1
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
2
|
Zuo X, Zhu Z, Liu M, Zhao Q, Li X, Zhao X, Feng X. Fluoxetine Ameliorates Cognitive Deficits in High-Fat Diet Mice by Regulating BDNF Expression. ACS Chem Neurosci 2024; 15:4229-4240. [PMID: 39476817 DOI: 10.1021/acschemneuro.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
High-fat diet (HFD) induced obesity is associated with depression-related behavioral and neurogenic changes and may lead to cognitive impairment. Fluoxetine (FXT), the most commonly used antidepressant, may alleviate depressive symptoms by increasing neurogenesis, but the potential efficacy of FXT for HFD-induced cognitive deficits is unclear. In this study, we established an obese HFD mouse model by feeding three-week-old male C57BL/6N mice with a chronic HFD for 18 weeks, then assessed adipose tissue morphology by magnetic resonance imaging and histopathology, assessed cognitive function by Morris water maze and novel object recognition tests, and detected DCX+ and BrdU+ expression in the hippocampal dentate gyrus (DG) region by immunofluorescence bioassay. Western blot detected brain-derived neurotrophic factor (BDNF) levels and CREB-BDNF pathway-related genes were assayed by Quantitative RT-PCR. The results of the study showed that HFD contributes to obesity and cognitive deficits, and more importantly, it also reduces BDNF expression and neurogenesis levels in the hippocampus. Subsequently, we found that treatment with FXT (10 mg/kg/day) ameliorated chronic HFD-induced cognitive deficits and increased the expression of Nestin, BrdU+, and DCX+ in the DG, restored BDNF expression in the hippocampus and increased the expression of genes related to CREB, BDNF, NGF, and MAPK1. In conclusion, our data elucidated that FXT ameliorates cognitive deficits and reduces chronic HFD-induced neurogenesis by restoring BDNF expression and CREB-BDNF signaling, this provides a good basis and scientific significance for future research on the clinical treatment of obesity.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - ZiKun Zhu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - MengYu Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - XinYu Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - XiZeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Wang P, Hu J, Chen C, Jiang Z, Zhang Y, Lin K, Liao L, Wang X. The immune regulatory mechanism of ketamine-induced psychiatric disorders: A new perspective on drug-induced psychiatric symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111194. [PMID: 39542202 DOI: 10.1016/j.pnpbp.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Ketamine, a psychoactive substance strictly regulated by international drug conventions, is classified as a "new type drug" due to its excitatory, hallucinogenic, or inhibitory effects. The etiology of ketamine-induced psychiatric symptoms is multifaceted, with the immune regulatory mechanism being the most prominent among several explanatory theories. In recent years, the interaction between the immune system and nervous system have garnered significant attention in neuropsychiatric disorder research. Notably, the infiltration of peripheral lymphocytes into the central nervous system has emerged as an early hallmark of certain neuropsychiatric disorders. However, a notable gap exists in the current literature, regarding the immune regulatory mechanisms, specifically the peripheral immune alterations, associated with ketamine-induced psychiatric symptoms. To address this void, this article endeavors to provide a comprehensive overview of the pathophysiological processes implicated in psychiatric disorders or symptoms, encompassing those elicited by ketamine. This analysis delves into aspects such as nerve damage, alterations within the central immune system, and the regulation of the peripheral immune system. By emphasizing the intricate crosstalk between the peripheral immune system and the central nervous system, this study sheds light on their collaborative role in the onset and progression of psychiatric diseases or symptoms. This insight offers fresh perspectives on the underlying mechanisms, diagnosis and therapeutic strategies for mental disorders stemming from drug abuse.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zihan Jiang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Kexin Lin
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linchuan Liao
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, Gu X, Liu Y, Qiu P. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation 2024; 21:293. [PMID: 39533332 PMCID: PMC11559051 DOI: 10.1186/s12974-024-03285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the perioperative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotransmitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mitochondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP production, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment for POCD.
Collapse
Affiliation(s)
- Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chengyao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Shuyan Cui
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Tian Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Li M, Kong D, Meng L, Wang Z, Bai Z, Wu G. Discovery of novel SS-31 (d-Arg-dimethylTyr-Lys-Phe-NH 2) derivatives as potent agents to ameliorate inflammation and increase mitochondrial ATP synthesis. RSC Adv 2024; 14:29789-29799. [PMID: 39301232 PMCID: PMC11409442 DOI: 10.1039/d4ra05517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Neuroinflammation and mitochondrial function are crucial for neuronal function and survival. SS-31 is a novel mitochondria-targeted peptide antioxidant that reduces mitochondrial reactive oxygen species production, increases ATP generation, protects the integrity of mitochondrial cristae and the mitochondrial respiratory chain, and reduces inflammatory responses. Exploring novel SS-31 derivatives is important for the treatment of neurodegenerative diseases. In this study, nineteen SS-31 derived peptides (5a-5s) were synthesized. Through cellular activity screening, we discovered that 5f and 5g exhibited significantly greater anti-inflammatory activity compared to SS-31, reducing LPS-induced TNF-α levels by 43% and 45%, respectively, at a concentration of 10 μM. Furthermore, treatment with 50 nM of 5f and 5g increased ATP synthesis by 42% and 41% in rotenone-induced HT22 cells and attenuated mitochondrial ROS production by preserving mitochondrial integrity. These findings demonstrate their direct protective effects on neuronal mitochondria. This work highlights the potential of 5f and 5g in the treatment of neurodegenerative diseases associated with inflammation and mitochondrial damage, offering a promising therapeutic avenue for mitochondrial-related conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mei Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University Jinan 250012 Shandong China
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
| | - Deyuan Kong
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
| | - Liying Meng
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Shandong University Qingdao 266035 Shandong China
| | - Zheyi Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University Jinan 250012 Shandong China
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
| | - Zetai Bai
- Qilu Hospital, Cheeloo College of Medicine, Shandong University Jinan 250012 Shandong China
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
| | - Guanzhao Wu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University Jinan 250012 Shandong China
- Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University Qingdao 266103 China
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Shandong University Qingdao 266035 Shandong China
| |
Collapse
|
6
|
Teng Y, Niu J, Liu Y, Wang H, Chen J, Kong Y, Wang L, Lian B, Wang W, Sun H, Yue K. Ketamine alleviates fear memory and spatial cognition deficits in a PTSD rat model via the BDNF signaling pathway of the hippocampus and amygdala. Behav Brain Res 2024; 459:114792. [PMID: 38048914 DOI: 10.1016/j.bbr.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.
