1
|
Schenk S, Horsfield JA, Dwoskin L, Johnson SL. Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration. Pharmacol Biochem Behav 2024; 240:173777. [PMID: 38670467 DOI: 10.1016/j.pbb.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6-10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1-3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10-20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
Collapse
Affiliation(s)
- Susan Schenk
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Linda Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
3
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Chen Y, Wisner AS, Schiefer IT, Williams FE, Hall FS. Methamphetamine-induced lethal toxicity in zebrafish larvae. Psychopharmacology (Berl) 2022; 239:3833-3846. [PMID: 36269378 PMCID: PMC10593407 DOI: 10.1007/s00213-022-06252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
RATIONALE The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches. OBJECTIVES In this study, we used methamphetamine (METH) as an exemplary psychoactive substance to investigate its acute toxicity and possible underlying mechanisms in 5-day post-fertilization (5 dpf) zebrafish larvae. METHODS Lethality and toxicity of different concentrations of METH were examined in 5-dpf zebrafish larvae using a 96-well plate format. RESULTS METH induced lethality in zebrafish larvae in a dose-dependent manner, which was associated with initial sympathomimetic activation, followed by cardiotoxicity. This was evidenced by significant heart rate increases at low doses, followed by decreased cardiac function at high doses and later time points. Levels of ammonia in the excreted water were increased but decreased internally. There was also evidence of seizures. Co-administration of the glutamate AMPA receptor antagonist GYKI-52466 and the dopamine D2 receptor antagonist raclopride significantly attenuated METH-induced lethality, suggesting that this lethality may be mediated synergistically or independently by glutamatergic and dopaminergic systems. CONCLUSIONS These experiments provide a baseline for the study of the toxicity of related amphetamine compounds in 5-dpf zebrafish as well as a new high-throughput approach for investigating the toxicities of rapidly emerging new psychoactive substances.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
- College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave Room 610, Memphis, TN, 38163, USA
| | - Alexander S Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
5
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
6
|
Bedrossiantz J, Bellot M, Dominguez-García P, Faria M, Prats E, Gómez-Canela C, López-Arnau R, Escubedo E, Raldúa D. A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure. Front Pharmacol 2021; 12:770319. [PMID: 34880760 PMCID: PMC8646101 DOI: 10.3389/fphar.2021.770319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marina Bellot
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Pol Dominguez-García
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
7
|
Li J, Yan Z, Li H, Shi Q, Ahire V, Zhang S, Nimishetti N, Yang D, Allen TD, Zhang J. The Phytochemical Scoulerine Inhibits Aurora Kinase Activity to Induce Mitotic and Cytokinetic Defects. JOURNAL OF NATURAL PRODUCTS 2021; 84:2312-2320. [PMID: 34406008 DOI: 10.1021/acs.jnatprod.1c00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To identify novel bioactive compounds, an image-based, cell culture screening of natural product extracts was conducted. Specifically, our screen was designed to identify phytochemicals that might phenocopy inhibition of the chromosomal passenger protein complex in eliciting mitotic and cytokinetic defects. A known alkaloid, scoulerine, was identified from the rhizomes of the plant Corydalis decumbens as being able to elicit a transient mitotic arrest followed by either apoptosis induction or polyploidy. In examining the mitotic abnormality further, we observed that scoulerine could elicit supernumerary centrosomes during mitosis, but not earlier in the cell cycle. The localization of NUMA1 at spindle poles was also inhibited, suggesting diminished potential for microtubule recruitment and spindle-pole focusing. Polyploid cells emerged subsequent to cytokinetic failure. The concentration required for scoulerine to elicit all its cell division phenotypes was similar, and an examination of related compounds highlighted the requirement for proper positioning of a hydroxyl and a methoxy group about an aromatic ring for activity. Mechanistically, scoulerine inhibited AURKB activity at concentrations that elicited supernumerary centrosomes and polyploidy. AURKA was only inhibited at higher concentrations, so AURKB inhibition is the likely mechanism by which scoulerine elicited division defects. AURKB inhibition was never complete, so scoulerine may be a suboptimal AURK inhibitor or work upstream of the chromosomal passenger protein complex to reduce AURKB activity. Scoulerine inhibited the viability of a variety of human cancer cell lines. Collectively, these findings uncover a previously unknown activity of scoulerine that could facilitate targeting human cancers. Scoulerine, or a next-generation analogue, may be useful as a nontoxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.
