1
|
Chen J, Wang X, Li Z, Yuan H, Wang X, Yun Y, Wu X, Yang P, Qin L. Thalamo-cortical neural mechanism of sodium salicylate-induced hyperacusis and anxiety-like behaviors. Commun Biol 2024; 7:1346. [PMID: 39420035 PMCID: PMC11487285 DOI: 10.1038/s42003-024-07040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xueru Wang
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Ding Y, Jiang H, Xu N, Li L. Inhibitory effects of prepulse stimuli on the electrophysiological responses to startle stimuli in the deep layers of the superior colliculus. Front Neurosci 2024; 18:1446929. [PMID: 39211433 PMCID: PMC11359569 DOI: 10.3389/fnins.2024.1446929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Prepulse inhibition (PPI) is a phenomenon where a weak prepulse stimulus inhibits the startle reflex to a subsequent stronger stimulus, which can be induced by various sensory stimulus modalities such as visual, tactile, and auditory stimuli. Methods This study investigates the neural mechanisms underlying auditory PPI by focusing on the deep layers of the superior colliculus (deepSC) and the inferior colliculus (IC) in rats. Nineteen male Sprague-Dawley rats were implanted with electrodes in the left deepSC and the right IC, and electrophysiological recordings were conducted under anesthesia to observe the frequency following responses (FFRs) to startle stimuli with and without prepulse stimuli. Results Our results showed that in the deepSC, narrowband noise as a prepulse stimulus significantly inhibited the envelope component of the startle response, while the fine structure component remained unaffected. However, this inhibitory effect was not observed in the IC or when the prepulse stimulus was a gap. Conclusion These findings suggest that the deepSC plays a crucial role in the neural circuitry of PPI, particularly in the modulation of the envelope component of the startle response. The differential effects of narrowband noise and gap as prepulse stimuli also indicate distinct neural pathways for sound-induced PPI and Gap-PPI. Understanding these mechanisms could provide insights into sensory processing and potential therapeutic targets for disorders involving impaired PPI, such as tinnitus.
Collapse
Affiliation(s)
- Yu Ding
- School of Psychology, Beijing Language and Culture University, Beijing, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Huan Jiang
- School of Psychology, Beijing Language and Culture University, Beijing, China
| | - Na Xu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Liang Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Dai Q, Qu T, Shen G, Wang H. Characterization of the neural circuitry of the auditory thalamic reticular nucleus and its potential role in salicylate-induced tinnitus. Front Neurosci 2024; 18:1368816. [PMID: 38629053 PMCID: PMC11019010 DOI: 10.3389/fnins.2024.1368816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Subjective tinnitus, the perception of sound without an external acoustic source, is often subsequent to noise-induced hearing loss or ototoxic medications. The condition is believed to result from neuroplastic alterations in the auditory centers, characterized by heightened spontaneous neural activities and increased synchrony due to an imbalance between excitation and inhibition. However, the role of the thalamic reticular nucleus (TRN), a structure composed exclusively of GABAergic neurons involved in thalamocortical oscillations, in the pathogenesis of tinnitus remains largely unexplored. Methods We induced tinnitus in mice using sodium salicylate and assessed tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle (GPIAS) paradigm. We utilized combined viral tracing techniques to identify the neural circuitry involved and employed immunofluorescence and confocal imaging to determine cell types and activated neurons. Results Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing clearly delineated the inputs and outputs of the auditory-specific TRN. We discovered that chemogenetic activation of the auditory TRN significantly reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex. Discussion This finding posits the TRN as a potential modulatory target for tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory TRN suggest possibilities for employing optogenetic or sensory stimulations to manipulate thalamocortical activities. The precise mapping of the auditory TRN-mediated neural pathways offers a promising avenue for designing targeted interventions to alleviate tinnitus symptoms.