Collapse
Affiliation(s)
- Yue Teng
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JiaYao Niu
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Han Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JinHong Chen
- School of Continuing Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - WeiWen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| | - KuiTao Yue
- The Medical imaging Center, Affiliated Hospital of Weifang Medical University, 2428# Yuhe Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
7
|
Chen M, Yan R, Ding L, Luo J, Ning J, Zhou R. Research Advances of Mitochondrial Dysfunction in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:2983-2995. [PMID: 37294392 DOI: 10.1007/s11064-023-03962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Perioperative neurocognitive disorders (PND) increases postoperative dementia and mortality in patients and has no effective treatment. Although the detailed pathogenesis of PND is still elusive, a large amount of evidence suggests that damaged mitochondria may play an important role in the pathogenesis of PND. A healthy mitochondrial pool not only provides energy for neuronal metabolism but also maintains neuronal activity through other mitochondrial functions. Therefore, exploring the abnormal mitochondrial function in PND is beneficial for finding promising therapeutic targets for this disease. This article summarizes the research advances of mitochondrial energy metabolism disorder, inflammatory response and oxidative stress, mitochondrial quality control, mitochondria-associated endoplasmic reticulum membranes, and cell death in the pathogenesis of PND, and briefly describes the application of mitochondria-targeted therapies in PND.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
8
|
Zhang Y, Wei R, Ni M, Wu Q, Li Y, Ge Y, Kong X, Li X, Chen G. An enriched environment improves maternal sleep deprivation-induced cognitive deficits and synaptic plasticity via hippocampal histone acetylation. Brain Behav 2023; 13:e3018. [PMID: 37073496 PMCID: PMC10275536 DOI: 10.1002/brb3.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ming‐Zhu Ni
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Tao Wu
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yun Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
9
|
Zhu XL, Zhang HW, Peng WJ, Gao S, Yang ZL, Zhang JQ, Liu XS. Autophagy impairment is involved in midazolam-induced lipid droplet accumulation and consequent phagocytosis decrease in BV2 cells. Biochem Biophys Res Commun 2023; 643:147-156. [PMID: 36609155 DOI: 10.1016/j.bbrc.2022.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
An increasing number of experimental and clinical observation suggest that the use of anaesthetics is closely associated with postoperative central nervous system (CNS) complications, such as delirium and cognitive dysfunction. Brain energy rescue is an emerging therapeutic strategy for central nervous system disease (CNSDs). However, the effect of anaesthetics on nerve cell energy utilisation, especially microglia, and its potential effects on cell function still unclear. Elucidating the effects of anaesthetics on lipid droplets, which are specific lipid storage organs, and phagocytosis of microglia is crucial to discover a new therapeutic concept for postoperative CNS complications. Here, we studied the effects of the commonly used anaesthetic midazolam on lipid droplets and phagocytosis in immortalised microglial BV2 cells. Lipid droplets were assessed by flow cytometry and triglyceride quantification. The phagocytosis of BV2 cells was evaluated by detecting their phagocytosis by latex beads. Additionally, the autophagy of BV2 cells was evaluated by western blot and observation under microscopy. Our results showed that midazolam caused lipid droplet accumulation and reduced phagocytosis in BV2 cells, and inhibition of lipid droplet accumulation partially restored phagocytosis. Furthermore, midazolam blocks autophagic degradation by increasing phosphorylated TFEB in BV2 cells, inhibition of midazolam-increased phosphorylated TFEB might contribute to the improvement of autophagic flux by rapamycin. Moreover, promoting autophagy reverse the lipid droplet accumulation and phagocytosis decrease. This study suggests autophagy is a target for attenuating lipid droplet accumulation, normal degradation of lipid droplets is important for maintaining microglia phagocytosis and attenuating the side effects of midazolam on the CNS.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hui-Wen Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Wen-Jing Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhi-Lai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Ji-Qian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
10
|
Zhang YM, Cheng YZ, Wang YT, Wei RM, Ge YJ, Kong XY, Li XY. Environmental Enrichment Reverses Maternal Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Impairment in CD-1 Mice. Front Behav Neurosci 2022; 16:943900. [PMID: 35910680 PMCID: PMC9326347 DOI: 10.3389/fnbeh.2022.943900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Preclinical studies have clearly indicated that offspring of mothers who suffered sleep deprivation during pregnancy exhibit anxiety, depression-like behaviors, and cognitive deficits. The cognitive impairment induced by maternal sleep deprivation (MSD) is currently poorly treated. Growing evidence indicates that an enriched environment (EE) improves cognition function in models of Alzheimer’s disease, schizophrenia, and lipopolysaccharide. However, the effects of EE on hippocampal-dependent learning and memory, as well as synaptic plasticity markers changes induced by MSD, are unclear. In the present study, pregnant CD-1 mice were randomly divided into a control group, MSD group, and MSD+EE group. Two different living environments, including standard environment and EE, were prepared. When male and female offspring were 2 months, the open field test and elevated plus maze were used to assess anxiety-like behavior, and the Morris water maze was used to evaluate hippocampal learning and memory. Western blotting and real-time fluorescence quantitative polymerase chain reaction were used to detect the expression of brain-derived neurotrophic factor and Synaptotagmin-1 in the hippocampus of offspring. The results revealed that MSD-induced offspring showed anxiety-like behaviors and cognitive impairment, while EE alleviated anxiety-like behavior and cognitive impairment in offspring of the MSD+EE group. The cognitive impairment induced by MSD was associated with a decreased brain-derived neurotrophic factor and an increased Synaptotagmin-1, while EE increased and decreased brain-derived neurotrophic factor and Synaptotagmin-1 in the hippocampus of mice from the MSD+EE group, respectively. Taken together, we can conclude that EE has beneficial effects on MSD-induced synaptic plasticity markers changes and can alleviate anxiety-like behaviors and cognitive impairment.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun-Zhou Cheng
- Department of Pediatrics, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Xue-Yan Li
| |
Collapse
|
11
|
Ma C, Yu X, Li D, Fan Y, Tang Y, Tao Q, Zheng L. Inhibition of SET domain-containing (lysine methyltransferase) 7 alleviates cognitive impairment through suppressing the activation of NOD-like receptor protein 3 inflammasome in isoflurane-induced aged mice. Hum Exp Toxicol 2022; 41:9603271211061497. [PMID: 35187972 DOI: 10.1177/09603271211061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND As a common postoperative complication to elderly patients, postoperative cognitive dysfunction (POCD) is a central nervous system complication, often taking place after anesthesia and surgery. (Su(var)3-9, enhancer-of-zeste, and trithorax) domain-containing protein 7 (SETD7) plays important roles in metabolic-related diseases, viral infections, tumor formation, and some inflammatory reactions. However, the role and mechanism of SETD7 in POCD have not been previously studied. METHODS RT-PCR and Western blot were performed to evaluate the efficiency of knockdown of SETD7. The pathological changes of hippocampal neurons in isoflurane-anesthetized mice were detected by HE staining, and the Morris water maze experiment was performed to evaluate the learning and memory abilities of mice. The effect of SETD7 on the hippocampus in isoflurane-induced aged mice was examined by Western blot and TUNEL assay. Then ELISA assay was applied to determine the expression of some inflammatory cytokines, followed by the detection of expression of NOD-like receptor protein 3 (NLRP3) inflammasome through Western blot. RESULTS The data of this research revealed that SETD7 knockdown improved cognitive impairment in isoflurane-anesthetized mice, ameliorated cell pyroptosis, inhibited the release of inflammatory cytokines, and suppressed the activation of NLRP3 inflammasome in the hippocampus in isoflurane-induced aged mice. CONCLUSION Collectively, these results provided evidence that the inhibition of SETD7 could alleviate neuroinflammation, pyroptosis, and cognitive impairment by suppressing the activation of the NLRP3 inflammasome in isoflurane-induced aged mice.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xianjun Yu
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Youwen Fan
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yajun Tang
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Tao
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
12
|
Nhu NT, Xiao SY, Liu Y, Kumar VB, Cui ZY, Lee SD. Neuroprotective Effects of a Small Mitochondrially-Targeted Tetrapeptide Elamipretide in Neurodegeneration. Front Integr Neurosci 2022; 15:747901. [PMID: 35111001 PMCID: PMC8801496 DOI: 10.3389/fnint.2021.747901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Neural mitochondrial dysfunction, neural oxidative stress, chronic neuroinflammation, toxic protein accumulation, and neural apoptosis are common causes of neurodegeneration. Elamipretide, a small mitochondrially-targeted tetrapeptide, exhibits therapeutic effects and safety in several mitochondria-related diseases. In neurodegeneration, extensive studies have shown that elamipretide enhanced mitochondrial respiration, activated neural mitochondrial biogenesis via mitochondrial biogenesis regulators (PCG-1α and TFAM) and the translocate factors (TOM-20), enhanced mitochondrial fusion (MNF-1, MNF-2, and OPA1), inhibited mitochondrial fission (Fis-1 and Drp-1), as well as increased mitophagy (autophagy of mitochondria). In addition, elamipretide has been shown to attenuate neural oxidative stress (hydrogen peroxide, lipid peroxidation, and ROS), neuroinflammation (TNF, IL-6, COX-2, iNOS, NLRP3, cleaved caspase-1, IL-1β, and IL-18), and toxic protein accumulation (Aβ). Consequently, elamipretide could prevent neural apoptosis (cytochrome c, Bax, caspase 9, and caspase 3) and enhance neural pro-survival (Bcl2, BDNF, and TrkB) in neurodegeneration. These findings suggest that elamipretide may prevent the progressive development of neurodegenerative diseases via enhancing mitochondrial respiration, mitochondrial biogenesis, mitochondrial fusion, and neural pro-survival pathway, as well as inhibiting mitochondrial fission, oxidative stress, neuroinflammation, toxic protein accumulation, and neural apoptosis. Elamipretide or mitochondrially-targeted peptide might be a targeted agent to attenuate neurodegenerative progression.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Shu-Yun Xiao
- Department of Brain and Mental Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - V. Bharath Kumar
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
14
|
Rezaee Z, Marandi SM, Esfarjani F. Age-related biochemical dysfunction in 6-OHDA model rats subject to induced- endurance exercise. Arch Gerontol Geriatr 2021; 98:104554. [PMID: 34688079 DOI: 10.1016/j.archger.2021.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Exercise can alleviate the disorders considered as the normal consequences of aging. Whether or not the treadmill endurance training affects the biochemical markers in the Parkinson's disease model rats after the 6-hydroxydopamine (6-OHDA) injection is assessed in this article. The experimental groups of N=8 rats consist of 1) Saline and Young sedentary (S-Young); 2) Saline and Old sedentary (S-Old); 3) Young and 6-OHDA without exercise (Y); 4) Young and 6-OHDA with exercise (YE); 5) Old and 6-OHDA without exercise (O); and 6) Old and 6-OHDA with exercise (OE). An 8 μg of 6-OHDA is injected into the right MFB. The rotation due to apomorphine, weight variation, and some biochemical expression are measured in the rats' striatum. Exposure to 6-OHDA: increase weight loss by (%8) and rotation by (%90), reduce the protein levels of Bdnf by (30%), Th by (43%), and Tfam by (24%), in aging rats (P<0.05). The P53 level rose after the injection compared with the same Saline group (Old rats: 27% and Young rats: 14%), the highest in the O group. The findings indicate that endurance exercise amends the mitochondrial parameters and the apomorphine-induced rotation impairments in the presence of 6-OHDA injection. These positive effects of treadmill running in unilateral 6-OHDA lesioned rat model are age-dependent and are more significant in younger rats.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Sayed Mohammad Marandi
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| | - Fahimeh Esfarjani
- Exercise Physiology, Department of Physical Education and Sport Science, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
15
|
He B, Wang J. METTL3 regulates hippocampal gene transcription via N6-methyladenosine methylation in sevoflurane-induced postoperative cognitive dysfunction mouse. Aging (Albany NY) 2021; 13:23108-23118. [PMID: 34611079 PMCID: PMC8544333 DOI: 10.18632/aging.203604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022]
Abstract
Elderly patients are prone to cognitive impairment and memory loss after surgical operations. This perioperative cerebral damage, named postoperative cognitive dysfunction (POCD), is profoundly affected by anesthesia. N6-methyladenosine (m6A) RNA methylation is a widely-studied epigenetic modification to regulate gene expression; however, is has never been studied in POCD. In the present study, elderly POCD mouse models were constructed using sevoflurane, and we observed a compromised global m6A RNA methylation in the mice’s hippocampuses compared with the control. Our RIP-Seq data suggested that 1244 genes (SOX2, SYN1, and BDNF) showed m6A RNA methylation in their 5′UTRs, which was significantly lower than that in the control; while only 56 genes (BACE1 and IL17A) showed m6A RNA methylation in their 5′UTRs, which was significantly higher than that in the control. Unexpectedly, m6A RNA methylation with significant differences in exons, introns, or 3′UTRs was observed in only few genes. Although we failed to find any differences in the expression of m6A-associated proteins, such as m6A “writers”, “erasers”, and “readers”, between the sevoflurane treatment and control groups, RIP-qPCR assays indicated that the binding affinity of METTL3 on mRNA 5′UTRs was particularly weakened in target genes by sevoflurane. Finally, we found that phosphorylation of METTL3 could be reduced by sevoflurane because of the inactivation of the MAPK/ERK pathway. Overall, our study determined that the inactivation of METTL3 in the mouse hippocampus, induced by sevoflurane-mediated MAPK/ERK suppression in vivo, resulted in a perturbation in m6A RNA methylation signals in the pathogenesis of POCD.
