1
|
Arnanz MA, Ruiz de Martín Esteban S, Martínez Relimpio AM, Rimmerman N, Tweezer Zaks N, Grande MT, Romero J. Effects of Chronic, Low-Dose Cannabinoids, Cannabidiol, Delta-9-Tetrahydrocannabinol and a Combination of Both, on Amyloid Pathology in the 5xFAD Mouse Model of Alzheimer's Disease. Cannabis Cannabinoid Res 2024; 9:1312-1325. [PMID: 37862567 DOI: 10.1089/can.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: There is an urgent need for novel therapies to treat Alzheimer's disease. Among others, the use of cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been proposed as a putative approach based on their anti-inflammatory effects. Methods: The present work was designed to explore the effects of chronic (28 days) treatment with low doses of cannabinoids: CBD (0.273 mg/kg), THC (0.205 mg/kg) or a combination of both (CBD:THC; 0.273 mg/kg:0.205 mg/kg) in the 5xFAD mouse model of AD. Results: Our data revealed that THC-treated 5xFAD mice (but not other treatment groups) exhibited anxiogenic and depressant-like behavior. A significant improvement in spatial memory was observed only in the CBD:THC-treated group. Interestingly, all cannabinoid-treated groups showed significantly increased cortical levels of the insoluble form of beta amyloid 1-42. These effects were not accompanied by changes in molecular parameters of inflammation at the mRNA or protein level. Conclusions: These data reveal differential effects of chronic, low-dose cannabinoids and point to a role of these cannabinoids in the processing of amyloid peptides in the brains of 5xFAD mice.
Collapse
Affiliation(s)
- María Andrea Arnanz
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | | - Neta Rimmerman
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - Nurit Tweezer Zaks
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - María Teresa Grande
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julián Romero
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
2
|
Bernardová N, Novák J, Horák P, Fan CK, Kolářová L. Neurobehavioral Disorders and Pathological Changes in the Brain of Mice Are Caused by Chronic Toxocara canis Larval Invasion with Low to Moderate Inoculum. Acta Parasitol 2024:10.1007/s11686-024-00869-0. [PMID: 39240446 DOI: 10.1007/s11686-024-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
Toxocara canis larvae are one of the most overlooked agents of nervous system infection in paratenic hosts. Previous studies in mouse models have shown that infection with various (mainly high) numbers of larvae leads to neurobehavioral disturbances and pathological changes. Our study investigated whether the infection with low and moderate numbers of larvae could affect the physical condition, motor skills, and pathogenesis in the brains of experimentally infected mice.Two groups of BALB/c mice were orally infected with 10 and 100 T. canis larvae per animal and examined regularly until the 97th week after infection. General appearance, specific antibody responses, and motor/balance skills were assessed. The number and viability of larvae in the liver, spleen, lungs, and brain were assessed by quantitative compressed biopsy technique, while the pathological changes of the brain infection were studied histologically.As a result, changes were observed in overall appearance, activity, as well as motor and balance ability. The infections were associated with an increased IgG antibody response to the specific anti-T. canis excretory/secretory antigen and tissue damage in the brain characterized by necrosis, cell infiltrations, including foamy cells, and hemorrhages.The study demonstrated the effects of low and moderate T. canis infection in a paratenic host during the chronic phase of infection, which lasted up to 97 weeks for the first time.
Collapse
Affiliation(s)
- Nicol Bernardová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia.
| | - Jan Novák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- National Reference Laboratory for Tissue Helminthosis, General University Hospital, Prague, Czechia
| |
Collapse
|
3
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
4
|
Baek S, Jang J, Jung HJ, Lee H, Choe Y. Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer's Disease Mouse Brain. Mol Neurobiol 2024; 61:3976-3999. [PMID: 38049707 PMCID: PMC11236860 DOI: 10.1007/s12035-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Optical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer's disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Soonbong Baek
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jaemyung Jang
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busanjin-gu, Busan, 47340, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.
| |
Collapse
|
5
|
Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model. Int J Mol Sci 2024; 25:6766. [PMID: 38928472 PMCID: PMC11204382 DOI: 10.3390/ijms25126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José L. Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain;
| | - Paula Alexandra Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
O'Leary TP, Brown RE. Age-related changes in species-typical behaviours in the 5xFAD mouse model of Alzheimer's disease from 4 to 16 months of age. Behav Brain Res 2024; 465:114970. [PMID: 38531510 DOI: 10.1016/j.bbr.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) patients show age-related decreases in the ability to perform activities of daily living and the decline in these activities is related to the severity of neurobiological deterioration underlying the disease. The 5xFAD mouse model of AD shows age-related impairments in sensory- motor and cognitive function, but little is known about changes in species-typical behaviours that may model activities of daily living in AD patients. Therefore, we examined species-typical behaviours used as indices of exploration (rearing) and compulsivity (grooming) across six tests of anxiety-like behaviour or motor function in female 5xFAD mice from 3 to 16 months of age. Robust decreases in rearing were found in 5xFAD mice across all tests after 9 months of age, although few differences were observed in grooming. A fine-scale analysis of grooming, however, revealed a previously unresolved and spatially restricted pattern of grooming in 5xFAD mice at 13-16 months of age. We then examined changes in species-typical behaviours in the home-cage, and show impaired nest building in 5xFAD mice at all ages tested. Lastly, we examined the relationship between reduced species typical behaviours in 5xFAD mice and the presentation of freezing behaviour, a commonly used measure of memory for conditioned fear. These results showed that along with cognitive and sensory-motor behaviour, 5xFAD mice have robust age-related impairments in species-typical behaviours. Therefore, species typical behaviours in 5xFAD mice may help to model the decline in activities of daily living observed in AD patients, and may provide useful behavioural phenotypes for evaluating the pre-clinical efficacy of novel therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
7
|
Mar KD, So C, Hou Y, Kim JC. Age dependent path integration deficit in 5xFAD mice. Behav Brain Res 2024; 463:114919. [PMID: 38408521 DOI: 10.1016/j.bbr.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia in elderly individuals, characterized by memory deficits, cognitive decline, and neuropathology. The identification of preclinical markers for AD remains elusive. We employed an ultrasound-evoked spatial memory assay to investigate path integration (PI) in wild type C57BL/6 J and 5xFAD mice. We observed significant recruitment of the mammillary bodies (MB) and subiculum (Sub) - core regions of the Papez circuit during PI, as indicated by increased expression of the immediate early gene c-Fos in C57BL/6 J mice. In 5xFAD mice, amyloid-beta (Aβ) vulnerability in the MB and Sub was evident at 3-months of age, preceding widespread pathology at 5-months of age. In parallel, we detected significant behavioral deficits in PI in the 5XFAD mice at 5- but not 3-months of age. Sex based analysis revealed a more profound deficit in males compared to females at 5-months of age. Our data suggest PI may be as an early indicator of AD, potentially associated with dysfunction within the Papez circuit.
