’s progress, and evaluating potential risk factors and effects of preventive/therapeutical strategies. Finally, the noninvasive, painless, simple, short time, and low-cost features of this home-cage monitoring are advantages that make social nesting feasible to be successfully implemented in most animal department settings.
Collapse
|
18
|
Castillo-Mariqueo L, Giménez-Llort L. Translational Modeling of Psychomotor Function in Normal and AD-Pathological Aging With Special Concerns on the Effects of Social Isolation. FRONTIERS IN AGING 2021; 2:648567. [PMID: 35822009 PMCID: PMC9261363 DOI: 10.3389/fragi.2021.648567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
One year after the start of the COVID-19 pandemic, its secondary impacts can be globally observed. Some of them result from physical distancing and severe social contact restrictions by policies still imposed to stop the fast spread of new variants of this infectious disease. People with Alzheimer's disease (AD) and other dementias can also be significantly affected by the reduction of their activity programs, the loss of partners, and social isolation. Searching for the closest translational scenario, the increased mortality rates in male 3xTg-AD mice modeling advanced stages of the disease can provide a scenario of "naturalistic isolation." Our most recent work has shown its impact worsening AD-cognitive and emotional profiles, AD-brain asymmetry, and eliciting hyperactivity and bizarre behaviors. Here, we further investigated the psychomotor function through six different psychomotor analysis in a set of 13-month-old 3xTg-AD mice and their non-transgenic counterparts with normal aging. The subgroup of male 3xTg-AD mice that lost their partners lived alone for the last 2-3 months after 10 months of social life. AD's functional limitations were shown as increased physical frailty phenotype, poor or deficient psychomotor performance, including bizarre behavior, in variables involving information processing and decision-making (exploratory activity and spontaneous gait), that worsened with isolation. Paradoxical muscular strength and better motor performance (endurance and learning) was shown in variables related to physical work and found enhanced by isolation, in agreement with the hyperactivity and the appearance of bizarre behaviors previously reported. Despite the isolation, a delayed appearance of motor deficits related to physical resistance and tolerance to exercise was found in the 3xTg-AD mice, probably because of the interplay of hyperactivity and mortality/survivor bias. The translation of these results to the clinical setting offers a guide to generate flexible and personalized rehabilitation strategies adaptable to the restrictions of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Gimenez-Llort L, Alveal-Mellado D. Digging Signatures in 13-Month-Old 3xTg-AD Mice for Alzheimer's Disease and Its Disruption by Isolation Despite Social Life Since They Were Born. Front Behav Neurosci 2021; 14:611384. [PMID: 33536883 PMCID: PMC7847935 DOI: 10.3389/fnbeh.2020.611384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
The severity of this pandemic's scenarios will leave significant psychological traces in low resistant and resilient individuals. Increased incidence of depression, anxiety, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder has already been reported. The loss of human lives and the implementation of physical distance measures in the pandemic and post-COVID scenarios may have a greater impact on the elderly, mostly in those with dementia, as OCD and other neuropsychiatric symptoms (NPS) are quite prevalent in this population. Modeling NPS in animals relies in neuroethological perspectives since the response to new situations and traumatic events, critical for survival and adaptation to the environment, is strongly preserved in the phylogeny. In the laboratory, mice dig vigorously in deep bedding to bury food pellets or small objects they may find. This behavior, initially used to screen anxiolytic activity, was later proposed to model better meaningless repetitive and perseverative behaviors characteristic of OCD or autism spectrum disorders. Other authors found that digging can also be understood as part of the expression of the animals' general activity. In the present brief report, we studied the digging ethograms in 13-month-old non-transgenic and 3xTg-AD mice modeling normal aging and advanced Alzheimer's disease (AD), respectively. This genetic model presents AD-like cognitive dysfunction and NPS-like phenotype, with high mortality rates at this age, mostly in males. This allowed us to observe the digging pattern's disruption in a subgroup of 3xTg-AD mice that survived to their cage mates. Two digging paradigms involving different anxiogenic and contextual situations were used to investigate their behavior. The temporal course and intensity of digging were found to increase in those 3xTg-AD mice that had lost their "room partners" despite having lived in social structures since they were born. However, when tested under neophobia conditions, this behavior's incidence was low (delayed), and the temporal pattern was disrupted, suggesting worsening of this NPS-like profile. The outcomes showed that this combined behavioral paradigm unveiled distinct features of digging signatures that can be useful to study these perseverative behaviors and their interplay with anxiety states already present in the AD scenario and their worsening by naturalistic/forced isolation.