Collapse
Affiliation(s)
- Baiqing He
- Department of Anesthesiology, The Affiliated Hospital of XiangNan University, Chenzhou, Hunan, China
| | - Jian Wang
- Department of Anesthesiology, Shaoxing Yuecheng People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
16
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T, Babu JR. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacol Res 2021; 171:105783. [PMID: 34302976 DOI: 10.1016/j.phrs.2021.105783] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Diabetes and Alzheimer's disease are common chronic illnesses in the United States and lack clearly demonstrated therapeutics. Mitochondria, the "powerhouse of the cell", is involved in the homeostatic regulation of glucose, energy, and reduction/oxidation reactions. The mitochondria has been associated with the etiology of metabolic and neurological disorders through a dysfunction of regulation of reactive oxygen species. Mitochondria-targeted chemicals, such as the Szeto-Schiller-31 peptide, have advanced therapeutic potential through the inhibition of oxidative stress and the restoration of normal mitochondrial function as compared to traditional antioxidants, such as vitamin E. In this article, we summarize the pathophysiological relevance of the mitochondria and the beneficial effects of Szeto-Schiller-31 peptide in the treatment of Diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Hadeel Aldhowayan
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
17
|
Wang CM, Chen WC, Zhang Y, Lin S, He HF. Update on the Mechanism and Treatment of Sevoflurane-Induced Postoperative Cognitive Dysfunction. Front Aging Neurosci 2021; 13:702231. [PMID: 34305576 PMCID: PMC8296910 DOI: 10.3389/fnagi.2021.702231] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Sevoflurane is one of the most widely used anesthetics for the induction and maintenance of general anesthesia in surgical patients. Sevoflurane treatment may increase the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD exhibit lower cognitive abilities than before the operation. POCD affects the lives of patients and places an additional burden on patients and their families. Understanding the mechanism of sevoflurane-induced POCD may improve prevention and treatment of POCD. In this paper, we review the diagnosis of POCD, introduce animal models of POCD in clinical research, analyze the possible mechanisms of sevoflurane-induced POCD, and summarize advances in treatment for this condition.
Collapse
Affiliation(s)
- Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
Liu Y, Fu H, Wu Y, Nie B, Liu F, Wang T, Xiao W, Yang S, Kan M, Fan L. Elamipretide (SS-31) Improves Functional Connectivity in Hippocampus and Other Related Regions Following Prolonged Neuroinflammation Induced by Lipopolysaccharide in Aged Rats. Front Aging Neurosci 2021; 13:600484. [PMID: 33732135 PMCID: PMC7956963 DOI: 10.3389/fnagi.2021.600484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been recognized as a major cause for neurocognitive diseases. Although the hippocampus has been considered an important region for cognitive dysfunction, the influence of hippocampal neuroinflammation on brain functional connectivity (FC) has been rarely studied. In this study, lipopolysaccharide (LPS) was used to induce systemic inflammation and neuroinflammation in the aged rat brain, while elamipretide (SS-31) was used for treatment. Systemic and hippocampal inflammation were determined using ELISA, while astrocyte responses during hippocampal neuroinflammation were determined by interleukin 1 beta (IL-1β)/tumor necrosis factor alpha (TNFα) double staining immunofluorescence. Oxidative stress was determined by reactive oxidative species (ROS), electron transport chain (ETC) complex, and superoxide dismutase (SOD). Short- (<7 days) and long-term (>30 days) learning and spatial working memory were tested by the Morris water maze (MWM). Resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyze the brain FC by placing seed voxels on the left and right hippocampus. Compared with the vehicle group, rats with the LPS exposure showed an impaired MWM performance, higher oxidative stress, higher levels of inflammatory cytokines, and astrocyte activation in the hippocampus. The neuroimaging examination showed decreased FC on the right orbital cortex, right olfactory bulb, and left hippocampus on day 3, 7, and 31, respectively, after treatment. In contrast, rats with SS-31 treatment showed lower levels of inflammatory cytokines, less astrocyte activation in the hippocampus, and improved MWM performance. Neuroimaging examination showed increased FC on the left-parietal association cortex (L-PAC), left sensory cortex, and left motor cortex on day 7 with the right flocculonodular lobe on day 31 as compared with those without SS-31 treatment. Our study demonstrated that inhibiting neuroinflammation in the hippocampus not only reduces inflammatory responses in the hippocampus but also improves the brain FC in regions related to the hippocampus. Furthermore, early anti-inflammatory treatment with SS-31 has a long-lasting effect on reducing the impact of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University, Beijing, China
| | - Binbin Nie
- Institue of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xiao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyi Yang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Minhui Kan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Long Fan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Kumar P, Liu C, Hsu JW, Chacko S, Minard C, Jahoor F, Sekhar RV. Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin Transl Med 2021; 11:e372. [PMID: 33783984 PMCID: PMC8002905 DOI: 10.1002/ctm2.372] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxidative stress (OxS) and mitochondrial dysfunction are implicated as causative factors for aging. Older adults (OAs) have an increased prevalence of elevated OxS, impaired mitochondrial fuel-oxidation (MFO), elevated inflammation, endothelial dysfunction, insulin resistance, cognitive decline, muscle weakness, and sarcopenia, but contributing mechanisms are unknown, and interventions are limited/lacking. We previously reported that inducing deficiency of the antioxidant tripeptide glutathione (GSH) in young mice results in mitochondrial dysfunction, and that supplementing GlyNAC (combination of glycine and N-acetylcysteine [NAC]) in aged mice improves naturally-occurring GSH deficiency, mitochondrial impairment, OxS, and insulin resistance. This pilot trial in OA was conducted to test the effect of GlyNAC supplementation and withdrawal on intracellular GSH concentrations, OxS, MFO, inflammation, endothelial function, genotoxicity, muscle and glucose metabolism, body composition, strength, and cognition. METHODS A 36-week open-label clinical trial was conducted in eight OAs and eight young adults (YAs). After all the participants underwent an initial (pre-supplementation) study, the YAs were released from the study. OAs were studied again after GlyNAC supplementation for 24 weeks, and GlyNAC withdrawal for 12 weeks. Measurements included red-blood cell (RBC) GSH, MFO; plasma biomarkers of OxS, inflammation, endothelial function, glucose, and insulin; gait-speed, grip-strength, 6-min walk test; cognitive tests; genomic-damage; glucose-production and muscle-protein breakdown rates; and body-composition. RESULTS GlyNAC supplementation for 24 weeks in OA corrected RBC-GSH deficiency, OxS, and mitochondrial dysfunction; and improved inflammation, endothelial dysfunction, insulin-resistance, genomic-damage, cognition, strength, gait-speed, and exercise capacity; and lowered body-fat and waist-circumference. However, benefits declined after stopping GlyNAC supplementation for 12 weeks. CONCLUSIONS GlyNAC supplementation for 24-weeks in OA was well tolerated and lowered OxS, corrected intracellular GSH deficiency and mitochondrial dysfunction, decreased inflammation, insulin-resistance and endothelial dysfunction, and genomic-damage, and improved strength, gait-speed, cognition, and body composition. Supplementing GlyNAC in aging humans could be a simple and viable method to promote health and warrants additional investigation.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Chun Liu
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| | - Jean W. Hsu
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Shaji Chacko
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Charles Minard
- Institute of Clinical and Translational Research, Baylor College of MedicineHoustonTexas
| | - Farook Jahoor
- USDA/ARS Children's Nutritional Research CenterHoustonTexasUSA
| | - Rajagopal V. Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes and MetabolismDepartment of Medicine, Baylor College of MedicineHoustonTexas77030USA
| |
Collapse
|
20
|
Zhang Y, Sun Q, Fan A, Dong G. Isoflurane triggers the acute cognitive impairment of aged rats by damaging hippocampal neurons via the NR2B/CaMKII/CREB pathway. Behav Brain Res 2021; 405:113202. [PMID: 33636236 DOI: 10.1016/j.bbr.2021.113202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022]
Abstract