Collapse
Affiliation(s)
- Kendall D Mar
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada.
| | - Chanbee So
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Yixin Hou
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
8
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
9
|
Mensah-Kane P, Davis DL, Shi HS, Trinh OT, Vann PH, Dory L, Sumien N. Hyperbaric oxygen alleviates selective domains of cognitive and motor deficits in female 5xFAD mice. GeroScience 2024; 46:517-530. [PMID: 38153668 PMCID: PMC10828284 DOI: 10.1007/s11357-023-01047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
Treatment of Alzheimer's disease (AD) has been limited to managing of symptoms or anti-amyloid therapy with limited results and uncertainty. Seeking out new therapies that can reverse the effects of this devastating disease is important. Hyperbaric oxygen (HBO) therapy could be such a candidate as it has been shown to improve brain function in certain neurological conditions. Furthermore, the role sex plays in the vulnerability/resilience to AD remains equivocal. An understanding of what makes one sex more vulnerable to AD could unveil new pathways for therapy development. In this study, we investigated the effects of HBO on cognitive, motor, and affective function in a mouse model of AD (5xFAD) and assessed protein oxidation in peripheral tissues as a safety indicator. The motor and cognitive abilities of 5xFAD mice were significantly impaired. HBO therapy improved cognitive flexibility and associative learning of 5xFAD females but not males, but HBO had no effect other aspects of cognition. HBO also reversed AD-related declines in balance but had no impact on gait and anxiety-like behavior. HBO did not affect body weights or oxidative stress in peripheral tissues. Our study provides further support for HBO therapy as a potential treatment for AD and emphasizes the importance of considering sex as a biological variable in therapeutic development. Further investigations into the underlying mechanisms of HBO's sex-specific responses are warranted, as well as optimizing treatment protocols for maximum benefits.
Collapse
Affiliation(s)
- Paapa Mensah-Kane
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Delaney L Davis
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Helen S Shi
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Oanh T Trinh
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Ladislav Dory
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie, Fort Worth, TX, 76107, USA.
| |
Collapse
|
10
|
Kosel F, Hartley MR, Franklin TB. Aberrant Cortical Activity in 5xFAD Mice in Response to Social and Non-Social Olfactory Stimuli. J Alzheimers Dis 2024; 97:659-677. [PMID: 38143360 DOI: 10.3233/jad-230858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. OBJECTIVE To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. METHODS We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. RESULTS Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. CONCLUSIONS These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.
Collapse
Affiliation(s)
- Filip Kosel
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Mackenzie Rae Hartley
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Tamara Brook Franklin
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Zhang L, Wang H, Xun M, Tang H, Wang J, Lv J, Zhu B, Chen Y, Wang D, Hu S, Gao Z, Liu J, Chen ZY, Chen B, Li H, Shu Y. Preclinical evaluation of the efficacy and safety of AAV1-hOTOF in mice and nonhuman primates. Mol Ther Methods Clin Dev 2023; 31:101154. [PMID: 38027066 PMCID: PMC10679773 DOI: 10.1016/j.omtm.2023.101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Pathogenic mutations in the OTOF gene cause autosomal recessive hearing loss (DFNB9), one of the most common forms of auditory neuropathy. There is no biological treatment for DFNB9. Here, we designed an OTOF gene therapy agent by dual-adeno-associated virus 1 (AAV1) carrying human OTOF coding sequences with the expression driven by the hair cell-specific promoter Myo15, AAV1-hOTOF. To develop a clinical application of AAV1-hOTOF gene therapy, we evaluated its efficacy and safety in animal models using pharmacodynamics, behavior, and histopathology. AAV1-hOTOF inner ear delivery significantly improved hearing in Otof-/- mice without affecting normal hearing in wild-type mice. AAV1 was predominately distributed to the cochlea, although it was detected in other organs such as the CNS and the liver, and no obvious toxic effects of AAV1-hOTOF were observed in mice. To further evaluate the safety of Myo15 promoter-driven AAV1-transgene, AAV1-GFP was delivered into the inner ear of Macaca fascicularis via the round window membrane. AAV1-GFP transduced 60%-94% of the inner hair cells along the cochlear turns. AAV1-GFP was detected in isolated organs and no significant adverse effects were detected. These results suggest that AAV1-hOTOF is well tolerated and effective in animals, providing critical support for its clinical translation.
Collapse
Affiliation(s)
- Longlong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hui Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Mengzhao Xun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Honghai Tang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jinghan Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jun Lv
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Biyun Zhu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Yuxin Chen
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Daqi Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Shaowei Hu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Ziwen Gao
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jianping Liu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, USA
| | - Bing Chen
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
12
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
13
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Alves SS, Servilha-Menezes G, Rossi L, da Silva Junior RMP, Garcia-Cairasco N. Evidence of disturbed insulin signaling in animal models of Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105326. [PMID: 37479008 DOI: 10.1016/j.neubiorev.2023.105326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Since glucose reuptake by neurons is mostly independent of insulin, it has been an intriguing question whether insulin has or not any roles in the brain. Consequently, the identification of insulin receptors in the central nervous system has fueled investigations of insulin functions in the brain. It is also already known that insulin can influence glucose reuptake by neurons, mostly during activities that have the highest energy demand. The identification of high density of insulin receptors in the hippocampus also suggests that insulin may present important roles related to memory. In this context, studies have reported worse performance in cognitive tests among diabetic patients. In addition, alterations in the regulation of central insulin pathways have been observed in the brains of Alzheimer's disease (AD) patients. In fact, some authors have proposed AD as a third type of diabetes and recently, our group proposed insulin resistance as a common link between different AD hypotheses. Therefore, in the present narrative review, we intend to revise and gather the evidence of disturbed insulin signaling in experimental animal models of AD.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Leticia Rossi
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Rui Milton Patrício da Silva Junior
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil; Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil.