Collapse
Affiliation(s)
- Jinhua Li
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Ziqi Yan
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Hongmei Li
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Qiong Shi
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Vidhula Ahire
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Shenqiu Zhang
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Naganna Nimishetti
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Dun Yang
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Thaddeus D Allen
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| | - Jing Zhang
- Chengdu Anticancer Bioscience, Ltd., and J. Michael Bishop Institute of Cancer Research, Chengdu 610000, China
| |
Collapse
|
8
|
Wang Z, Dai S, Wang J, Du W, Zhu L. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117696. [PMID: 34243081 DOI: 10.1016/j.envpol.2021.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECx) to derive the hazardous concentration for 10% indicators (C10) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C10 in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Lin Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
9
|
Chen L, Ru Q, Xiong Q, Zhou M, Yue K, Wu Y. The Role of Chinese Herbal Therapy in Methamphetamine Abuse and its Induced Psychiatric Symptoms. Front Pharmacol 2021; 12:679905. [PMID: 34040537 PMCID: PMC8143530 DOI: 10.3389/fphar.2021.679905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to control intake, and strong drug cravings. It is also likely to cause psychiatric impairments, such as cognitive impairment, depression, and anxiety. Because the specific neurobiological mechanisms involved are complex and have not been fully and systematically elucidated, there is no established pharmacotherapy for METH abuse. Studies have found that a variety of Chinese herbal medicines have significant therapeutic effects on neuropsychiatric symptoms and have the advantage of multitarget comprehensive treatment. We conducted a systematic review, from neurobiological mechanisms to candidate Chinese herbal medicines, hoping to provide new perspectives and ideas for the prevention and treatment of METH abuse.
Collapse
Affiliation(s)
- Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qin Ru
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Mei Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Kai Yue
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
10
|
Xu C, Li R, Wu J. Effects of Yuanhu- Zhitong tablets on alcohol-induced conditioned place preference in mice. Biomed Pharmacother 2021; 133:110962. [PMID: 33166765 DOI: 10.1016/j.biopha.2020.110962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES This study aimed at determining the synergistic effects of Yuanhu Zhitong tablets (YHZTP) on alcohol-induced conditioned place preference (CPP) in mice, in addition, the intervention mechanism was preliminarily explored based on traditional Chinese Medicine (TCM) network pharmacology on alcohol addiction. METHODS Alcohol-induced CPP mice were used to evaluate the effects of either YHZTP or levo-tetrahydropalmatine (l-THP) plus imperatorin (IMP) administration on animal behavior. The network pharmacological strategy was used to establish the "compound-target" and "disease-drug-target" network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the shared targets between the compound and the disease. Twelve algorithms on CytoHubba were used to find the hub genes that were verified by qPCR. RESULTS Systemic administration (2 g/kg, i.p.) of ethanol (EtOH) to mice was used to induce CPP. YHZTP On its own did not induce CPP or conditioned place aversion (CPA) at the doses of 0.3 g/kg or 0.6 g/kg (i.g.), but attenuated the acquisition and expression of EtOH-induce CPP in mice. In addition, YHZTP (0.3 or 0.6 g/kg) did not exhibit any effect on the motor activity of mice. Acquisition of alcohol-induced CPP was blocked by a combination of l-THP (5 mg/kg, i.g.) + IMP (2.5 mg/kg, i.g.) or l-THP (10 mg/kg, i.g.) + IMP (5 mg/kg, i.g.). However, the combination of l-THP (2.5 mg/kg, i.g.) + IMP (1.25 mg/kg, i.g.) or mono-administration of l-THP and IMP did not exhibit any effect on alcohol-induced CPP. YHZTP was also shown to reverse the up-regulation of Gabra1, Ptgs2, Mapk1, Mapk8, Mapk14, Nr3c, Prkca and Sirt1 genes and the down-regulation of Hhtr2a and Drd2 genes in the prefrontal cortex of EtOH induced CPP mice. These genes were associated with neuroactive ligand-receptor interactions, activation of the sphingolipid, calcium, cAMP, ErbB, NF-kappa B and MAPK signaling pathways. CONCLUSION YHZTP inhibits EtOH-induced CPP behavior in mice while a combination of l-THP and IMP exerts a synergistic effect on the reduction of EtOH-induced CPP. Possible pharmacological mechanisms include inhibition of the expression of inflammatory factors and regulation of neurotransmitter receptor levels. Therefore, YHZTP is a novel candidate for the treatment of alcohol addiction.