Collapse
Affiliation(s)
| | | | - Guoming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Rezapour M, Farrahizadeh M, Akbari M. Effectiveness of transcutaneous vagus nerve stimulation (tVNS) on salicylate-induced tinnitus. Neurosci Lett 2024; 822:137639. [PMID: 38224829 DOI: 10.1016/j.neulet.2024.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Tinnitus is the most common symptom of auditory system disorders. It affects the quality of life of millions of people, but it is still incurable in most cases. Vagus nerve stimulation (VNS) therapy is a potential new treatment for subjective tinnitus. In this study, transcutaneous vagus nerve stimulation (tVNS) combined with tones was utilized to treat salicylate-induced tinnitus since salicylate is a reliable and convenient approach for rapidly inducing tinnitus. METHODS Wistar rats were divided into acoustic stimulation alone (AS, n = 6), tVNS alone (n = 6), and tVNS with AS (n = 6) groups for behavioral and electrophysiological tests. They were assessed by auditory brainstem response (ABR), prepulse inhibition (PPI), gap prepulse inhibition of the acoustic startle (GPIAS), social interactions, and aggressive behavior tests at baseline and seven days' post-salicylate (175 mg/kg, twice a day) injection. RESULTS The inhibition percentage of the GPIAS test was significantly reduced post-salicylate injection in the tVNS and AS alone groups, while it was not significant in the tVNS with AS group. There was no significant difference in the mean percentage of the GPIAS test between the tVNS groups (with or without AS) after salicylate injections. Social interactions were significantly different in the AS alone group pre- and post-salicylate injections, but they were not significant in other groups. Moreover, the results of aggressive behavior tests showed significantly increased post-salicylate injections in the AS alone group, while they were not significant in the tVNS groups (with or without AS). CONCLUSIONS The current study revealed that the application of tVNS alone produced improved social interaction and mood and alleviated salicylate-induced tinnitus severity. Moreover, combining tVNS with acoustic stimulation can prevent salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Mitra Rezapour
- Otorhinolaryngology Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farrahizadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akbari
- Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rezapour M, Akbari M, Dargahi L, Zibaii MI, Shahbazi A. The Auditory Brainstem Response (ABR) Test, Supplementary to Behavioral Tests for Evaluation of the Salicylate-Induced Tinnitus. Indian J Otolaryngol Head Neck Surg 2023; 75:6-15. [PMID: 37206728 PMCID: PMC10188764 DOI: 10.1007/s12070-022-03117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/28/2022] [Indexed: 10/16/2022] Open
Abstract
Tinnitus is a symptom of various disorders that affects the quality of life of millions people. Given the significance of the access to an objective and non-invasive method for tinnitus detection, in this study the auditory brainstem response (ABR) electrophysiological test was used to diagnose salicylate-induced tinnitus, in parallel with common behavioral tests. Wistar rats were divided into saline (n = 7), and salicylate (n = 7) groups for behavioral tests, and salicylate group (n = 5) for the ABR test. The rats were evaluated by pre-pulse inhibition (PPI), gap pre-pulse inhibition of the acoustic startle (GPIAS), and ABR tests, at baseline, 14 and 62 h after salicylate (350 mg/kg) or vehicle injection. The mean percentage of GPIAS test was significantly reduced following salicylate administration, which confirms the induction of tinnitus. The ABR test results showed an increase in the hearing threshold at click and 8, 12, and 16 kHz tones. Moreover, a decline was observed in the latency ratio of II-I waves in all tone burst frequencies with the highest variation in 12 and 16 kHz as well as a decrement in the latency ratio of III-I and IV-I only in 12 and 16 kHz. ABR test is able to evaluate the salicylate induced tinnitus pitch and confirm the results of behavioral tinnitus tests. GPIAS reflexive response is dependent on brainstem circuits and the auditory cortex while, ABR test can demonstrate the function of the auditory brainstem in more details, and therefore, a combination of these two tests can offer a more accurate tinnitus evaluation. Graphical Abstract
Collapse
Affiliation(s)
- Mitra Rezapour
- Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Akbari
- Rehabilitation Research Center, Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
6
|
Koch L, Gaese BH, Nowotny M. Strain Comparison in Rats Differentiates Strain-Specific from More General Correlates of Noise-Induced Hearing Loss and Tinnitus. J Assoc Res Otolaryngol 2021; 23:59-73. [PMID: 34796410 PMCID: PMC8782999 DOI: 10.1007/s10162-021-00822-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Experiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.