Collapse
Affiliation(s)
- Lydia Gimenez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
21
|
Giménez-Llort L, Santana-Santana M, Bayascas JR. The Impact of the PI3K/Akt Signaling Pathway in Anxiety and Working Memory in Young and Middle-Aged PDK1 K465E Knock-In Mice. Front Behav Neurosci 2020; 14:61. [PMID: 32457586 PMCID: PMC7225327 DOI: 10.3389/fnbeh.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction and dysregulation at the genetic, neural, and behavioral levels point at the fine-tuning of broadly spread networks as critical for a wide array of behaviors and mental processes through the life span. This brain-based evidence, from basic to behavioral neuroscience levels, is leading to a new conceptualization of mental health and disease. Thus, the Research Domain Criteria considers phenotypic differences observed among disorders as explained by variations in the nature and degree of neural circuitry disruptions, under the modulation of several developmental, compensatory, environmental, and epigenetic factors. In this context, we aimed to describe for the first time the in vivo behavioral impact of tweaking the PI3K/Akt signaling pathway known to play an essential role in the regulation of cellular processes, leading to diverse physiological responses. We explored the effects in young (YA, 3–4 months of age) and mature (MA, 11–14 months of age) male and female PDK1 K465E knock-in mice in a battery of tests under different anxiogenic conditions. The results evidenced that the double mutation of the PDK1 pleckstrin homology (PH) domain resulted in an enhancement of the negative valence system shown as an increase of responses of fear- and anxiety-like behaviors in anxiogenic situations. Interestingly, this seemed to be specific of YA and found regulated at middle age. In contrast, cognitive deficits, as measured in a spatial working memory task, were found in both YA and MA mutants and independently of the level of their anxious-like profiles. These distinct age- and function-dependent impacts would be in agreement with the distinct cortical and limbic deficits in the Akt signaling in the brain we have recently described in these same animals. The elicitation of age- and neuronal-dependent specific patterns suggests that fine-tuning the intensity of the PKB/Akt signal that enables diverse physiological response has also its in vivo translation into the negative valence system and age is a key regulatory factor.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mikel Santana-Santana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Ramón Bayascas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
23
|
Muntsant A, Giménez-Llort L. Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Front Psychiatry 2020; 11:572583. [PMID: 33329110 PMCID: PMC7732415 DOI: 10.3389/fpsyt.2020.572583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of COVID-19 on the elderly is devastating, and nursing homes are struggling to provide the best care to the most fragile. The urgency and severity of the pandemic forces the use of segregation in restricted areas and confinement in individual rooms as desperate strategies to avoid the spread of disease and the worst-case scenario of becoming a deadly trap. The conceptualization of the post-COVID-19 era implies strong efforts to redesign all living conditions, care/rehabilitation interventions, and management of loneliness forced by social distance measures. Recently, a study of gender differences in COVID-19 found that men are more likely to suffer more severe effects of the disease and are over twice as likely to die. It is well-known that dementia is associated with increased mortality, and males have worse survival and deranged neuro-immuno-endocrine systems than females. The present study examines the impact of long-term isolation in male 3xTg-AD mice modeling advanced stages of Alzheimer's disease (AD) and as compared to age-matched counterparts with normal aging. We used a battery of ethological and unconditioned tests resembling several areas in nursing homes. The main findings refer to an exacerbated (two-fold increase) hyperactivity and emergence of bizarre behaviors in isolated 3xTg-AD mice, worrisome results since agitation is a challenge in the clinical management of dementia and an important cause of caregiver burden. This increase was consistently shown in gross (activity in most of the tests) and fine (thermoregulatory nesting) motor functions. Isolated animals also exhibited re-structured anxiety-like patterns and coping-with-stress strategies. Bodyweight and kidney weight loss were found in AD-phenotypes and increased by isolation. Spleen weight loss was isolation dependent. Hippocampal tau pathology was not modified, but asymmetric atrophy of the hippocampus, recently described in human patients with dementia and modeled here for the first time in an animal model of AD, was found to increase with isolation. Overall, the results show awareness of the impact of isolation in elderly patients with dementia, offering some guidance from translational neuroscience in these times of coronavirus and post-COVID-19 pandemic. They also highlight the relevance of personalized-based interventions tailored to the heterogeneous and complex clinical profile of the individuals with dementia and to consider the implications on caregiver burden.