Isoflurane was responsible for acute neuronal impairment, but its potential molecular mechanisms in damaging hippocampal neurons had not been clearly understood. This study aimed to explore the underlying mechanism of how isoflurane affected the cognitive function of aged rats by damaging the hippocampal neurons. Acute cognitive impairment was found in aged Wistar rats via Morris water maze test and Y-maze test after isoflurane anesthesia in a dose-dependent manner compared with the control group in vivo. Isoflurane also decreased the viabilities and strengthened the apoptotic potential of hippocampal neurons by damaging the mitochondria in a time-dependent manner compared with the control group which was reported by MTT, immunofluorescent assay, flow cytometry and western blot assay in vitro. Isoflurane jeopardized hippocampal neurons by directly inactivating the NR2B/CaMKII/CREB pathway and its harmful effects could be ameliorated by adding CaMKII activator CdCl2. These findings provided evidence that the cognitive ability of aged rats was injured by isoflurane exposure and isoflurane also inhibited the viability and enhanced the apoptosis of hippocampal neurons by damaging the mitochondria through inhibition of the NR2B/CaMKII/CREB pathway and its harmful roles could be partially ameliorated by CdCl2. Our study demonstrated that isoflurane could cause acute neuronal damage and we provided fresh insights that contributed to the safe use of anesthetic agents and the prevention of PND in elderly people.
Collapse
Affiliation(s)
- Yuangui Zhang
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China
| | - Qingqing Sun
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China
| | - Aixia Fan
- Department of Anesthesiology, Xintai People's Hospital, No. 1329, Xinfu Road, Xintai City, Shandong Province, 271200, China
| | - Guimin Dong
- Department of Anesthesiology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang City, Shandong Province, 261000, China.
| |
Collapse
|
21
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
22
|
Chao B, Zhang L, Pan J, Zhang Y, Chen Y, Xu M, Huang S. Stanniocalcin-1 Overexpression Prevents Depression-Like Behaviors Through Inhibition of the ROS/NF-κB Signaling Pathway. Front Psychiatry 2021; 12:644383. [PMID: 34194345 PMCID: PMC8238083 DOI: 10.3389/fpsyt.2021.644383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 01/29/2023] Open
Abstract
Background: Depression is a burdensome psychiatric disorder presenting with disordered inflammation and neural plasticity. We conducted this study with an aim to explore the effect of stanniocalcin-1 (STC1) on inflammation and neuron injury in rats with depression-like behaviors. Methods: A model of depression-like behaviors was established in Wistar rats by stress stimulation. Adeno-associated virus (AAV)-packaged STC1 overexpression sequence or siRNA against STC1 was introduced into rats to enhance or silence the STC1 expression. Moreover, we measured pro-inflammatory and anti-inflammatory proteins, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and reactive oxygen species (ROS) production. An in vitro model was induced in hippocampal neurons by CORT to explore the effect of STC1 on the neuron viability, toxicity and apoptosis. RT-qPCR and Western blot assay were employed to determine the expression of STC1 and nuclear factor κB (NF-κB) signaling pathway-related genes. Results: STC1 was under-expressed in the hippocampus of rats with depression-like behaviors, while its overexpression could reduce the depression-like behaviors in the stress-stimulated rats. Furthermore, overexpression of STC1 resulted in enhanced neural plasticity, reduced release of pro-inflammatory proteins, elevated SOD and CAT and diminished MDA level in the hippocampus of rats with depression-like behaviors. Overexpressed STC1 blocked the ROS/NF-κB signaling pathway, thereby enhancing the viability of CORT-treated neurons while repressing their toxicity and apoptosis. Conclusion: Collectively, overexpression of STC1 inhibits inflammation and protects neuron injury in rats with depression-like behaviors by inactivating the ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Chao
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Juhua Pan
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Ying Zhang
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Yuxia Chen
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Manman Xu
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| | - Shijing Huang
- Traditional Chinese Medicine Research and Development Center, Guang'anmen Hospital, China Academy of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
General anesthesia activates the mitochondrial unfolded protein response and induces age-dependent, long-lasting changes in mitochondrial function in the developing brain. Neurotoxicology 2020; 82:1-8. [PMID: 33144179 DOI: 10.1016/j.neuro.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
General anesthesia induces changes in dendritic spine number and synaptic transmission in developing mice. These changes are rather disturbing, as similar changes are seen in animal models of neurodevelopmental disorders. We previously suggested that mTor-dependent upregulation of mitochondrial function may be involved in such changes. To further understand the significance of mitochondrial changes after general anesthesia during neurodevelopment, we exposed young mice to 2.5 % sevoflurane for 2 h followed by injection of rotenone, a mitochondrial complex I inhibitor. In postnatal day 17 (PND17) mice, intraperitoneal injection of rotenone not only blocked sevoflurane-induced increases in mitochondrial function, it also prevented sevoflurane-induced changes in excitatory synaptic transmission. Interestingly, similar changes were not observed in younger, neonatal mice (PND7). We next assessed whether the mitochondrial unfolded protein response (UPRmt) acted as a link between anesthetic exposure and mitochondrial function. Expression of UPRmt proteins, which help maintain protein-folding homeostasis and increase mitochondrial function, was increased 6 h after sevoflurane exposure. Our results show that a single, brief sevoflurane exposure induces age-dependent changes in mitochondrial function that constitute an important mechanism for the increase in excitatory synaptic transmission in late postnatal mice, and also suggest mitochondria and UPRmt as potential targets for preventing anesthesia toxicity.
Collapse
|
24
|
Yu Q, Dai CL, Zhang Y, Chen Y, Wu Z, Iqbal K, Liu F, Gong CX. Intranasal Insulin Increases Synaptic Protein Expression and Prevents Anesthesia-Induced Cognitive Deficits Through mTOR-eEF2 Pathway. J Alzheimers Dis 2020; 70:925-936. [PMID: 31306126 DOI: 10.3233/jad-190280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
General anesthesia increases the risk for cognitive impairment and Alzheimer's disease (AD) in vulnerable individuals such as the elderly. We previously reported that prior administration of insulin through intranasal delivery can prevent the anesthesia-induced cognitive impairment and biochemical changes in the brain. However, little is known about the underlying molecular mechanisms. Here, we report that general anesthesia resulted in downregulation of mammalian/mechanistic target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the brain along with reduction of presynaptic proteins and brain-derived neurotrophic factor and cognitive impairment in aged mice. Prior administration of intranasal insulin prevented these anesthesia-induced changes. These results suggest the involvement of the mTOR-eEF2 signaling pathway in the anesthesia-induced brain changes and cognitive impairment and in the prevention of these changes with insulin. Correlation analyses and the use of eEF2 kinase inhibitor further support our conclusions. These studies shed light on the molecular mechanism by which anesthesia and insulin could act on synaptic proteins and cognitive function.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Orthopedics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yongli Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
25
|
Wu J, Dou Y, Ladiges WC. Adverse Neurological Effects of Short-Term Sleep Deprivation in Aging Mice Are Prevented by SS31 Peptide. Clocks Sleep 2020; 2:325-333. [PMID: 33089207 PMCID: PMC7573804 DOI: 10.3390/clockssleep2030024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022] Open
Abstract
Sleep deprivation is a potent stress factor that disrupts regulatory pathways in the brain resulting in cognitive dysfunction and increased risk of neurodegenerative disease with increasing age. Prevention of the adverse effects of sleep deprivation could be beneficial in older individuals by restoring healthy brain function. We report here on the ability of SS31, a mitochondrial specific peptide, to attenuate the negative neurological effects of short-term sleep deprivation in aging mice. C57BL/6 female mice, 20 months old, were subcutaneously injected with SS31 (3 mg/kg) or saline daily for four days. Sleep deprivation was 4 h daily for the last two days of SS31 treatment. Mice were immediately tested for learning ability followed by collection of brain and other tissues. In sleep deprived mice treated with SS31, learning impairment was prevented, brain mitochondrial ATP levels and synaptic plasticity regulatory proteins were restored, and reactive oxygen species (ROS) and inflammatory cytokines levels were decreased in the hippocampus. This observation suggests possible therapeutic benefits of SS31 for alleviating adverse neurological effects of short-term sleep loss.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| | - Yan Dou
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| | - Warren C Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA; (J.W.); (Y.D.)