| |
Collapse
|
15
|
Chen L, Xiong L, Yao L, Pan J, Arzola E, Zhu X, Mei L, Xiong WC. Attenuation of Alzheimer's brain pathology in 5XFAD mice by PTH 1-34, a peptide of parathyroid hormone. Alzheimers Res Ther 2023; 15:53. [PMID: 36918976 PMCID: PMC10012528 DOI: 10.1186/s13195-023-01202-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and osteoporosis are two distinct diseases but often occur in the same patient. Their relationship remains poorly understood. Studies using Tg2576 AD animal model demonstrate bone deficits, which precede the brain phenotypes by several months, arguing for the independence of bone deficits on brain degeneration and raising a question if the bone deficits contribute to the AD development. To address this question, we investigated the effects of PTH1-34, a peptide of parathyroid hormone analog and a well-recognized effective anabolic therapy drug for patients with osteoporosis, on 5XFAD animal model. METHODS 5XFAD mice, an early onset β-amyloid (Aβ)-based AD mouse model, were treated with PTH1-34 intermittently [once daily injection of hPTH1-34 (50 μg/Kg), 5 days/week, starting at 2-month old (MO) for 2-3 month]. Wild type mice (C57BL/6) were used as control. The bone phenotypes were examined by microCT and evaluated by measuring serum bone formation and resorption markers. The AD relevant brain pathology (e.g., Aβ and glial activation) and behaviors were assessed by a combination of immunohistochemical staining analysis, western blots, and behavior tests. Additionally, systemic and brain inflammation were evaluated by serum cytokine array, real-time PCR (qPCR), and RNAscope. RESULTS A reduced trabecular, but not cortical, bone mass, accompanied with a decrease in bone formation and an increase in bone resorption, was detected in 5XFAD mice at age of 5/6-month old (MO). Upon PTH1-34 treatments, not only these bone deficits but also Aβ-associated brain pathologies, including Aβ and Aβ deposition levels, dystrophic neurites, glial cell activation, and brain inflammatory cytokines, were all diminished; and the cognitive function was improved. Further studies suggest that PTH1-34 acts on not only osteoblasts in the bone but also astrocytes in the brain, suppressing astrocyte senescence and expression of inflammatory cytokines in 5XFAD mice. CONCLUSIONS These results suggest that PTH1-34 may act as a senolytic-like drug, reducing systemic and brain inflammation and improving cognitive function, and implicate PTH1-34's therapeutic potential for patients with not only osteoporosis but also AD.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emily Arzola
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA
| | - Xiaojuan Zhu
- Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 2210 Circle Dr, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
16
|
Berk-Rauch HE, Choudhury A, Richards AT, Singh PK, Chen ZL, Norris EH, Strickland S, Ahn HJ. Striatal fibrinogen extravasation and vascular degeneration correlate with motor dysfunction in an aging mouse model of Alzheimer’s disease. Front Aging Neurosci 2023; 15:1064178. [PMID: 36967821 PMCID: PMC10034037 DOI: 10.3389/fnagi.2023.1064178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Alzheimer’s Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered.Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice.Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.
Collapse
Affiliation(s)
- Hanna E. Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Allison T. Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Hyung Jin Ahn,
| |
Collapse
|
17
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APP NL-G-F/NL-G-F mice. Synapse 2023; 77:e22257. [PMID: 36255152 DOI: 10.1002/syn.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
18
|
Witucki Ł, Jakubowski H. Depletion of Paraoxonase 1 (Pon1) Dysregulates mTOR, Autophagy, and Accelerates Amyloid Beta Accumulation in Mice. Cells 2023; 12:746. [PMID: 36899882 PMCID: PMC10001133 DOI: 10.3390/cells12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Paraoxonase 1 (PON1), a homocysteine (Hcy)-thiolactone detoxifying enzyme, has been associated with Alzheimer's disease (AD), suggesting that PON1 plays an important protective role in the brain. To study the involvement of PON1 in the development of AD and to elucidate the mechanism involved, we generated a new mouse model of AD, the Pon1-/-xFAD mouse, and examined how Pon1 depletion affects mTOR signaling, autophagy, and amyloid beta (Aβ) accumulation. To elucidate the mechanism involved, we examined these processes in N2a-APPswe cells. We found that Pon1 depletion significantly downregulated Phf8 and upregulated H4K20me1; mTOR, phospho-mTOR, and App were upregulated while autophagy markers Bcln1, Atg5, and Atg7 were downregulated at the protein and mRNA levels in the brains of Pon1─/─5xFAD vs. Pon1+/+5xFAD mice. Pon1 depletion in N2a-APPswe cells by RNA interference led to downregulation of Phf8 and upregulation of mTOR due to increased H4K20me1-mTOR promoter binding. This led to autophagy downregulation and significantly increased APP and Aβ levels. Phf8 depletion by RNA interference or treatments with Hcy-thiolactone or N-Hcy-protein metabolites similarly increased Aβ levels in N2a-APPswe cells. Taken together, our findings define a neuroprotective mechanism by which Pon1 prevents Aβ generation.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-637 Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
20
|
Mulgrave VE, Alsayegh AA, Jaldi A, Omire-Mayor DT, James N, Ntekim O, Walters E, Akala EO, Allard JS. Exercise modulates APOE expression in brain cortex of female APOE3 and APOE4 targeted replacement mice. Neuropeptides 2023; 97:102307. [PMID: 36434832 PMCID: PMC9839612 DOI: 10.1016/j.npep.2022.102307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Apolipoprotein E (ApoE) is the main cholesterol carrier of the brain and the ε4 gene variant (APOE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold. Several studies indicate that APOE4 modulates critical factors for neuronal function, including brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Both proteins show exercise-induced upregulation, which is presumed to mediate many of the beneficial effects of physical activity including improved cognition; however, there is variability in results between individuals potentially in-part due to genetic variations including APOE isoform. This study aimed to determine if the two most prevalent human APOE isoforms influence adaptive responses to exercise-training. Targeted replacement mice, homozygous for either APOE3 or APOE4 were randomized into exercised and sedentary groups. Baseline locomotor function and voluntary wheel-running behavior was reduced in APOE4 mice. Exercised groups were subjected to daily treadmill running for 8 weeks. ApoE protein in brain cortex was significantly increased by exercise in both genotypes. PGC-1α mRNA levels in brain cortex were significantly lower in APOE4 mice, and only tended to increase with exercise in both genotypes. Hippocampal BDNF protein were similar between genotypes and was not significantly modulated by treadmill running. Behavioral and biochemical variations between APOE3 and APOE4 mice likely contribute to the differential risk for neurological and vascular diseases and the exercise-induced increase in ApoE levels suggests an added feature of the potential efficacy of physical activity as a preventative and therapeutic strategy for neurogenerative processes in both genotypes.