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Torres-Lista V, López-Pousa S, Giménez-Llort L. Impact of Chronic Risperidone Use on Behavior and Survival of 3xTg-AD Mice Model of Alzheimer's Disease and Mice With Normal Aging. Front Pharmacol 2019; 10:1061. [PMID: 31607916 PMCID: PMC6771277 DOI: 10.3389/fphar.2019.01061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Psychosis and/or aggression are common problems in dementia, and when severe or persistent, cause considerable patient distress and disability, caregiver stress, and early institutionalization. In 2005, the Food and Drug Administration (FDA) determined that atypical antipsychotics were associated with a significantly greater mortality risk compared to placebo, which prompted the addition of an FDA black-box warning. The American College of Neuropsychopharmacology (ACNP) White Paper, 2008, reviewed this issue and made clinical and research recommendations regarding the use of antipsychotics in dementia patients with psychosis and/or agitation. Increased mortality risk has also been described in cerebrovascular adverse events in elderly users of antipsychotics. In the present work, at the translational level, we used male 3xTg-AD mice (PS1M146V, APPSwe, tauP301L) at advanced stages of the disease reported to have worse survival than females, to study the behavioral effects of a low chronic dose of risperidone (0.1 mg/kg, s.c., 90 days, from 13 to 16 months of age) and its impact on long-term survival, as compared to mice with normal aging. Animals were behaviorally assessed for cognitive and BPSD (behavioral and psychological symptoms of dementia)-like symptoms in naturalistic and experimental conditions (open-field test, T-maze, social interaction, Morris water maze, and marble test) before and after treatment. Weight, basal glucose levels, and IPGTT (i.p. glucose tolerance test) were also recorded. Neophobia in the corner test was used for behavioral monitoring. Survival curves were recorded throughout the experiment until natural death. The benefits of risperidone were limited, both at cognitive and BPSD-like level, and mostly restricted to burying, agitation/vibrating tail, and other social behaviors. However, the work warns about a clear early mortality risk window during the treatment and long-lasting impact on survival. Reduced life expectancy and life span were observed in the 3xTg-AD mice, but total lifespan (36 months) recorded in C57BL/6 × 129Sv counterparts with normal aging was also truncated to 28 months in those with treatment. Sarcopenia at time of death was found in all groups, but was more severe in wild-type animals treated with risperidone. Therefore, the 3xTg-AD mice and their non-transgenic counterparts can be useful to delimitate critical time windows and for studying the physio-pathogenic factors and underlying causal events involved in this topic of considerable public health significance.
Collapse
Affiliation(s)
- Virginia Torres-Lista
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Secundí López-Pousa
- Research Unit and UVaMiD (Memory and Dementia Assessment Unit), Institut d'Assistència Sanitaria, Salt, Spain
| | - Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Flores-Cuadrado A, Saiz-Sanchez D, Mohedano-Moriano A, Martinez-Marcos A, Ubeda-Bañon I. Neurodegeneration and contralateral α-synuclein induction after intracerebral α-synuclein injections in the anterior olfactory nucleus of a Parkinson's disease A53T mouse model. Acta Neuropathol Commun 2019; 7:56. [PMID: 30987677 PMCID: PMC6463651 DOI: 10.1186/s40478-019-0713-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is characterized by a proteinopathy that includes aggregates of α-synuclein. A recent hypothesis proposes a prion-like spreading mechanism for this α-synucleinopathy. Early neuropathological deposits occur, among others, in the anterior olfactory nucleus (AON). This study investigates the anterograde and/or retrograde transmissibility of exogenous α-synuclein inoculated in the right AON of the A53T model of Parkinson’s disease and wild-type mice as well as neuronal and glial involvement. Seven experimental groups were established: wild-type injected with tracers; A53T mice injected with either α-synuclein or saline 2 months beforehand; wild-type injected with either α-synuclein or saline 2 months beforehand; and wild-type injected with either α-synuclein or saline 4 months beforehand. Weight and behavioral changes were analyzed. Immunohistochemistry against α-synuclein, NeuN, Iba-1 and GFAP was performed. Volume and marker distributions in the olfactory bulb (OB), AON and piriform cortex were analyzed using unbiased stereology. The behavioral analyses reveal higher levels of hyperactivity in transgenic as compared to wild-type mice. Tract-tracing experiments show that the main contralateral afferent projections to the dorsal AON come from the AON and secondarily from the OB. In saline-injected transgenic animals, α-synuclein expression in the OB and the AON is higher in the left hemisphere than in the right hemisphere, which could be due to basal interhemispheric differences. α-synuclein injection could provoke a significant increase in the left hemisphere of the transgenic mice’s OB, compared to saline-injected animals. Neuronal loss was observed in saline-injected transgenic mice relative to the saline-injected wild-type group. There were no overall differences in neuron number following injection of α-synuclein into either wild-type or transgenic mice, however some neuron loss was apparent in specific regions of α-synuclein injected wild-types. Microglia labeling appeared to be correlated with surgery-induced inflammation. Astroglial labeling was higher in transgenic animals, which could be due to endogenous α-synucleinopathy. This study suggests α-synucleinopathy induction, via retrograde and contralateral projections, within the olfactory system of transgenic animals.