| |
Collapse
|
26
|
Mo F, Tang Y, Du P, Shen Z, Yang J, Cai M, Zhang Y, Li H, Shen H. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway. J Affect Disord 2020; 272:474-484. [PMID: 32553391 DOI: 10.1016/j.jad.2020.03.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/11/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The release of zinc from glutamatergic terminals in the hippocampal CA3 region can activate postsynaptic GPR39 receptors and regulate cognition and depression. However, the role and mechanism of GPR39 in the stress-induced depression is still poorly understood. METHODS In this study, hippocampal cells (HT-22) were treated with corticosterone (CORT). Then the effects of stress on the activity, mitochondrial function and apoptosis of HT-22 cells were observed. The effects of GPR39 on CORT-induced stress injury were analyzed by both siRNA and agonist (TC-G-1008). RESULTS Compared with the 500 nM CORT group, the cell viability, apoptosis, mitochondrial membrane potential, and expression levels of BCL-2, CREB and BDNF mRNA were significantly decreased in the GPR39 siRNA+500 nM CORT group, while the expression levels of caspase3, caspase9, AIF and BAX mRNA were significantly increased in the GPR39 siRNA+500 nM CORT group. Compared with the 1 μM CORTgroup, the cell viability, apoptosis, mitochondrial membrane potential, and expression levels of BCL-2, CREB and BDNF were significantly increased in the GPR39 agonist+1 μΜ CORT group, while the expression levels of caspase3, caspase9, AIF and BAX mRNA were significantly decreased in the GPR39 siRNA+500 nM CORT group. Compared with the control group, the mRNA and protein levels of GPR39, CREB and BDNF were significantly increased, and the mRNA and protein levels of CREB and BDNF were significantly decreased after 50 μM zinc sulfate treatment for 6 h. CONCLUSIONS GPR39 may play a neuroprotective role in CORT-induced cell injury via the improvement of CREB-BDNF expression, by inhibiting pro-apoptotic proteins and by upregulating anti-apoptotic proteins.
Collapse
Affiliation(s)
- Fengfeng Mo
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Peng Du
- Institute of Aviation Medicine, 28 Fucheng Rd, 100142 Beijing, China
| | - Zhilei Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Jianxin Yang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Mengyu Cai
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Yinyin Zhang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China.
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China.
| |
Collapse
|
27
|
Wu J, Yang JJ, Cao Y, Li H, Zhao H, Yang S, Li K. Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. J Neuroinflammation 2020; 17:110. [PMID: 32276637 PMCID: PMC7149901 DOI: 10.1186/s12974-020-01777-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Increasing evidence suggests that multiple or long-time exposure to general anaesthesia (GA) could be detrimental to cognitive development in young subjects and might also contribute to accelerated neurodegeneration in the elderly. Iron is essential for normal neuronal function, and excess iron in the brain is implicated in several neurodegenerative diseases. However, the role of iron in GA-induced neurotoxicity and cognitive deficits remains elusive. Methods We used the primary hippocampal neurons and rodents including young rats and aged mice to examine whether GA impacted iron metabolism and whether the impact contributed to neuronal outcomes. In addition, a pharmacological suppression of iron metabolism was performed to explore the molecular mechanism underlying GA-mediated iron overload in the brain. Results Our results demonstrated that GA, induced by intravenous ketamine or inhalational sevoflurane, disturbed iron homeostasis and caused iron overload in both in vitro hippocampal neuron culture and in vivo hippocampus. Interestingly, ketamine- or sevoflurane-induced cognitive deficits, very likely, resulted from a novel iron-dependent regulated cell death, ferroptosis. Notably, iron chelator deferiprone attenuated the GA-induced mitochondrial dysfunction, ferroptosis, and further cognitive deficits. Moreover, we found that GA-induced iron overload was activated by NMDAR-RASD1 signalling via DMT1 action in the brain. Conclusion We conclude that disturbed iron metabolism may be involved in the pathogenesis of GA-induced neurotoxicity and cognitive deficits. Our study provides new vision for consideration in GA-associated neurological disorders.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Jian-Jun Yang
- Department of Anesthesiology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
28
|
Fu Q, Li J, Qiu L, Ruan J, Mao M, Li S, Mao Q. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int Immunopharmacol 2020; 82:106317. [PMID: 32087497 DOI: 10.1016/j.intimp.2020.106317] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
Perioperative neurocognitive disorders (PND) are characterized by deficits in cognitive functions in the elderly following anesthesia and surgery. Effective clinical interventions for preventing this disease are limited. Growing evidence demonstrates that activation of NOD-like receptor protein3 (NLRP3) inflammasome is involved in neurodegenerative diseases. We therefore hypothesized that activation of NLRP3 inflammasome is linked to neuroinflammation and the subsequent cognitive impairments that occurred in an animal model of PND. In this study, 18-month-old C57BL/6 mice were subjected to an exploratory laparotomy under isoflurane anesthesia to mimic clinical human abdominal surgery. For interventional studies, mice received NLRP3 specific inhibitor MCC950 (10 mg/kg) or the vehicle only intraperitoneally. Behavioral studies were performed at 6 and 7 d after surgery using open field and fear conditioning tests, respectively. Interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), ionized calcium-binding adaptor molecule-1 (IBA1) positive cells, glial fibrillary acidic protein (GFAP) positive cells, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 were measured at 3 days post-surgery. Brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) were measured at 7 days post-surgery. Our data indicates that surgery-induced cognitive impairments were associated with significant increases in IL-1β, IL-18, TNF-α, NLRP3, ASC, cleaved caspase-1, IBA1-positive cells and GFAP-positive cells, and decreases in BDNF and PSD95 expression in the hippocampus. Notably, administration with MCC950 attenuated inflammatory changes and rescued surgery-induced cognitive impairments. Our study suggests that surgery induces neuroinflammation and cognitive deficits that are partly attributed to the activation of NLRP3 inflammasome in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Qun Fu
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Li
- Fenghuang Community Health Service Center, Gulou District, Nanjing 210029, China
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiaping Ruan
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Mingjie Mao
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shuming Li
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qinghong Mao
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
29
|
Cai Y, Huang P, Xie Y. Effects of huperzine A on hippocampal inflammatory response and neurotrophic factors in aged rats after anesthesia. Acta Cir Bras 2020; 34:e201901205. [PMID: 32049185 PMCID: PMC7006372 DOI: 10.1590/s0102-865020190120000005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/19/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effects of huperzine A (HupA) on hippocampal inflammatory response and neurotrophic factors in aged rats after anesthesia. METHODS Thirty-six Sprague Dawley rats (20-22 months old) were randomly divided into control, isofluran, and isoflurane+HupA groups; 12 rats in each group. The isoflurane+HupA group was intraperitoneally injected with 0.2 mg/kg of HupA. After 30 min, isoflurane inhalation anesthesia was performed in the isoflurane and isoflurane+HupA groups. After 24 h from anesthesia, Morris water maze experiment and open-field test were performed. Hippocampal inflammatory and neurotrophic factors were determined. RESULTS Compared with isoflurane group, in isofluran+HupA group the escape latency of rats was significantly decreased (P < 0.05), the original platform quadrant residence time and traversing times were significantly increased (P < 0.05), the central area residence time was significantly increased (P < 0.05), the hippocampal tumor necrosis factor α, interleukin 6 and interleukin 1β levels were significantly decreased (P < 0.05), and the hippocampal nerve growth factor, brain derived neurotrophic factor and neurotrophin-3 levels were significantly increased (P < 0.05). CONCLUSION HupA may alleviate the cognitive impairment in rats after isoflurane anesthesia by decreasing inflammatory factors and increasing hippocampal neurotrophic factors in hippocampus tissue.