Collapse
Affiliation(s)
- Verona E Mulgrave
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Abdulrahman A Alsayegh
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA; Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aida Jaldi
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | | | - Niaya James
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Oyonumo Ntekim
- Dept. of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Eric Walters
- Dept. of Biochemistry, College of Medicine, Howard University, Washington, DC, USA
| | - Emanuel O Akala
- Dept of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC, USA
| | - Joanne S Allard
- Dept of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC, USA.
| |
Collapse
|
21
|
Lansdell TA, Xu H, Galligan JJ, Dorrance AM. Effects of Striatal Amyloidosis on the Dopaminergic System and Behavior: A Comparative Study in Male and Female 5XFAD Mice. J Alzheimers Dis 2023; 94:1361-1375. [PMID: 37424461 DOI: 10.3233/jad-220905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Nearly two-thirds of patients diagnosed with Alzheimer's disease (AD) are female. In addition, female patients with AD have more significant cognitive impairment than males at the same disease stage. This disparity suggests there are sex differences in AD progression. While females appear to be more affected by AD, most published behavioral studies utilize male mice. In humans, there is an association between antecedent attention-deficit/hyperactivity disorder and increased risk of dementia. Functional connectivity studies indicate that dysfunctional cortico-striatal networks contribute to hyperactivity in attention deficit hyperactivity disorder. Higher plaque density in the striatum accurately predicts the presence of clinical AD pathology. In addition, there is a link between AD-related memory dysfunction and dysfunctional dopamine signaling. OBJECTIVE With the need to consider sex as a biological variable, we investigated the influence of sex on striatal plaque burden, dopaminergic signaling, and behavior in prodromal 5XFAD mice. METHODS Six-month-old male and female 5XFAD and C57BL/6J mice were evaluated for striatal amyloid plaque burden, locomotive behavior, and changes in dopaminergic machinery in the striatum. RESULTS 5XFAD female mice had a higher striatal amyloid plaque burden than male 5XFAD mice. 5XFAD females, but not males, were hyperactive. Hyperactivity in female 5XFAD mice was associated with increased striatal plaque burden and changes in dopamine signaling in the dorsal striatum. CONCLUSION Our results indicate that the progression of amyloidosis involves the striatum in females to a greater extent than in males. These studies have significant implications for using male-only cohorts in the study of AD progression.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Hui Xu
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Pechlivanidou M, Kousiappa I, Angeli S, Sargiannidou I, Koupparis AM, Papacostas SS, Kleopa KA. Glial Gap Junction Pathology in the Spinal Cord of the 5xFAD Mouse Model of Early-Onset Alzheimer's Disease. Int J Mol Sci 2022; 23:15597. [PMID: 36555237 PMCID: PMC9779687 DOI: 10.3390/ijms232415597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Gap junctions (GJs) are specialized transmembrane channels assembled by two hemi-channels of six connexin (Cx) proteins that facilitate neuroglial crosstalk in the central nervous system (CNS). Previous studies confirmed the crucial role of glial GJs in neurodegenerative disorders with dementia or motor dysfunction including Alzheimer's disease (AD). The aim of this study was to examine the alterations in astrocyte and related oligodendrocyte GJs in association with Aβ plaques in the spinal cord of the 5xFAD mouse model of AD. Our analysis revealed abundant Aβ plaque deposition, activated microglia, and astrogliosis in 12-month-old (12M) 5xFAD mice, with significant impairment of motor performance starting from 3-months (3M) of age. Additionally, 12M 5xFAD mice displayed increased immunoreactivity of astroglial Cx43 and Cx30 surrounding Aβ plaques and higher protein levels, indicating upregulated astrocyte-to-astrocyte GJ connectivity. In addition, they demonstrated increased numbers of mature CC1-positive and precursor oligodendrocytes (OPCs) with higher immunoreactivity of Cx47-positive GJs in individual cells. Moreover, total Cx47 protein levels were significantly elevated in 12M 5xFAD, reflecting increased oligodendrocyte-to-oligodendrocyte Cx47-Cx47 GJ connectivity. In contrast, we observed a marked reduction in Cx32 protein levels in 12M 5xFAD spinal cords compared with controls, while qRT-PCR analysis revealed a significant upregulation in Cx32 mRNA levels. Finally, myelin deficits were found focally in the areas occupied by Aβ plaques, whereas axons themselves remained preserved. Overall, our data provide novel insights into the altered glial GJ expression in the spinal cord of the 5xFAD model of AD and the implicated role of GJ pathology in neurodegeneration. Further investigation to understand the functional consequences of these extensive alterations in oligodendrocyte-astrocyte (O/A) GJ connectivity is warranted.