Collapse
Affiliation(s)
- Changqiong Xu
- Brain Function and Disease Laboratory, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong Province, PR China
| | - Ran Li
- Brain Function and Disease Laboratory, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong Province, PR China.
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong Province, PR China.
| |
Collapse
|
11
|
Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2020; 58:265-275. [PMID: 32223481 PMCID: PMC7170387 DOI: 10.1080/13880209.2020.1741651] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
ABSRACTContext: Rhizoma Corydalis (RC) is the dried tubers of Corydalis yanhusuo (Y. H. Chou and Chun C. Hsu) W. T. Wang ex Z. Y. Su and C. Y. Wu (Papaveraceae). Traditionally, RC is used to alleviate pain such as headache, abdominal pain, and epigastric pain. Modern medicine shows that it has analgesic, anti-arrhythmia, and other effects.Objective: We provided an overview of the phytochemical and pharmacological properties of RC as a foundation for its clinical application and further research and development of new drugs.Methods: We collected data of various phytochemical and pharmacological effects of RC from 1982 to 2019. To correlate with existing scientific evidence, we used Google Scholar and the journal databases Scopus, PubMed, and CNKI. 'Rhizoma Corydalis', 'phytochemistry', and 'pharmacological effects' were used as key words.Results: Currently, more than 100 chemical components have been isolated and identified from RC, among which alkaloid is the pimary active component of RC. Based on prior research, RC has antinociceptive, sedative, anti-epileptic, antidepressive and anti-anxiety, acetylcholinesterase inhibitory effect, drug abstinence, anti-arrhythmic, antimyocardial infarction, dilated coronary artery, cerebral ischaemia reperfusion (I/R) injury protection, antihypertensive, antithrombotic, antigastrointestinal ulcer, liver protection, antimicrobial, anti-inflammation, antiviral, and anticancer effects.Conclusions: RC is reported to be effective in treating a variety of diseases. Current pharmacological studies on RC mainly focus on the nervous, circulatory, digestive, and endocrine systems, as well as drug withdrawal. Although experimental data support the beneficial effects of this drug, its physiological activity remains a concern. Nonetheless, this review provides a foundation for future research.
Collapse
Affiliation(s)
- Bing Tian
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- Ming Tian Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin150040, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- CONTACT Shu-Ming Huang Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
12
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
13
|
Tackie-Yarboi E, Wisner A, Horton A, Chau TQT, Reigle J, Funk AJ, McCullumsmith RE, Hall FS, Williams FE, Schiefer IT. Combining Neurobehavioral Analysis and In Vivo Photoaffinity Labeling to Understand Protein Targets of Methamphetamine in Casper Zebrafish. ACS Chem Neurosci 2020; 11:2761-2773. [PMID: 32786314 DOI: 10.1021/acschemneuro.0c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photoaffinity labeling (PAL) remains one of the most widely utilized methods of determining protein targets of drugs. Although useful, the scope of this technique has been limited to in vitro applications because of the inability of UV light to penetrate whole organisms. Herein, pigment-free Casper zebrafish were employed to allow in vivo PAL. A methamphetamine-related phenethylamine PAL probe, designated here as 2, demonstrated dose-dependent effects on behavior similar to methamphetamine and permitted concentration-dependent labeling of protein binding partners. Click chemistry was used to analyze binding partners via fluoroimaging. Conjugation to a biotin permitted streptavidin pull-down and proteomic analysis to define direct binding partners of the methamphetamine probe. Bioinformatic analysis revealed the probe was chiefly bound to proteins involved in phagocytosis and mitochondrial function. Future applications of this experimental paradigm combining examination of drug-protein binding interactions alongside neurobehavioral readouts via in vivo PAL will significantly enhance our understanding of drug targets, mechanism(s) of action, and toxicity/lethality.