Collapse
Affiliation(s)
- Yi Cai
- Master, Department of Anesthesiology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China. Design of the study, statistics analysis, final approval
| | - Penghan Huang
- Bachelor, Department of Anesthesiology, People’s Hospital of Bishan District, Chongqing 402760, China. Acquisition of data, final approval
| | - Yizu Xie
- Bachelor, Department of Anesthesiology, People’s Hospital of Bishan District, Chongqing 402760, China. Design of the study, critical revision, final approval
| |
Collapse
|
30
|
Belrose JC, Noppens RR. Anesthesiology and cognitive impairment: a narrative review of current clinical literature. BMC Anesthesiol 2019; 19:241. [PMID: 31881996 PMCID: PMC6933922 DOI: 10.1186/s12871-019-0903-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background The impact of general anesthesia on cognitive impairment is controversial and complex. A large body of evidence supports the association between exposure to surgery under general anesthesia and development of delayed neurocognitive recovery in a subset of patients. Existing literature continues to debate whether these short-term effects on cognition can be attributed to anesthetic agents themselves, or whether other variables are causative of the observed changes in cognition. Furthermore, there is conflicting data on the relationship between anesthesia exposure and the development of long-term neurocognitive disorders, or development of incident dementia in the patient population with normal preoperative cognitive function. Patients with pre-existing cognitive impairment present a unique set of anesthetic considerations, including potential medication interactions, challenges with cooperation during assessment and non-general anesthesia techniques, and the possibility that pre-existing cognitive impairment may impart a susceptibility to further cognitive dysfunction. Main body This review highlights landmark and recent studies in the field, and explores potential mechanisms involved in perioperative cognitive disorders (also known as postoperative cognitive dysfunction, POCD). Specifically, we will review clinical and preclinical evidence which implicates alterations to tau protein, inflammation, calcium dysregulation, and mitochondrial dysfunction. As our population ages and the prevalence of Alzheimer’s disease and other forms of dementia continues to increase, we require a greater understanding of potential modifiable factors that impact perioperative cognitive impairment. Conclusions Future research should aim to further characterize the associated risk factors and determine whether certain anesthetic approaches or other interventions may lower the potential risk which may be conferred by anesthesia and/or surgery in susceptible individuals.
Collapse
Affiliation(s)
- Jillian C Belrose
- Department of Anesthesia & Perioperative Medicine, Western University, London Health Sciences Center, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Ruediger R Noppens
- Department of Anesthesia & Perioperative Medicine, Western University, London Health Sciences Center, 339 Windermere Rd, London, ON, N6A 5A5, Canada.
| |
Collapse
|
31
|
Zhao W, Xu Z, Cao J, Fu Q, Wu Y, Zhang X, Long Y, Zhang X, Yang Y, Li Y, Mi W. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation 2019; 16:230. [PMID: 31747905 PMCID: PMC6865061 DOI: 10.1186/s12974-019-1627-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background It is widely accepted that mitochondria have a direct impact on neuronal function and survival. Oxidative stress caused by mitochondrial abnormalities play an important role in the pathophysiology of lipopolysaccharide (LPS)-induced memory impairment. Elamipretide (SS-31) is a novel mitochondrion-targeted antioxidant. However, the impact of elamipretide on the cognitive sequelae of inflammatory and oxidative stress is unknown. Methods We utilized MWM and contextual fear conditioning test to assess hippocampus-related learning and memory performance. Molecular biology techniques and ELISA were used to examine mitochondrial function, oxidative stress, and the inflammatory response. TUNEL and Golgi-staining was used to detect neural cell apoptosis and the density of dendritic spines in the mouse hippocampus. Results Mice treated with LPS exhibited mitochondrial dysfunction, oxidative stress, an inflammatory response, neural cell apoptosis, and loss of dendritic spines in the hippocampus, leading to impaired hippocampus-related learning and memory performance in the MWM and contextual fear conditioning test. Treatment with elamipretide significantly ameliorated LPS-induced learning and memory impairment during behavioral tests. Notably, elamipretide not only provided protective effects against mitochondrial dysfunction and oxidative stress but also facilitated the regulation of brain-derived neurotrophic factor (BDNF) signaling, including the reversal of important synaptic-signaling proteins and increased synaptic structural complexity. Conclusion These findings indicate that LPS-induced memory impairment can be attenuated by the mitochondrion-targeted antioxidant elamipretide. Consequently, elamipretide may have a therapeutic potential in preventing damage from the oxidative stress and neuroinflammation that contribute to perioperative neurocognitive disorders (PND), which makes mitochondria a potential target for treatment strategies for PND.
Collapse
Affiliation(s)
- Weixing Zhao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhipeng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiang Fu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yishuang Wu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoying Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yue Long
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuan Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yitian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, 100850, China
| | - Weidong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
32
|
Li H, Dai CL, Gu JH, Peng S, Li J, Yu Q, Iqbal K, Liu F, Gong CX. Intranasal Administration of Insulin Reduces Chronic Behavioral Abnormality and Neuronal Apoptosis Induced by General Anesthesia in Neonatal Mice. Front Neurosci 2019; 13:706. [PMID: 31354415 PMCID: PMC6637386 DOI: 10.3389/fnins.2019.00706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Children, after multiple exposures to general anesthesia, appear to be at an increased risk of developing learning disabilities. Almost all general anesthetics—including sevoflurane, which is commonly used for children—are potentially neurotoxic to the developing brain. Anesthesia exposure during development might also be associated with behavioral deficiencies later in life. To date, there is no treatment to prevent anesthesia-induced neurotoxicity and behavioral changes. In this study, we anesthetized 7-day-old neonatal mice with sevoflurane for 3 h per day for three consecutive days and found that the anesthesia led to mild behavioral abnormalities later in life that were detectable by using the novel object recognition test, Morris water maze, and fear conditioning test. Biochemical and immunohistochemical studies indicate that anesthesia induced a decrease in brain levels of postsynaptic density 95 (PSD95), a postsynaptic marker, and marked activation of neuronal apoptosis in neonatal mice. Importantly, insulin administered through intranasal delivery prior to anesthesia was found to prevent the anesthesia-induced long-term behavioral abnormalities, reduction of PSD95, and activation of neuronal apoptosis. These findings suggest that intranasal insulin administration could be an effective approach to prevent the increased risk of neurotoxicity and chronic damage caused by anesthesia in the developing brain.
Collapse
Affiliation(s)
- Hengchang Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chun-Ling Dai
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Jin-Hua Gu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Clinical Pharmacy, Nantong Maternity and Child Health Hospital, Nantong University, Nantong, China
| | - Shengwei Peng
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Internal Medicine, Hubei University of Science and Technology, Xianning, China
| | - Jian Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Yu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Department of Orthopedic, Shandong Qianfoshan Hospital, Shandong University, Jinan, China
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
33
|
Hara Y, McKeehan N, Fillit HM. Translating the biology of aging into novel therapeutics for Alzheimer disease. Neurology 2018; 92:84-93. [PMID: 30530798 PMCID: PMC6340342 DOI: 10.1212/wnl.0000000000006745] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer disease (AD), a progressive neurodegenerative disease with currently no therapies that prevent, slow, or halt disease progression. Like other chronic diseases of old age, the progressive pathology of AD begins decades before the onset of symptoms. Many decades of research in biological gerontology have revealed common processes that are relevant to understanding why the aging brain is vulnerable to AD. In this review, we frame the development of novel therapeutics for AD in the context of biological gerontology. The many therapies currently in development based on biological gerontology principles provide promise for the development of a new generation of therapeutics to prevent and treat AD.