Collapse
Affiliation(s)
- L Koch
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - B H Gaese
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany. .,Animal Physiology Group, Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
7
|
Ivanova N, Nenchovska Z, Atanasova M, Laudon M, Mitreva R, Tchekalarova J. Chronic Piromelatine Treatment Alleviates Anxiety, Depressive Responses and Abnormal Hypothalamic-Pituitary-Adrenal Axis Activity in Prenatally Stressed Male and Female Rats. Cell Mol Neurobiol 2021; 42:2257-2272. [PMID: 34003403 DOI: 10.1007/s10571-021-01100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
The prenatal stress (PNS) model in rodents can induce different abnormal responses that replicate the pathophysiology of depression. We applied this model to evaluate the efficacy of piromelatine (Pir), a novel melatonin analog developed for the treatment of insomnia, in male and female offspring. Adult PNS rats from both sexes showed comparable disturbance associated with high levels of anxiety and depressive responses. Both males and females with PNS demonstrated impaired feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis compared to the intact offspring and increased glucocorticoid receptors in the hippocampus. However, opposite to female offspring, the male PNS rats showed an increased expression of mineralocorticoid receptors in the hippocampus. Piromelatine (20 mg/kg, i.p., for 21 days injected from postnatal day 60) attenuated the high anxiety level tested in the open field, elevated plus-maze and light-dark test, and depressive-like behavior in the sucrose preference and the forced swimming tests in a sex-specific manner. The drug reversed to control level stress-induced increase of plasma corticosterone 120 min later in both sexes. Piromelatine also corrected to control level the PNS-induced alterations of corticosteroid receptors only in male offspring. Our findings suggest that the piromelatine treatment exerts beneficial effects on impaired behavioral responses and dysregulated HPA axis in both sexes, while it corrects the PNS-induced changes in the hippocampal corticosteroid receptors only in male offspring.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800, Pleven, Bulgaria
| | - Moshe Laudon
- Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel
| | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 23, 1113, Sofia, Bulgaria.
| |
Collapse
|
8
|
Attribute capture underlying the precedence effect in rats. Hear Res 2020; 400:108096. [PMID: 33212323 DOI: 10.1016/j.heares.2020.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/19/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
In a reverberant environment, humans with normal hearing can perceptually fuse the soundwave from a source with its reflections off nearby surfaces into a single auditory image, whose location appears to be around the source. This phenomenon is called the precedence effect, which is based on the perceptual capture of the reflected (lagging) sounds' attributes by the direct wave from the source. Using the paradigm of attentional modulation of the prepulse inhibition (PPI) of the startle reflex, with both the prepulse-feature specificity and the perceived-prepulse-location specificity, this study was to examine whether the perceptual attribute capture underlying the precedence effect occurs in rats. One broadband continuous noise was delivered by each of two spatially separated left and right loudspeakers with a 1-ms inter-loudspeaker delay. A silent gap was embedded in one of the two noises as the prepulse stimulus. The results showed that regardless of whether the gap was physically in the leading or lagging noise when the leading noise was either the left or right one, fear conditioning the gap enhanced PPI only when the leading noise was delivered from the loudspeaker that was the leading but not the lagging loudspeaker during the conditioning, indicating that due to the spatial specificity (either left or right) in the attentional enhancement of PPI, the perceived location of the conditioned gap was always on the leading side even though the gap was physically on the lagging side. Thus, rats have the same perceptual ability of attribute capture, thereby experiencing the auditory precedence effect as humans.