Collapse
Affiliation(s)
- Maria Pechlivanidou
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Stella Angeli
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Andreas M. Koupparis
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Epilepsy Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Dementia and Cognitive Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Epilepsy Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Dementia and Cognitive Disorders Centre, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
23
|
LLabre JE, Gil C, Amatya N, Lagalwar S, Possidente B, Vashishth D. Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer's Disease. J Bone Miner Res 2022; 37:2548-2565. [PMID: 36250342 PMCID: PMC9772191 DOI: 10.1002/jbmr.4723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) patients present with symptoms such as impairment of insulin signaling, chronic inflammation, and oxidative stress. Furthermore, there are comorbidities associated with AD progression. For example, osteoporosis is common with AD wherein patients exhibit reduced mineralization and a risk for fragility fractures. However, there is a lack of understanding on the effects of AD on bone beyond loss of bone density. To this end, we investigated the effects of AD on bone quality using the 5XFAD transgenic mouse model in which 12-month-old 5XFAD mice showed accumulation of amyloid-beta (Aβ42) compared with wild-type (WT) littermates (n = 10/group; 50% female, 50% male). Here, we observed changes in cortical bone but not in cancellous bone quality. Both bone mass and bone quality, measured in femoral samples using imaging (micro-CT, confocal Raman spectroscopy, X-ray diffraction [XRD]), mechanical (fracture tests), and chemical analyses (biochemical assays), were altered in the 5XFAD mice compared with WT. Micro-CT results showed 5XFAD mice had lower volumetric bone mineral density (BMD) and increased endocortical bone loss. XRD results showed decreased mineralization with smaller mineral crystals. Bone matrix compositional properties, from Raman, showed decreased crystallinity along with higher accumulation of glycoxidation products and glycation products, measured biochemically. 5XFAD mice also demonstrated loss of initiation and maximum toughness. We observed that carboxymethyl-lysine (CML) and mineralization correlated with initiation toughness, whereas crystal size and pentosidine (PEN) correlated with maximum toughness, suggesting bone matrix changes predominated by advanced glycation end products (AGEs) and altered/poor mineral quality explained loss of fracture toughness. Our findings highlight two pathways to skeletal fragility in AD through alteration of bone quality: (i) accumulation of AGEs; and (ii) loss of crystallinity, decreased crystal size, and loss of mineralization. We observed that the accumulation of amyloidosis in brain correlated with an increase in several AGEs, consistent with a mechanistic link between elevated Aβ42 levels in the brain and AGE accumulation in bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Joan E. LLabre
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Cristianel Gil
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Neha Amatya
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | | | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
24
|
Lucero EM, Freund RK, Smith A, Johnson NR, Dooling B, Sullivan E, Prikhodko O, Ahmed MM, Bennett DA, Hohman TJ, Dell’Acqua ML, Chial HJ, Potter H. Increased KIF11/ kinesin-5 expression offsets Alzheimer Aβ-mediated toxicity and cognitive dysfunction. iScience 2022; 25:105288. [PMID: 36304124 PMCID: PMC9593841 DOI: 10.1016/j.isci.2022.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Previously, we found that amyloid-beta (Aβ) competitively inhibits the kinesin motor protein KIF11 (Kinesin-5/Eg5), leading to defects in the microtubule network and in neurotransmitter and neurotrophin receptor localization and function. These biochemical and cell biological mechanisms for Aβ-induced neuronal dysfunction may underlie learning and memory defects in Alzheimer's disease (AD). Here, we show that KIF11 overexpression rescues Aβ-mediated decreases in dendritic spine density in cultured neurons and in long-term potentiation in hippocampal slices. Furthermore, Kif11 overexpression from a transgene prevented spatial learning deficits in the 5xFAD mouse model of AD. Finally, increased KIF11 expression in neuritic plaque-positive AD patients' brains was associated with better cognitive performance and higher expression of synaptic protein mRNAs. Taken together, these mechanistic biochemical, cell biological, electrophysiological, animal model, and human data identify KIF11 as a key target of Aβ-mediated toxicity in AD, which damages synaptic structures and functions critical for learning and memory in AD.
Collapse
Affiliation(s)
- Esteban M. Lucero
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald K. Freund
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Smith
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Noah R. Johnson
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Breanna Dooling
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Program for Human Medical Genetics and Genomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olga Prikhodko
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Md. Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark L. Dell’Acqua
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heidi J. Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
25
|
Li H, Zhao J, Lai L, Xia Y, Wan C, Wei S, Liang J, Chen Y, Xu N. Loss of SST and PV Positive Interneurons in the Ventral Hippocampus Results in Anxiety-like Behavior in 5xFAD Mice. Neurobiol Aging 2022; 117:165-178. [DOI: 10.1016/j.neurobiolaging.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
26
|
Castillo-Mariqueo L, Giménez-Llort L. Impact of Behavioral Assessment and Re-Test as Functional Trainings That Modify Survival, Anxiety and Functional Profile (Physical Endurance and Motor Learning) of Old Male and Female 3xTg-AD Mice and NTg Mice with Normal Aging. Biomedicines 2022; 10:973. [PMID: 35625710 PMCID: PMC9138863 DOI: 10.3390/biomedicines10050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Longitudinal approaches for disease-monitoring in old animals face survival and frailty limitations, but also assessment and re-test bias on genotype and sex effects. The present work investigated these effects on 56 variables for behavior, functional profile, and biological status of male and female 3xTg-AD mice and NTg counterparts using two designs: (1) a longitudinal design: naïve 12-month-old mice re-tested four months later; and (2) a cross-sectional design: naïve 16-month-old mice compared to those re-tested. The results confirmed the impact as (1) improvement of survival (NTg rested females), variability of gait (3xTg-AD 16-month-old re-tested and naïve females), physical endurance (3xTg-AD re-tested females), motor learning (3xTg-AD and NTg 16-month-old re-tested females), and geotaxis (3xTg-AD naïve 16-month-old males); but (2) worse anxiety (3xTg-AD 16-month-old re-tested males), HPA axis (3xTg-AD 16-month-old re-tested and naïve females) and sarcopenia (3xTg-AD 16-month-old naïve females). Males showed more functional correlations than females. The functional profile, biological status, and their correlation are discussed as relevant elements for AD-pathology. Therefore, repetition of behavioral batteries could be considered training by itself, with some variables sensitive to genotype, sex, and re-test. In the AD-genotype, females achieved the best performance in physical endurance and motor learning, while males showed a deterioration in most studied variables.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
27
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
28
|
Chen L, Dar NJ, Na R, McLane KD, Yoo K, Han X, Ran Q. Enhanced defense against ferroptosis ameliorates cognitive impairment and reduces neurodegeneration in 5xFAD mice. Free Radic Biol Med 2022; 180:1-12. [PMID: 34998934 PMCID: PMC8840972 DOI: 10.1016/j.freeradbiomed.2022.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Oxidative damage including lipid peroxidation is widely reported in Alzheimer's disease (AD) with the peroxidation of phospholipids in membranes being the driver of ferroptosis, an iron-dependent oxidative form of cell death. However, the importance of ferroptosis in AD remains unclear. This study tested whether ferroptosis inhibition ameliorates AD. 5xFAD mice, a widely used AD mouse model with cognitive impairment and robust neurodegeneration, exhibit markers of ferroptosis including increased lipid peroxidation, elevated lyso-phospholipids, and reduced level of Gpx4, the master defender against ferroptosis. To determine if enhanced defense against ferroptosis retards disease development, we generated 5xFAD mice that overexpress Gpx4, i.e., 5xFAD/GPX4 mice. Consistent with enhanced defense against ferroptosis, neurons from 5xFAD/GPX4 mice showed an augmented capacity to reduce lipid reactive oxygen species. In addition, compared with control 5xFAD mice, 5xFAD/GPX4 mice showed significantly improved learning and memory abilities and had reduced neurodegeneration. Moreover, 5xFAD/GPX4 mice exhibited attenuated markers of ferroptosis. Our results indicate that enhanced defense against ferroptosis is effective in ameliorating cognitive impairment and decreasing neurodegeneration of 5xFAD mice. The findings support the notion that ferroptosis is a key contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Liuji Chen
- Department of Cell Systems & Anatomy, USA.