Collapse
Affiliation(s)
- Ethel Tackie-Yarboi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Tue Q. T. Chau
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - James Reigle
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Adam J. Funk
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine, University of Toledo, Toledo, Ohio 43606, United States
- Neurosciences Institute, Promedica, Toledo, Ohio 43606, United States
| | - Frank S. Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Isaac T. Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
14
|
Sancho Santos ME, Grabicová K, Steinbach C, Schmidt-Posthaus H, Šálková E, Kolářová J, Vojs Staňová A, Grabic R, Randák T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). CHEMOSPHERE 2020; 254:126882. [PMID: 32957289 DOI: 10.1016/j.chemosphere.2020.126882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Heike Schmidt-Posthaus
- University of Bern, Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Laenggassstrasse 122, 3001, Bern, Switzerland
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
15
|
Wang Z, Han S, Cai M, Du P, Zhang Z, Li X. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community. WATER RESEARCH 2020; 174:115585. [PMID: 32105996 DOI: 10.1016/j.watres.2020.115585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Ketamine (KET) and methamphetamine (METH) have been recognized as emerging contaminants in aquatic ecosystems. This paper aimed to investigate the environmental behaviour, including the degradation, distribution, and bioaccumulation, of METH, KET, and their main metabolites (amphetamine (AMP) and norketamine (NorKET)). The changes in acute toxicity in the aqueous phase and in the bacterial community in sediment were determined to assess the associated eco-risk of the drug exposure. Five types of lab-scale aquatic ecosystems were established and exposed to KET or METH for 40 days: a water- sediment- organisms- KET system (K), a water- sediment- organisms- METH system (M), a water- sediment- organism- METH- KET system (M + K), a water-sediment- KET- METH system (control), and a water- sediment- organisms system (biocontrol). The results demonstrated that much faster degradation occurred for both METH (t1/2 = 3.89 and 2.37 days in the M and M + K group, respectively) and KET(t1/2 = 5.69 days 5.39 days in the K group and M + K group, respectively) than in the control group (t1/2 = 7.83 and 86.71days for METH and KET, respectively). Rapid adsorption of KET, METH, and their metabolites was observed in the sediment, which had clay and silt as the main particle sizes. KET was observed to be absorbed by shallow-water fish (Chinese medaka, rosy bitterling and mosquito fish), while METH was dominantly ingested by bottom-dwellers (loach). Duckweed might play a crucial role in the dissipation process of METH and KET, which were mainly adsorbed by duckweed roots. During incubation, the acute toxic levels in the K and M + K groups changed from non-toxic to medium toxicity levels, and the toxicity in the M and control groups changed from non-toxic to low toxicity levels. Moreover, marked changes in the bacterial community in the sediment induced by METH or KET exposure were observed, and the most significant change in the bacterial community was observed in the group spiked with both METH and KET. This work for the first time elucidated the environmental behaviors of METH and KET in aquatic ecosystem and associated the impact on ecological system equilibrium.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
16
|
Morbiato E, Bilel S, Tirri M, Arfè R, Fantinati A, Savchuk S, Appolonova S, Frisoni P, Tagliaro F, Neri M, Grignolio S, Bertolucci C, Marti M. Potential of the zebrafish model for the forensic toxicology screening of NPS: A comparative study of the effects of APINAC and methiopropamine on the behavior of zebrafish larvae and mice. Neurotoxicology 2020; 78:36-46. [PMID: 32050087 DOI: 10.1016/j.neuro.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Sabrine Bilel
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Sergey Savchuk
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana Appolonova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Paolo Frisoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico "G.B. Rossi", Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
17
|
Nesbit MO, Phillips AG. Tetrahydroprotoberberines: A Novel Source of Pharmacotherapies for Substance Use Disorders? Trends Pharmacol Sci 2020; 41:147-161. [PMID: 31987662 DOI: 10.1016/j.tips.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