Collapse
|
9
|
Spatial specificity in attentional modulation of prepulse inhibition of the startle reflex in rats. Exp Brain Res 2020; 238:1555-1561. [DOI: 10.1007/s00221-020-05818-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
|
10
|
McLaurin KA, Moran LM, Li H, Booze RM, Mactutus CF. A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat. J Neuroimmune Pharmacol 2017; 12:171-179. [PMID: 27699630 PMCID: PMC5316491 DOI: 10.1007/s11481-016-9711-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/14/2016] [Indexed: 12/01/2022]
Abstract
Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Landhing M Moran
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
McLaurin KA, Booze RM, Mactutus CF. Progression of temporal processing deficits in the HIV-1 transgenic rat. Sci Rep 2016; 6:32831. [PMID: 27596023 PMCID: PMC5011765 DOI: 10.1038/srep32831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes, was used to investigate the effect(s) of long-term HIV-1 viral protein exposure on chronic neurocognitive deficits observed in pediatric HIV-1 (PHIV). A longitudinal experimental design was used to assess the progression of temporal processing deficits, a potential underlying dimension of neurocognitive impairment in HIV-1. Gap prepulse inhibition (gap-PPI), a translational experimental paradigm, was conducted every thirty days from postnatal day (PD) 30 to PD 180. HIV-1 Tg animals, regardless of sex, displayed profound alterations in the development of temporal processing, assessed using prepulse inhibition. A differential sensitivity to the manipulation of interstimulus interval was observed in HIV-1 Tg animals in comparison to control animals. Moreover, presence of the HIV-1 transgene was diagnosed with 90.8% accuracy using measures of prepulse inhibition and temporal sensitivity. Progression of temporal processing deficits in the HIV-1 Tg rat affords a relatively untapped opportunity to increase our mechanistic understanding of the role of long-term exposure to HIV-1 viral proteins, observed in pediatric HIV-1, in the development of chronic neurological impairment, as well as suggesting an innovative clinical diagnostic screening tool.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|
12
|
Butt S, Ashraf F, Porter LA, Zhang H. Sodium salicylate reduces the level of GABAB receptors in the rat's inferior colliculus. Neuroscience 2015; 316:41-52. [PMID: 26705739 DOI: 10.1016/j.neuroscience.2015.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Previous studies have indicated that sodium salicylate (SS) can cause hearing abnormalities through affecting the central auditory system. In order to understand central effects of the drug, we examined how a single intraperitoneal injection of the drug changed the level of subunits of the type-B γ-aminobutyric acid receptor (GABAB receptor) in the rat's inferior colliculus (IC). Immunohistochemical and western blotting experiments were conducted three hours following a drug injection, as previous studies indicated that a tinnitus-like behavior could be reliably induced in rats within this time period. Results revealed that both subunits of the receptor, GABABR1 and GABABR2, reduced their level over the entire area of the IC. Such a reduction was observed in both cell body and neuropil regions. In contrast, no changes were observed in other brain structures such as the cerebellum. Thus, a coincidence existed between a structure-specific reduction in the level of GABAB receptor subunits in the IC and the presence of a tinnitus-like behavior. This coincidence likely suggests that a reduction in the level of GABAB receptor subunits was involved in the generation of a tinnitus-like behavior and/or used by the nervous system to restore normal hearing following application of SS.
Collapse
Affiliation(s)
- S Butt
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - F Ashraf
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - L A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - H Zhang
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
13
|
Salloum RH, Sandridge S, Patton DJ, Stillitano G, Dawson G, Niforatos J, Santiago L, Kaltenbach JA. Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test. Hear Res 2015; 331:92-100. [PMID: 26520582 DOI: 10.1016/j.heares.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided.
Collapse
Affiliation(s)
- R H Salloum
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - S Sandridge
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - D J Patton
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - G Stillitano
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - G Dawson
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Niforatos
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - L Santiago
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - J A Kaltenbach
- Department of Neurosciences, The Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Galazyuk A, Hébert S. Gap-Prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment: Current Status and Future Directions. Front Neurol 2015; 6:88. [PMID: 25972836 PMCID: PMC4411996 DOI: 10.3389/fneur.2015.00088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
The progress in the field of tinnitus largely depends on the development of a reliable tinnitus animal model. Recently, a new method based on the acoustic startle reflex modification was introduced for tinnitus screening in laboratory animals. This method was enthusiastically adopted and now widely used by many scientists in the field due to its seeming simplicity and a number of advantages over the other methods of tinnitus assessment. Furthermore, this method opened an opportunity for tinnitus assessment in humans as well. Unfortunately, multiple modifications of data collection and interpretation implemented in different labs make comparisons across studies very difficult. In addition, recent animal and human studies have challenged the original “filling-in” interpretation of the paradigm. Here, we review the current literature to emphasize on the commonalities and differences in data collection and interpretation across laboratories that are using this method for tinnitus assessment. We also propose future research directions that could be taken in order to establish whether or not this method is warranted as an indicator of the presence of tinnitus.
Collapse
Affiliation(s)
- Alexander Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University , Rootstown, OH , USA
| | - Sylvie Hébert
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
15
|
Radziwon KE, Stolzberg DJ, Urban ME, Bowler RA, Salvi RJ. Salicylate-induced hearing loss and gap detection deficits in rats. Front Neurol 2015; 6:31. [PMID: 25750635 PMCID: PMC4335184 DOI: 10.3389/fneur.2015.00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
To test the "tinnitus gap-filling" hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30-60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible.