| | | | - Ren Na
- Department of Cell Systems & Anatomy, USA.
| | | | | | - Xianlin Han
- Department of Medicine - Diabetes, USA; Barshop Institute on Longevity and Aging, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Qitao Ran
- Department of Cell Systems & Anatomy, USA; Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
29
|
Fertan E, Brown RE. Age-Related Deficits in Working Memory in 5xFAD Mice in the Hebb-Williams Maze. Behav Brain Res 2022; 424:113806. [DOI: 10.1016/j.bbr.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
|
30
|
Qian X, Yue L, Mellor D, Robbins NM, Li W, Xiao S. Reduced Peripheral Nerve Conduction Velocity is Associated with Alzheimer's Disease: A Cross-Sectional Study from China. Neuropsychiatr Dis Treat 2022; 18:231-242. [PMID: 35177907 PMCID: PMC8846612 DOI: 10.2147/ndt.s349005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Elderly individuals with degenerative diseases of the central nervous system are more likely to develop peripheral neuropathy; however, research is limited as to whether the decline in peripheral nerve conduction can be used as a biomarker of Alzheimer's disease (AD). PATIENTS AND METHODS This study enrolled 74 patients with mild cognitive impairment (MCI), 21 with AD, and 82 healthy elderly individuals. All participants underwent a peripheral nerve conduction and neuropsychological evaluation. Nicolet EDX was used to assess peripheral nerve conduction in the limbs and comparisons were made between the three cognitive groups. Furthermore, the relationship between peripheral nerve conduction and cognitive function was investigated. RESULTS A ladder-shaped difference was found in the median (p < 0.001) and common peroneal (p < 0.001) motor nerve velocity, with the control group > MCI group > AD group, even after controlling for variables. The median motor nerve amplitude in the AD group was lower than that in the control group (P = 0.017). After controlling for age, sex, education, and height, the median motor nerve velocity was positively correlated with the Montreal Cognitive Assessment (r = 0.196, p = 0.015), and the common peroneal motor nerve velocity was positively correlated with verbal fluency task-idioms (r = 0.184, p = 0.026). The median (AUC: 0.777, p < 0.001) and common peroneal motor nerve velocities (AUC: 0.862; p < 0.001) were significantly associated with the diagnosis of AD. The accuracy rate of these two motor nerve velocities to predict AD was 51.5%. CONCLUSION Our study found that peripheral motor nerve velocity may correlate with early cognitive impairment in AD. However, the accuracy of different cognitive classifications and the value of early diagnosis are not ideal when peripheral motor nerve velocity is used alone. Whether peripheral nerve function can be used as a marker for early diagnosis of AD needs further clarification but provides a new possibility for the future of biomarker research.
Collapse
Affiliation(s)
- Xinyi Qian
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - David Mellor
- School of Psychology, Deakin University, Melbourne, Australia
| | - Nathaniel M Robbins
- Department of Neurology (N.M.R.), Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Song Z, Shah S, Lv B, Ji N, Liu X, Yan L, Khan M, Zhao Y, Wu P, Liu S, Zheng L, Su L, Wang X, Lv Z. Anti-aging and anti-oxidant activities of murine short interspersed nuclear element antisense RNA. Eur J Pharmacol 2021; 912:174577. [PMID: 34688636 DOI: 10.1016/j.ejphar.2021.174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022]
Abstract
Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, PR China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, PR China.
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Lifang Yan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Yufang Zhao
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Shufeng Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Long Zheng
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Libo Su
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| |
Collapse
|
32
|
Sil A, Erfani A, Lamb N, Copland R, Riedel G, Platt B. Sex Differences in Behavior and Molecular Pathology in the 5XFAD Model. J Alzheimers Dis 2021; 85:755-778. [PMID: 34864660 DOI: 10.3233/jad-210523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The prevalence of Alzheimer's disease (AD) is greater in women compared to men, but the reasons for this remain unknown. This sex difference has been widely neglected in experimental studies using transgenic mouse models of AD. OBJECTIVE Here, we studied behavior and molecular pathology of 5-month-old 5XFAD mice, which express mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, versus their wild-type littermate controls, to compared both sex- and genotype-dependent differences. METHODS A novel behavioral paradigm was utilized (OF-NO-SI), comprising activity measures (Open Field, OF) arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic integrity, trophic support) was assessed using qPCR and western blotting. RESULTS Female 5XFAD mice had higher levels of human APP and amyloid-β and heightened inflammation versus males. These markers correlated with hyperactivity observed in both sexes, yet only female 5XFAD mice presented with deficits in object and social exploration. Male animals had higher expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with cognitive performance. CONCLUSION The impact of sex on AD-relevant phenotypes is in line with human data and emphasizes the necessity of appropriate study design and reporting. Differential molecular profiles observed in male versus female mice offer insights into possible protective mechanisms, and hence treatment strategies.
Collapse
Affiliation(s)
- Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Arina Erfani
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Nicola Lamb
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Rachel Copland
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Gernot Riedel
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
33
|
Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O'Rourke R, O'Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SPG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT. Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Front Aging Neurosci 2021; 13:713726. [PMID: 34366832 DOI: 10.3389/fnagi.2021.71372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 05/23/2023] Open
Abstract
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O'Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Melisa Belanger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zackary A Cope
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriela J Little
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Carl Ash
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam Bleckert
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Tim Ragan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | | | | - Paul R Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | | | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
34
|
Oblak AL, Lin PB, Kotredes KP, Pandey RS, Garceau D, Williams HM, Uyar A, O'Rourke R, O'Rourke S, Ingraham C, Bednarczyk D, Belanger M, Cope ZA, Little GJ, Williams SPG, Ash C, Bleckert A, Ragan T, Logsdon BA, Mangravite LM, Sukoff Rizzo SJ, Territo PR, Carter GW, Howell GR, Sasner M, Lamb BT. Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Front Aging Neurosci 2021; 13:713726. [PMID: 34366832 PMCID: PMC8346252 DOI: 10.3389/fnagi.2021.713726] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer's disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer's Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.