Tetrahydroprotoberberines (THPBs) are a class of compounds that target both dopamine D1 and D2 families of receptors, making them attractive candidates for treating substance use disorder (SUD). The binding of some THPBs to serotonin and adrenergic receptors, in addition to dopamine receptors, gives rise to complex pharmacological profiles. Significant progress has been made over the last decade in examining these compounds for their therapeutic potential. Here, we evaluate recent discoveries relating to the neural mechanism and therapeutic effects of THPBs, focusing on compounds that have shown promise in animal models of SUD and preliminary clinical studies. Advancements in structure-activity relationship studies and in silico modeling of THPB binding to dopamine receptors have facilitated the synthesis of novel THPBs with enhanced therapeutic properties and provide insights regarding use of the THPB scaffold to serve as a template for innovative drug designs.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Kolesnikova TO, Khatsko SL, Eltsov OS, Shevyrin VA, Kalueff AV. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’ on adult zebrafish. Neurotoxicol Teratol 2019; 73:15-21. [DOI: 10.1016/j.ntt.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
19
|
Wang Z, Xu Z, Li X. Impacts of methamphetamine and ketamine on C.elegans's physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:268-276. [PMID: 30312923 DOI: 10.1016/j.jhazmat.2018.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
In this work, C. elegans as a model organism was treated with methamphetamine (METH) and ketamine (KET) to assess its eco-toxicity at a range (0.05-250 μg L-1) that covers environmentally relevant concentrations (0.05-0.5 μg L-1). METH (≥0.05 μg L-1) and KET (≥0.5 μg L-1) significantly affected the feeding rate, locomotion, gustation and olfaction (P < 0.05), which may result in pronounced disturbance to aquatic ecology. Alterations in the contents of neurotransmitters (i.e., octopamine (OA), dopamine (DA), and serotonin (5-HT)) correlated with the physiology change. The metabolic activities and the antioxidase activity (i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) of METH and KET in C. elegans were different, which could partly explain the difference of the physiological changes induced by the two substances. Moreover, these two drugs could induce vulva deformity, and the 50% effect concentrations were 620.34 μg L-1 for METH and 54.39 μg L-1 for KET, respectively. The risk quotients (RQ) in two Chinese rivers, the Shenzhen and Liangshui River, were calculated to assess eco-risks of METH and KET. RQs of KET in the Shenzhen River were over 0.1 at the medium risk level, indicating that eco-risks of illicit drugs to aquatic organism cannot be overlooked.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Lin P, Zhong XZ, Wang XD, Li JJ, Zhao RQ, He Y, Jiang YQ, Huang XW, Chen G, He Y, Yang H. Survival analysis of genome-wide profiles coupled with Connectivity Map database mining to identify potential therapeutic targets for cholangiocarcinoma. Oncol Rep 2018; 40:3189-3198. [PMID: 30272356 PMCID: PMC6196639 DOI: 10.3892/or.2018.6710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most common epithelial cell malignancies worldwide. However, its prognosis is poor. The aim of the present study was to examine the prognostic landscape and potential therapeutic targets for CCA. RNA sequencing data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) dataset and processed. A total of 172 genes that were significantly associated with overall survival of patients with CCA were identified using the univariate Cox regression method. Bioinformatics tools were applied using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO). It was identified that ‘Wnt signaling pathway’, ‘cytoplasm’ and ‘AT DNA binding’ were the three most significant GO categories of CCA survival-associated genes. ‘Transcriptional misregulation in cancer’ was the most significant pathway identified in the KEGG analysis. Using the Drug-Gene Interaction database, a drug-gene interaction network was constructed, and 31 identified genes were involved in it. The most meaningful potential therapeutic targets were selected via protein-protein and gene-drug interactions. Among these genes, polo-like kinase 1 (PLK1) was identified to be a potential target due to its significant upregulation in CCA. To rapidly find molecules that may affect these genes, the Connectivity Map was queried. A series of molecules were selected for their potential anti-CCA functions. 0297417-0002B and tribenoside exhibited the highest connection scores with PLK1 via molecular docking. These findings may offer novel insights into treatment and perspectives on the future innovative treatment of CCA.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Zhu Zhong
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Dong Wang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jian-Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui-Qi Zhao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yan-Qiu Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xian-Wen Huang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