Collapse
|
26
|
Ramírez-Boix P, Giménez-Llort L. Comorbid sensorimotor and emotional profiles in the forced swim test immobility and predictive value of a single assay in very old female mice. Exp Gerontol 2019; 120:107-112. [PMID: 30878642 DOI: 10.1016/j.exger.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
The increase of prevalence of mental health problems in the elderly due to the aging of the population becomes an outstanding issue since in most individuals it happens in an already complex multimorbid scenario that may include frailty and age-related medical conditions. Depression, soon the major cause of global disease burden, can be found as an age-related comorbidity and frailty, or as part of neurodegenerative diseases and where females are more vulnerable to it. Thought the multifactorial aetiology and heterogeneous nature of depression render it difficult to be modelled in animals, active behaviours elicited in the Forced Swimming Test (FST) are used to screen antidepressant treatments. However, interpretation of immobility remains controversial. The present work addressed this issue in very-old (21 months) female C57bl/6 × 129 mice, also with the concern that a '6 minutes × 2 days' protocol can result demanding for a very-old animal and confounding factors may also arise. Animals were behaviourally assessed for sensorimotor functions, emotionality and anxiety-like behaviours, novelty seeking, and immobility in a 2-days FST. The predictive value of the first day evidenced that one single assay as sufficient for the assessment of immobility, and that the repeated test did not increase the immobility response. Moreover, sensorimotor tasks, neophobia in the corner test and emotional behaviour in the dark-light box correlated with FST immobility, contributing to the response. The results support the concern of geroscience on the relevance of using aged animals but also aware about taking into account the complexity of their comorbid scenario.
Collapse
Affiliation(s)
- Paula Ramírez-Boix
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain; Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
27
|
Motor deficits in 16-month-old male and female 3xTg-AD mice. Behav Brain Res 2019; 356:305-313. [DOI: 10.1016/j.bbr.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/22/2022]
|
28
|
Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice. Sci Rep 2018; 8:6431. [PMID: 29691439 PMCID: PMC5915484 DOI: 10.1038/s41598-018-24741-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/05/2018] [Indexed: 12/03/2022] Open
Abstract
Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer’s disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12–14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.
Collapse
|
29
|
Baeta-Corral R, Johansson B, Giménez-Llort L. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer's Disease and Affects Mice with Normal Aging. Front Pharmacol 2018; 9:79. [PMID: 29497377 PMCID: PMC5818407 DOI: 10.3389/fphar.2018.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer's disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer's disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.
Collapse
Affiliation(s)
- Raquel Baeta-Corral
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Björn Johansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Karolinska University Hospital, Solna, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer’s disease mice. Behav Brain Res 2017; 331:54-66. [DOI: 10.1016/j.bbr.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
|
31
|
Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem 2016; 130:34-43. [DOI: 10.1016/j.nlm.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 01/16/2016] [Indexed: 12/12/2022]
|
32
|
Haskins M, Jones TE, Lu Q, Bareiss SK. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer's disease. Neurosci Lett 2015; 610:165-70. [PMID: 26547034 DOI: 10.1016/j.neulet.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model.
Collapse
Affiliation(s)
- Morgan Haskins
- Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA.
| | - Terry E Jones
- Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA.
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA; The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA.