Collapse
Affiliation(s)
- Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S Pandey
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Dylan Garceau
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Rita O'Rourke
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Cynthia Ingraham
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Melisa Belanger
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zackary A Cope
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriela J Little
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Carl Ash
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam Bleckert
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Tim Ragan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | | | | - Paul R Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | | | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Shal B, Khan A, Khan AU, Ullah R, Ali G, Islam SU, Haq IU, Ali H, Seo EK, Khan S. Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. Int J Mol Sci 2021; 22:6603. [PMID: 34203049 PMCID: PMC8234641 DOI: 10.3390/ijms22126603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aims to determine the neuroprotective effect of Bergenin against spatial memory deficit associated with neurodegeneration. Preliminarily, the protective effect of Bergenin was observed against H2O2-induced oxidative stress in HT-22 and PC-12 cells. Further studies were performed in 5xFAD Tg mouse model by administering Bergenin (1, 30 and 60 mg/kg; orally), whereas Bergenin (60 mg/kg) significantly attenuated the memory deficit observed in the Y-maze and Morris water maze (MWM) test. Fourier transform-infrared (FT-IR) spectroscopy displayed restoration of lipids, proteins and their derivatives compared to the 5xFAD Tg mice group. The differential scanning calorimeter (DSC) suggested an absence of amyloid beta (Aβ) aggregation in Bergenin-treated mice. The immunohistochemistry (IHC) analysis suggested the neuroprotective effect of Bergenin by increasing Reelin signaling (Reelin/Dab-1) and attenuated Aβ (1-42) aggregation in hippocampal regions of mouse brains. Furthermore, IHC and western blot results suggested antioxidant (Keap-1/Nrf-2/HO-1), anti-inflammatory (TLR-4/NF-kB) and anti-apoptotic (Bcl-2/Bax/Caspase-3) effect of Bergenin. Moreover, a decrease in Annexin V/PI-stained hippocampal cells suggested its effect against neurodegeneration. The histopathological changes were reversed significantly by Bergenin. In addition, a remarkable increase in antioxidant level with suppression of pro-inflammatory cytokines, oxidative stress and nitric oxide production were observed in specific regions of the mouse brains.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Eun-Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| |
Collapse
|
36
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
37
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Prince SM, Paulson AL, Jeong N, Zhang L, Amigues S, Singer AC. Alzheimer's pathology causes impaired inhibitory connections and reactivation of spatial codes during spatial navigation. Cell Rep 2021; 35:109008. [PMID: 33882308 PMCID: PMC8139125 DOI: 10.1016/j.celrep.2021.109008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Synapse loss and altered synaptic strength are thought to underlie cognitive impairment in Alzheimer’s disease (AD) by disrupting neural activity essential for memory. While synaptic dysfunction in AD has been well characterized in anesthetized animals and in vitro, it remains unknown how synaptic transmission is altered during behavior. By measuring synaptic efficacy as mice navigate in a virtual reality task, we find deficits in interneuron connection strength onto pyramidal cells in hippocampal CA1 in the 5XFAD mouse model of AD. These inhibitory synaptic deficits are most pronounced during sharp-wave ripples, network oscillations important for memory that require inhibition. Indeed, 5XFAD mice exhibit fewer and shorter sharp-wave ripples with impaired place cell reactivation. By showing inhibitory synaptic dysfunction in 5XFAD mice during spatial navigation behavior and suggesting a synaptic mechanism underlying deficits in network activity essential for memory, this work bridges the gap between synaptic and neural activity deficits in AD. Prince et al. find impaired inhibitory synapses, sharp-wave ripples, and place cell reactivation during behavior in a mouse model of Alzheimer’s disease. These results link synaptic deficits in Alzheimer’s disease to dysfunction of neural activity essential for memory.
Collapse
Affiliation(s)
- Stephanie M Prince
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Abigail L Paulson
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nuri Jeong
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Solange Amigues
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
39
|
Castillo-Mariqueo L, Giménez-Llort L. Translational Modeling of Psychomotor Function in Normal and AD-Pathological Aging With Special Concerns on the Effects of Social Isolation. FRONTIERS IN AGING 2021; 2:648567. [PMID: 35822009 PMCID: PMC9261363 DOI: 10.3389/fragi.2021.648567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
One year after the start of the COVID-19 pandemic, its secondary impacts can be globally observed. Some of them result from physical distancing and severe social contact restrictions by policies still imposed to stop the fast spread of new variants of this infectious disease. People with Alzheimer's disease (AD) and other dementias can also be significantly affected by the reduction of their activity programs, the loss of partners, and social isolation. Searching for the closest translational scenario, the increased mortality rates in male 3xTg-AD mice modeling advanced stages of the disease can provide a scenario of "naturalistic isolation." Our most recent work has shown its impact worsening AD-cognitive and emotional profiles, AD-brain asymmetry, and eliciting hyperactivity and bizarre behaviors. Here, we further investigated the psychomotor function through six different psychomotor analysis in a set of 13-month-old 3xTg-AD mice and their non-transgenic counterparts with normal aging. The subgroup of male 3xTg-AD mice that lost their partners lived alone for the last 2-3 months after 10 months of social life. AD's functional limitations were shown as increased physical frailty phenotype, poor or deficient psychomotor performance, including bizarre behavior, in variables involving information processing and decision-making (exploratory activity and spontaneous gait), that worsened with isolation. Paradoxical muscular strength and better motor performance (endurance and learning) was shown in variables related to physical work and found enhanced by isolation, in agreement with the hyperactivity and the appearance of bizarre behaviors previously reported. Despite the isolation, a delayed appearance of motor deficits related to physical resistance and tolerance to exercise was found in the 3xTg-AD mice, probably because of the interplay of hyperactivity and mortality/survivor bias. The translation of these results to the clinical setting offers a guide to generate flexible and personalized rehabilitation strategies adaptable to the restrictions of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Gendron WH, Fertan E, Pelletier S, Roddick KM, O'Leary TP, Anini Y, Brown RE. Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behav Brain Res 2021; 406:113214. [PMID: 33677013 DOI: 10.1016/j.bbr.2021.113214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