Collapse
Affiliation(s)
- Yuko Hara
- From the Alzheimer's Drug Discovery Foundation, New York, NY
| | | | - Howard M Fillit
- From the Alzheimer's Drug Discovery Foundation, New York, NY.
| |
Collapse
|
34
|
Fan Y, Du L, Fu Q, Zhou Z, Zhang J, Li G, Wu J. Inhibiting the NLRP3 Inflammasome With MCC950 Ameliorates Isoflurane-Induced Pyroptosis and Cognitive Impairment in Aged Mice. Front Cell Neurosci 2018; 12:426. [PMID: 30524241 PMCID: PMC6262296 DOI: 10.3389/fncel.2018.00426] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Nod-like receptor protein 3 (NLRP3) inflammasome activation has been implicated in the pathogenesis of general anesthesia (GA)-induced neuroinflammation and cognitive impairment in aged rodents. However, the cellular basis for cognitive impairment is still not fully understood, and effective pharmacologic agents targeting the NLRP3 inflammasome during GA are lacking. This study explores the protective effects of the NLRP3 inflammasome inhibitor MCC950 on pyroptosis and cognitive impairment in aged mice exposed to isoflurane. Seventy-two 15-month-old male C57BL/6 mice were randomized to receive 2 h of 1.5% isoflurane plus 30% oxygen (O2) or 30% O2 alone, respectively. MCC950 (10 mg/kg) or vehicle was intraperitoneally administered 30 min before gas inhalation. Brain tissues were harvested for histochemical analysis and biochemical assays. Learning and memory abilities were evaluated by behavioral tests. We found that isoflurane GA caused upregulations of hippocampal NLRP3, cleaved caspase-1, interleukin-1β (IL-1β), and IL-18 and the activation of pyroptosis, which is NLRP3 inflammasome-dependent; this consequently gave rise to neuronal damage and cognitive impairment in aged mice. Interestingly, pretreatment with NLRP3 inflammasome inhibitor MCC950 not only provided a neuroprotective effect against the inflammasome activation but also ameliorated pyroptosis and cognitive impairment in aged mice exposed to isoflurane. Our data demonstrate that pyroptosis is involved in NLRP3 inflammasome-mediated isoflurane-induced cognitive impairment in aged mice and suggest that inhibiting the NLRP3 inflammasome with MCC950 may have clinically therapeutic benefits for elderly patients undertaking GA.
Collapse
Affiliation(s)
- Yunxia Fan
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Liwu Du
- Department of Anesthesiology, Nanjing Branch of Shanghai Changzheng Hospital, The Second Military Medical University, Nanjing, China
| | - Qun Fu
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jingyu Zhang
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Guomin Li
- Department of Anesthesiology, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Hong-Qiang H, Mang-Qiao S, Fen X, Shan-Shan L, Hui-Juan C, Wu-Gang H, Wen-Jun Y, Zheng-Wu P. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol Behav 2018; 195:1-8. [PMID: 30040951 DOI: 10.1016/j.physbeh.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023]
Abstract
Hyperbaric oxygen (HBO) preconditioning (PC) has been suggested as a feasible method to provide neuroprotection from postoperative cognitive dysfunction (POCD). However, whether HBO-PC can ameliorate cognitive deficits induced by isoflurane, and the possible mechanism by which it may exert its effect, has not yet been clarified. In the present study, middle-aged mice were exposed to isoflurane anesthesia (1.5 minimal alveolar concentration [MAC]) for 2 h to establish a POCD model. After HBO preconditioning, cognitive function and expression of hippocampal sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) were evaluated 24 h following isoflurane treatment, in the presence or absence of Sirt1 knockdown by short hairpin RNA (shRNA). HBO preconditioning increased the expression of Sirt1, Nrf2, and HO-1 and ameliorated memory dysfunction. Meanwhile, Sirt1 knockdown inhibited the expression of Nrf2 and HO-1 and attenuated the HBO preconditioning-associated memory improvement. Our results suggest that the application of HBO preconditioning is a useful treatment for POCD, and that Sirt1 may be a potential molecular target for POCD therapy.
Collapse
Affiliation(s)
- Hu Hong-Qiang
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Shu Mang-Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Psychiatry, Changan Hospital, Xi'an 710016, China
| | - Xue Fen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Shan-Shan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Cao Hui-Juan
- Department of Anesthesiology, PLA No. 174 Hospital, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Hou Wu-Gang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wen-Jun
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Peng Zheng-Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
36
|
Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury. J Physiol Biochem 2018; 74:335-343. [PMID: 29589186 DOI: 10.1007/s13105-018-0617-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Hind limb ischemia-reperfusion injury is an important pathology in vascular surgery. Reactive oxygen species are thought to be involved in the pathogenesis of hind limb ischemia-reperfusion injury. SS-31, which belongs to a family of mitochondrion-targeted peptide antioxidants, was shown to reduce mitochondrial reactive oxygen species production. In this study, we investigated whether the treatment of SS-31 could protect hind limb from ischemia-reperfusion injury in a mouse model. The results showed that SS-31 treatment either before or after ischemia exhibited similar protective effects. Histopathologically, SS-31 treatment prevented the IR-induced histological deterioration compared with the corresponding vehicle control. SS-31 treatment diminished oxidative stress revealed by the reduced malondialdehyde level and increased activities and protein levels of Sod and catalase. Cellular ATP contents and mitochondrial membrane potential increased and the level of cytosolic cytC was decreased after SS-31 treatment in this IR model, demonstrating that mitochondria were protected. The IR-induced increase of levels of inflammatory factors, such as Tnf-α and Il-1β, was prevented by SS-31 treatment. In agreement with the reduced cytosolic cytC, cleaved-caspase 3 was kept at a very low level after SS-31 treatment. Overall, the effect of SS-31 treatment before ischemia is mildly more effective than that after ischemia. In conclusion, our results demonstrate that SS-31 confers a protective effect in the mouse model of hind limb ischemia-reperfusion injury preventatively and therapeutically.
Collapse
|
37
|
Jiang T, Wang XQ, Ding C, Du XL. Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:579-589. [PMID: 29200900 PMCID: PMC5709474 DOI: 10.4196/kjpp.2017.21.6.579] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xiu-Qin Wang
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Chuan Ding
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| | - Xue-Lian Du
- Department of Gynecology, Shandong Cancer Hospital, Jinan 250117, Shandong Province, China
| |
Collapse
|
38
|
Zhou CH, Zhang YH, Xue F, Xue SS, Chen YC, Gu T, Peng ZW, Wang HN. Isoflurane exposure regulates the cell viability and BDNF expression of astrocytes via upregulation of TREK‑1. Mol Med Rep 2017; 16:7305-7314. [PMID: 28944872 PMCID: PMC5865860 DOI: 10.3892/mmr.2017.7547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Neonatal isoflurane exposure in rodents disrupts hippocampal cognitive functions, including learning and memory, and astrocytes may have an important role in this process. However, the molecular mechanisms underlying this disruption are not fully understood. The present study investigated the role of TWIK-related K+ channel (TREK-1) in isoflurane-induced cognitive impairment. Lentiviruses were used to overexpress or knockdown TREK-1 in astrocytes exposed to increasing concentrations of isoflurane or O2 for 2 h. Subsequently, the mRNA and protein expression of brain-derived neurotrophic factor (BDNF), caspase-3, Bcl-2-associated X (Bax) and TREK-1 was measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. In addition, cell viability was assessed by a 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt assay. The results demonstrated that, prior to manipulating TREK-1, isoflurane significantly decreased the cell viability and BDNF expression, and increased Bax, caspase-3 and TREK-1 expression was observed. However, TREK-1 overexpression in astrocytes significantly downregulated BDNF expression, and upregulated Bax and caspase-3 expression. Furthermore, lentiviral-mediated short hairpin RNA knockdown of TREK-1 effectively inhibited the isoflurane-induced changes in BDNF, Bax and caspase-3 expression. Taken together, the results of the present study indicate that isoflurane-induced cell damage in astrocytes may be associated with TREK-1-mediated inhibition of BDNF and provide a reference for the safe use of isoflurane anesthesia in infants and children.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yun-Chun Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Gu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
39
|
Xie ZM, Wang XM, Xu N, Wang J, Pan W, Tang XH, Zhou ZQ, Hashimoto K, Yang JJ. Alterations in the inflammatory cytokines and brain-derived neurotrophic factor contribute to depression-like phenotype after spared nerve injury: improvement by ketamine. Sci Rep 2017; 7:3124. [PMID: 28600519 PMCID: PMC5466642 DOI: 10.1038/s41598-017-03590-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
Although pain is frequently accompanied with depression, little is known about the risk factors contributing to individual differences to the comorbidity of pain and depression. In this study, we examined whether cytokines and brain-derived neurotrophic factor (BDNF) might contribute to the individual differences in the development of neuropathic pain-induced depression. Rats were randomly subjected to spared nerved ligation (SNI) or sham surgery. The SNI rats were divided into two groups by the data from depression-related behavioral tests. Rats with depression-like phenotype displayed higher levels of pro-inflammatory cytokines (e.g., interleukin (IL)-1β, IL-6) as well as imbalance of pro/anti-inflammatory cytokines compared with rats without depression-like phenotype and sham-operated rats. Levels of BDNF in the prefrontal cortex of rats with depression-like phenotype were lower than those of rats without depression-like phenotype and sham-operated rats. A single dose of ketamine ameliorated depression-like behaviors in the rats with depression-like phenotype. Interestingly, higher serum levels of IL-1β and IL-6 in the rat with depression-like phenotype were normalized after a single dose of ketamine. These findings suggest that alterations in the inflammatory cytokines and BDNF might contribute to neuropathic pain-induced depression, and that serum cytokines may be predictable biomarkers for ketamine’s antidepressant actions.