21
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
| | - Adam D Collier
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| | - Darya A Meshalkina
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | - Elana V Kysil
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | | | | | | | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Department of Behavioral SciencesArkansas Tech UniversityRussellvilleARUSA
| | - Allan V Kalueff
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Ural Federal UniversityEkaterinburgRussia
- Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangGuangdongChina
| | - David J Echevarria
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| |
Collapse
|
22
|
Morley KC, Cornish JL, Faingold A, Wood K, Haber PS. Pharmacotherapeutic agents in the treatment of methamphetamine dependence. Expert Opin Investig Drugs 2017; 26:563-578. [PMID: 28351169 DOI: 10.1080/13543784.2017.1313229] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Methamphetamine use is a serious public health concern in many countries and is second to cannabis as the most widely abused illicit drug in the world. Effective management for methamphetamine dependence remains elusive and the large majority of methamphetamine users relapse following treatment. Areas covered: Progression in the understanding of the pharmacological basis of methamphetamine use has provided us with innovative opportunities to develop agents to treat dependence. The current review summarizes relevant literature on the neurobiological and clinical correlates associated with methamphetamine use. We then outline agents that have been explored for potential treatments in preclinical studies, human laboratory phase I and phase II trials over the last ten years. Expert opinion: No agent has demonstrated a broad and strong effect in achieving MA abstinence in Phase II trials. Agents with novel therapeutic targets appear promising. Advancement in MA treatment, including translation into practice, faces several clinical challenges.
Collapse
Affiliation(s)
- Kirsten C Morley
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Jennifer L Cornish
- b Department of Psychology , Centre for Emotional Health, Macquarie University , Sydney , Australia
| | - Alon Faingold
- c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| | - Katie Wood
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Paul S Haber
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia.,c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| |
Collapse
|
23
|
Abreu MS, Giacomini AC, Kalueff AV, Barcellos LJ. The smell of “anxiety”: Behavioral modulation by experimental anosmia in zebrafish. Physiol Behav 2016; 157:67-71. [DOI: 10.1016/j.physbeh.2016.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/29/2022]
|
24
|
Wang Y, Li S, Liu W, Wang F, Hu LF, Zhong ZM, Wang H, Liu CF. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochem Biophys Res Commun 2016; 470:792-7. [PMID: 26801555 DOI: 10.1016/j.bbrc.2016.01.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
Abstract
Vesicular monoamine transporter 2 (Vmat2) is widely distributed in the central nervous system, and responsible for uptaking transmitters into the vesicles. However, whether Vmat2-deficiency is related to the anxiety is rarely investigated, especially in zebrafish. Here, we reported Vmat2 heterzygous mutant zebrafish displayed anxiety-like behavior. The mutants spent less time in the top area and took longer latency to the top in the novel tank test. Consistently, they showed dark avoidance in the light/dark box test, with longer duration in the light zone and increased number of crossing between the two zones. Monoamine concentration analysis showed that the levels of monoamine neurotransmitters including dopamine (DA), 5-hydroxy tryptamine (5-HT) and norepinephrine (NE), as well as their metabolites were decreased in VMAT mutants. Taken together, these findings suggest that Vmat2 heterzygous mutant zebrafish may serve as a new model of anxiety, which may be related with the low level of DA, 5-HT and NE.
Collapse
Affiliation(s)
- Yali Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Siyue Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wenwen Liu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Fang Hu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Zhao-Min Zhong
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China; Beijing Key Laboratory for Parkinson's Disease, Beijing 100053, China.
| |
Collapse
|
25
|
Kim JH. Youth is not wasted on the young: Commentary on a BBR themed issue on developmental regulation of memory in anxiety and addiction. Behav Brain Res 2015; 298:1-3. [PMID: 26546879 DOI: 10.1016/j.bbr.2015.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|