Collapse
Affiliation(s)
- Kelly E. Radziwon
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Daniel J. Stolzberg
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Maxwell E. Urban
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael A. Bowler
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard J. Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
16
|
Liu XP, Chen L. Forward acoustic masking enhances the auditory brainstem response in a diotic, but not dichotic, paradigm in salicylate-induced tinnitus. Hear Res 2015; 323:51-60. [PMID: 25668125 DOI: 10.1016/j.heares.2015.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
We recently reported that forward acoustic masking can enhance the auditory brainstem response (ABR) in rats treated with a high dose of sodium salicylate (NaSal), a tinnitus inducer, when tested in open acoustic field (Liu and Chen, 2012, Brain Research 1485, 88-94). In the present study, we first replicated this experiment in closed acoustic field under two conditions: (1) the forward masker and the probe were presented to both ears (diotic paradigm); (2) the forward masker was presented to one ear and the probe to the other ear (dichotic paradigm). We found that only when the stimuli were presented by using the diotic, rather than the dichotic, paradigm could forward acoustic masking enhance the ABR in the rat treated with NaSal (300 mg/kg). The enhancement was obvious for ABR waves II and IV, but not for wave I, indicating a central origin. The enhancement occurred at the high frequencies (16, 24, 32 kHz) at which the animals demonstrated a tinnitus-like behavior as revealed by using the gap prepulse inhibition of acoustic startle paradigm. We then administered vigabatrin, a GABA transaminase inhibitor, in the animals to suppress NaSal-induced tinnitus. The vigabatrin treatment successfully prevented forward acoustic masking from enhancing the ABR. These findings demonstrate that the observed enhancement of ABRs by forward acoustic masking originates in the central auditory pathway ipsilateral to the stimulated ear. We propose that the enhancement is closely associated with NaSal-induced tinnitus.
Collapse
Affiliation(s)
- Xiao-Peng Liu
- Center for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
17
|
Zhang C, Flowers E, Li JX, Wang Q, Sun W. Loudness perception affected by high doses of salicylate—A behavioral model of hyperacusis. Behav Brain Res 2014; 271:16-22. [DOI: 10.1016/j.bbr.2014.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
|
18
|
|
19
|
|
20
|
Gold JR, Bajo VM. Insult-induced adaptive plasticity of the auditory system. Front Neurosci 2014; 8:110. [PMID: 24904256 PMCID: PMC4033160 DOI: 10.3389/fnins.2014.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023] Open
Abstract
The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.
Collapse
Affiliation(s)
- Joshua R Gold
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| |
Collapse
|
21
|
Sun W, Fu Q, Zhang C, Manohar S, Kumaraguru A, Li J. Loudness perception affected by early age hearing loss. Hear Res 2014; 313:18-25. [PMID: 24747532 DOI: 10.1016/j.heares.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
Tinnitus and hyperacusis, commonly seen in adults, are also reported in children. Although clinical studies found children with tinnitus and hyperacusis often suffered from recurrent otitis media, there is no direct study on how temporary hearing loss in the early age affects the sound loudness perception. In this study, sound loudness changes in rats affected by perforation of the tympanic membranes (TM) have been studied using an operant conditioning based behavioral task. We detected significant increases of sound loudness and susceptibility to audiogenic seizures (AGS) in rats with bilateral TM damage at postnatal 16 days. As increase to sound sensitivity is commonly seen in hyperacusis and tinnitus patients, these results suggest that early age hearing loss is a high risk factor to induce tinnitus and hyperacusis in children. In the TM damaged rats, we also detected a reduced expression of GABA receptor δ and α6 subunits in the inferior colliculus (IC) compared to the controls. Treatment of vigabatrin (60 mg/kg/day, 7-14 days), an anti-seizure drug that inhibits the catabolism of GABA, not only blocked AGS, but also significantly attenuated the loudness response. Administration of vigabatrin following the early age TM damage could even prevent rats from developing AGS. These results suggest that TM damage at an early age may cause a permanent reduction of GABA tonic inhibition which is critical towards the maintenance of normal loudness processing of the IC. Increasing GABA concentration during the critical period may alleviate the impairment in the brain induced by early age hearing loss.
Collapse
Affiliation(s)
- Wei Sun
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Qiang Fu
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA; Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Chao Zhang
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA; Department of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, PR China
| | - Senthilvelan Manohar
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | - Anand Kumaraguru
- Center for Hearing & Deafness, Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|