Collapse
Affiliation(s)
- Ze-Min Xie
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Laboratory of Anesthetic and Analgesia Application Technology, Xuzhou Medicine University, Xuzhou, China
| | - Xing-Ming Wang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ning Xu
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Laboratory of Anesthetic and Analgesia Application Technology, Xuzhou Medicine University, Xuzhou, China
| | - Jing Wang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Pan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Hui Tang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China. .,Jiangsu Province Key Laboratory of Anesthesiology & Jiangsu Province Laboratory of Anesthetic and Analgesia Application Technology, Xuzhou Medicine University, Xuzhou, China.
| |
Collapse
|
40
|
Wu J, Hao S, Sun XR, Zhang H, Li H, Zhao H, Ji MH, Yang JJ, Li K. Elamipretide (SS-31) Ameliorates Isoflurane-Induced Long-Term Impairments of Mitochondrial Morphogenesis and Cognition in Developing Rats. Front Cell Neurosci 2017; 11:119. [PMID: 28487636 PMCID: PMC5403826 DOI: 10.3389/fncel.2017.00119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are supposed to be involved in the early pathogenesis of general anesthesia (GA)-induced neurotoxicity and long-term cognitive deficits in developing brains. However, effective pharmacologic agents targeted on mitochondria during GA exposure are lacking. This study explores the protective effects of mitochondrion-targeted antioxidant elamipretide (SS-31) on mitochondrial morphogenesis and cognition in developing rats exposed to isoflurane. Rat pups at postnatal day (PND) 7 were exposed to 1.5% isoflurane for 6 h following intraperitoneal administration of elamipretide or vehicle with 30 min interval. The hippocampus was immediately removed for biochemical assays. Histopathological studies were conducted at PND 21, and behavioral tests were performed at PND 40 or 60. We found that early exposure to isoflurane caused remarkable reactive oxygen species (ROS) accumulation, mitochondrial deformation and neuronal apoptosis in hippocampus. The injury occurrence ultimately gave rise to long-term cognitive deficits in developing rats. Interestingly, pretreatment with elamipretide not only provided protective effect against oxidative stress and mitochondrial damages, but also attenuated isoflurane-induced cognitive deficits. Our data support the notion that mitochondrial damage is an early and long lasting event of GA-induced injury and suggest that elamipretide might have clinically therapeutic benefits for pediatric patients undertaking GA.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjing, China
| | - Shuangying Hao
- Medical School of Henan Polytechnic UniversityJiaozuo, China
| | - Xiao-Ru Sun
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Huihui Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjing, China
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
41
|
Liu Z, Ma C, Zhao W, Zhang Q, Xu R, Zhang H, Lei H, Xu S. High Glucose Enhances Isoflurane-Induced Neurotoxicity by Regulating TRPC-Dependent Calcium Influx. Neurochem Res 2017; 42:1165-1178. [DOI: 10.1007/s11064-016-2152-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
42
|
Mitochondria-Targeted Antioxidants for the Treatment of Cardiovascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:621-646. [PMID: 28551810 DOI: 10.1007/978-3-319-55330-6_32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
McCarthy DM, Bell GA, Cannon EN, Mueller KA, Huizenga MN, Sadri-Vakili G, Fadool DA, Bhide PG. Reversal Learning Deficits Associated with Increased Frontal Cortical Brain-Derived Neurotrophic Factor Tyrosine Kinase B Signaling in a Prenatal Cocaine Exposure Mouse Model. Dev Neurosci 2016; 38:354-364. [PMID: 27951531 PMCID: PMC5360472 DOI: 10.1159/000452739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Prenatal cocaine exposure remains a major public health concern because of its adverse impact on cognitive function in children and adults. We report that prenatal cocaine exposure produces significant deficits in reversal learning, a key component of cognitive flexibility, in a mouse model. We used an olfactory reversal learning paradigm and found that the prenatally cocaine-exposed mice showed a marked failure to learn the reversed paradigm. Because brain-derived neurotrophic factor (BDNF) is a key regulator of cognitive functions, and because prenatal cocaine exposure increases the expression of BDNF and the phosphorylated form of its receptor, tyrosine kinase B (TrkB), we examined whether BDNF-TrkB signaling is involved in mediating the reversal learning deficit in prenatally cocaine-exposed mice. Systemic administration of a selective TrkB receptor antagonist restored normal reversal learning in prenatally cocaine-exposed mice, suggesting that increased BDNF-TrkB signaling may be an underlying mechanism of reversal learning deficits. Our findings provide novel mechanistic insights into the reversal learning phenomenon and may have significant translational implications because impaired cognitive flexibility is a key symptom in psychiatric conditions of developmental onset.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - Genevieve A. Bell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306
| | - Elisa N. Cannon
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - Kaly A. Mueller
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129-4404
| | - Megan N. Huizenga
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129-4404
| | - Ghazaleh Sadri-Vakili
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129-4404
| | - Debra A. Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Pradeep G. Bhide
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
44
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Imbesi R, Loreto C, Castorina S, Giunta S. Protective effects of high Tryptophan diet on aging-induced passive avoidance impairment and hippocampal apoptosis. Brain Res Bull 2016; 128:76-82. [PMID: 27889579 DOI: 10.1016/j.brainresbull.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022]
Abstract
In our previous work we have shown that L-Tryptophan (TrP) enriched diet prevents the age-induced decline of hippocampal Serotonin (5-HT) production. Considering that loss or reduction in 5-HT neurotransmission may contribute to age-related cognitive decline, here we have investigated the effect of such diet on passive avoidance (PA) behavior, cell death, pro- and anti- apoptotic molecules (BAX, Bcl-2 and Caspase-3) and an important transcription factor involved in synaptic plasticity and memory (CREB). The increase in 5-HT neurotransmission in the Hippocampus (Hp) of aged rats was induced by 1 month of high TrP administration. In the first phase of our study we found that high TrP diet improves PA behaviour of aged rats and this correlated with a decrease of TUNEL positive cells in all hippocampal regions tested (CA1, CA2, CA3, DG). Interestingly, the Hp of aged animals fed with high TrP diet showed a significant downregulation of proapoptotic proteins, caspase-3 and BAX, and an increase of antiapoptotic molecules Bcl-2 as indicated by Western Blot and immunohistochemical analyses. Also, high TrP diet partially rescued the age-induced inhibition of hippocampal CREB phosphorylation. Altogether, our data suggest that enhanced TrP intake, and in consequence a potential increase in 5-HT neurotransmission, might be beneficial in preventing age-related detrimental features by inhibition of hippocampal apoptosis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| |
Collapse
|
45
|
Caruso JP, Susick LL, Charlton JL, Henson EL, Conti AC. Region-specific disruption of synapsin phosphorylation following ethanol administration in brain-injured mice. Brain Circ 2016; 2:183-188. [PMID: 30276296 PMCID: PMC6126228 DOI: 10.4103/2394-8108.195284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 11/11/2022] Open
Abstract
Introduction: Civilians and military personnel develop a range of physical and psychosocial impairments following traumatic brain injury (TBI), including alcohol abuse. As a consequence, increased rates of alcohol misuse magnify TBI-induced pathologies and impede rehabilitation efforts. Therefore, a developed understanding of the mechanisms that foster susceptibility of the injured brain to alcohol sensitivity and the response of the injured brain to alcohol is imperative for the treatment of TBI patients. Alcohol sensitivity has been demonstrated to be increased following experimental TBI and, in additional studies, regulated by presynaptic vesicle release mechanisms, including synapsin phosphorylation. Materials and Methods: Mice were exposed to controlled midline impact of the intact skull and assessed for cortical, hippocampal, and striatal expression of phosphorylated synapsin I and II in response to high-dose ethanol exposure administered 14 days following injury, a time point at which injured mice demonstrate increased sedation after ethanol exposure. Results and Discussion: Immunoblot quantitation revealed that TBI alone, compared to sham controls, significantly increased phosphorylated synapsin I and II protein expression in the striatum. In sham controls, ethanol administration significantly increased phosphorylated synapsin I and II protein expression compared to saline-treated sham controls; however, no significant increase in ethanol-induced phosphorylated synapsin I and II protein expression was observed in the striatum of injured mice compared to saline-treated TBI controls. A similar expression pattern was observed in the cortex although restricted to increases in phosphorylated synapsin II. Conclusion: These data show that increased phosphorylated synapsin expression in the injured striatum may reflect a compensatory neuroplastic response to TBI which is proposed to occur as a result of a compromised presynaptic response of the injured brain to high-dose ethanol. These results offer a mechanistic basis for the altered ethanol sensitivity observed following experimental TBI and contribute to our understanding of alcohol action in the injured brain.
Collapse
Affiliation(s)
- James P Caruso
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura L Susick
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jennifer L Charlton
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Emily L Henson
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alana C Conti
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|