| | - Sonja K Bareiss
- Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA; The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, East Carolina University, 600 Moye Blvd. East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
33
|
Torres-Lista V, Giménez-Llort L. Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner. Behav Processes 2015; 120:120-7. [PMID: 26431900 DOI: 10.1016/j.beproc.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
Forced Swimming Test (FST) models behavioural despair in animals by loss of motivation to respond or the refusal to escape. The present study was aimed at characterizing genetic (genotype and gender) and environmental factors (age/stage of disease and rearing conditions: C, standard; H, early postnatal handling; EE, environmental enrichment consisting in physical exercise as well as social and object enrichment) that may modulate the poor behavioural and cognitive flexibility response we have recently described in 12-month-old male 3xTg-AD mice in the FST. The comprehensive analysis of the ethogram shown in the FST considered the intervals of the test (0-2 and 2-6min), all the elicited behavioural responses (immobility, swimming and climbing) and their features (total duration and frequency of episodes). The long persistence of behaviours found in 17-month-old (late-stages of disease) 3xTg-AD mice was comparable to that recently described in males at 12 months of age (beginning of advanced stages) but also suggested increased age-dependent frailty in both genotypes. The poor behavioral flexibility of 3xTg-AD mice to elicit the behavioural despair shown by the NTg mice, was also found in the female gender. Finally, the present work demonstrates that early-life interventions were able to improve the time and frequency of episodes of immobility, being more evident in the female gender of both old NTg and 3xTg-AD mice. Ontogenic modulation by early-postnatal handling resulted in a more effective long-term improvement of the elicited behaviours in the FST than that achieved by environmental enrichment. The results talk in favor of the beneficence of early-life interventions on ageing in both healthy and disease conditions.
Collapse
Affiliation(s)
- Virginia Torres-Lista
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
34
|
Cañete T, Blázquez G, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional alterations in young Alzheimer's disease (3xTgAD) mice: effects of neonatal handling stimulation and sexual dimorphism. Behav Brain Res 2014; 281:156-71. [PMID: 25446741 DOI: 10.1016/j.bbr.2014.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Alzheimer disease is the most common neurodegenerative disorder and cause of senile dementia. It is characterized by an accelerated memory loss, and alterations of mood, reason, judgment and language. The main neuropathological hallmarks of the disorder are β-amyloid (βA) plaques and neurofibrillary Tau tangles. The triple transgenic 3xTgAD mouse model develops βA and Tau pathologies in a progressive manner which mimicks the pattern that takes place in the human brain with AD, and showing cognitive alterations characteristic of the disease. The present study intended to examine whether 3xTgAD mice of both sexes present cognitive, emotional and other behavioral alterations at the early age of 4 months, an age in which only some intraneuronal amyloid accumulation is found. Neonatal handling (H) is an early-life treatment known to produce profound and long-lasting behavioral and neurobiological effects in rodents, as well as improvements in cognitive functions. Therefore, we also aimed at evaluating the effects of H on the behavioral/cognitive profile of 4-month-old male and female 3xTgAD mice. The results indicate that, (1) 3xTgAD mice present spatial learning/memory deficits and emotional alterations already at the early age of 4 months, (2) there exists sexual dimorphism effects on several behavioral variables at this age, (3) neonatal handling exerts a preventive effect on some cognitive (spatial learning) and emotional alterations appearing in 3xTgAD mice already at early ages, and 4) H treatment appears to produce stronger positive effects in females than in males in several spatial learning measures and in the open field test.
Collapse
Affiliation(s)
- T Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - G Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - A Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - L Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - A Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
35
|
Blázquez G, Cañete T, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional profiles of aged Alzheimer's disease (3×TgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res 2014; 268:185-201. [PMID: 24746486 DOI: 10.1016/j.bbr.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder associated with age which represents the most common cause of dementia. It is characterized by an accelerated memory loss compared to normal aging, and deterioration of other cognitive abilities that interfere with mood, reason, judgment and language. The main neuropathological hallmarks of the disorder are β-amyloid (βA) plaques and neurofibrillary Tau tangles. Triple transgenic 3×TgAD mouse model develops βA and Tau pathologies in a progressive manner, with a specific temporal and anatomic profile mimicking the pattern that takes place in the human brain with AD, and showing cognitive alterations characteristic of the disease. Environmental enrichment treatment in mice induces behavioral and emotional reactivity changes, including cognitive improvements in some AD-related transgenic mice. The present work intended to characterize the behavioral profile of 3×TgAD mice at advanced stages of neuropathological development (12 and 15 months of age) and to investigate whether environmental enrichment administered during adulthood was able to modify some of their behavioral and cognitive alterations. Results show that, at advanced stages of the disease 3×TgAD mice show deficits of spatial learning acquisition, as well as short-term and working memory deficits, while displaying increased levels of anxiety/fearfulness and normal sensorimotor functions. 3×TgAD mice also show sexual dimorphism, as reflected by increased cognitive deficits in females and increased levels of novelty-induced behavioral inhibition in males. Environmental enrichment exerts some slight positive effects, by mainly improving the initial acquisition of the spatial learning and working memory in 12-month-old 3×TgAD mice. Such effects vary depending on the gender.
Collapse
Affiliation(s)
- Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|