In addition to cognitive decline, patients with Alzheimer's disease (AD) exhibit sensory, motor, and neuropsychiatric deficits. Many AD patients also show weight loss, suggesting that AD may involve a metabolic syndrome. The 5xFAD mouse model shows age-related weight loss compared to wildtype controls, and thus may exhibit metabolic dysfunction. This longitudinal study measured age-related weight loss in female 5xFAD and B6SJL/JF2 wild-type mice from 3 to 12 months of age, and examines some of the behavioural and physiological phenotypes in these mice that have been proposed to contribute to this weight loss. Because some mice had to be singly housed during the study, we also examined genotype by housing interactions. The 5xFAD mice weighed less and ate less than WT littermates starting at 6 months of age, exhibited less home cage activity, had higher frailty scores, less white adipose tissue, and lower leptin expression. At 9 and 12 months of age, heavier 5xFAD mice performed better on the rotarod, suggesting that metabolic deficits which begin between 6 and 9 months of age may exacerbate the behavioural deficits in 5xFAD mice. These results indicate that the 5xFAD mouse is a useful model to study the behavioural and metabolic changes in AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Stephanie Pelletier
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Timothy P O'Leary
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Halifax, Nova Scotia, B3H 4R2, Canada; Departments of Physiology and Biophysics, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
41
|
Matthews DG, Caruso M, Alcazar Magana A, Wright KM, Maier CS, Stevens JF, Gray NE, Quinn JF, Soumyanath A. Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer's Disease Model Mice. Nutrients 2020; 12:E3488. [PMID: 33202902 PMCID: PMC7698091 DOI: 10.3390/nu12113488] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Centella asiatica (CA) is an edible plant and a popular botanical dietary supplement. It is reputed, in Ayurveda, to mitigate age-related cognitive decline. There is a considerable body of preclinical literature supporting CA's ability to improve learning and memory. This study evaluated the contribution of CA's triterpenes (TT), widely considered its active compounds, and caffeoylquinic acids (CQA) to the cognitive effects of CA water extract (CAW) in 5XFAD mice, a model of Alzheimer's disease. 5XFAD mice were fed a control diet alone, or one containing 1% CAW or compound groups (TT, CQA, or TT + CQA) equivalent to their content in 1% CAW. Wild-type (WT) littermates received the control diet. Conditioned fear response (CFR) was evaluated after 4.5 weeks. Female 5XFAD controls showed no deficit in CFR compared to WT females, nor any effects from treatment. In males, CFR of 5XFAD controls was attenuated compared to WT littermates (p = 0.005). 5XFAD males receiving CQA or TT + CQA had significantly improved CFR (p < 0.05) compared to 5XFAD male controls. CFR did not differ between 5XFAD males receiving treatment diets and WT males. These data confirm a role for CQA in CAW's cognitive effects.
Collapse
Affiliation(s)
- Donald G. Matthews
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Armando Alcazar Magana
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
| | - Kirsten M. Wright
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Nora E. Gray
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (K.M.W.); (N.E.G.); (J.F.Q.)
| |
Collapse
|
42
|
Nwafor DC, Chakraborty S, Jun S, Brichacek AL, Dransfeld M, Gemoets DE, Dakhlallah D, Brown CM. Disruption of metabolic, sleep, and sensorimotor functional outcomes in a female transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 398:112983. [PMID: 33137399 DOI: 10.1016/j.bbr.2020.112983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia globally, and the number of individuals with AD diagnosis is expected to double by 2050. Numerous preclinical AD studies have shown that AD neuropathology accompanies alteration in learning and memory. However, less attention has been given to alterations in metabolism, sleep, and sensorimotor functional outcomes during AD pathogenesis. The objective of this study was to elucidate the extent to which metabolic activity, sleep-wake cycle, and sensorimotor function is impaired in APPSwDI/Nos2-/- (CVN-AD) transgenic mice. Female mice were used in this study because AD is more prevalent in women compared to men. We hypothesized that the presence of AD neuropathology in CVN-AD mice would accompany alterations in metabolic activity, sleep, and sensorimotor function. Our results showed that CVN-AD mice had significantly decreased energy expenditure compared to wild-type (WT) mice. An examination of associated functional outcome parameters showed that sleep activity was elevated during the awake (dark) cycle and as well as an overall decrease in spontaneous locomotor activity. An additional functional parameter, the nociceptive response to thermal stimuli, was also impaired in CVN-AD mice. Collectively, our results demonstrate CVN-AD mice exhibit alterations in functional parameters that resemble human-AD clinical progression.
Collapse
Affiliation(s)
- Divine C Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret Dransfeld
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Darren E Gemoets
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV 26506 USA
| | - Duaa Dakhlallah
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
43
|
Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the MDGA2 +/- mouse model of autism spectrum disorder. GENES BRAIN AND BEHAVIOR 2020; 20:e12696. [PMID: 32808443 DOI: 10.1111/gbb.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Lin CW, Fan CH, Chang YC, Hsieh-Li HM. ERK activation precedes Purkinje cell loss in mice with Spinocerebellar ataxia type 17. Neurosci Lett 2020; 738:135337. [PMID: 32877710 DOI: 10.1016/j.neulet.2020.135337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant neurodegenerative disease caused by CAG expansion in the gene encoding the TATA-binding protein (TBP). The neurological features of SCA17 are Purkinje cell loss and gliosis. We have generated SCA17 transgenic mice which recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Our previous study identified the activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) occurred in the SCA17 cerebella, this study aims to study the role of ERK activation in SCA17. The levels of pERK, calbindin, and gliosis markers on the mouse cerebellum at 4-8 weeks old were analyzed to elucidate the correlation among behavioral performance, ERK activation and Purkinje cell degeneration. The motor incoordination was initiated in SCA17 mice at 6 weeks old. We found that the presence of TBP nuclear aggregation and microglia activation were observed at 4 weeks old. Gliosis of astrocytes and Bergmann glia, pERK, Bax/Bcl2 ratio, and caspase-3 were significantly increased in the 6-week-old SCA17 mouse cerebellum. In addition to the polyglutamine-protein aggregation in Purkinje cells caused apoptosis cell-autonomously, a significant body of evidence have shown that ERK pathways involves in neuronal apoptosis. Our study showed that the activation of ERK in the astrocytes and Bergmann glia was identified as preceding motor deficits, which suggest the elevated gliosis by ERK activation may contribute to neuronal apoptosis in SCA17 mice.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Ya-Chin Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taiwan.
| |
Collapse
|
45
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model. Front Aging Neurosci 2020; 12:251. [PMID: 32973487 PMCID: PMC7472639 DOI: 10.3389/fnagi.2020.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with cognitive impairment and later dementia among the elderly. Mounting evidence shows that adverse maternal environments during the fetal development increase the risk of diseases later in life including neurological disorders, and suggests an early origin in the development of AD-related dementia (ADRD) in utero. In the present study, we investigated the impact of antenatal hypoxia and fetal stress on the initiation of AD-related pathology in offspring of 5xFAD mice. We showed that fetal hypoxia significantly reduced brain and body weight in the fetal and the early postnatal period, which recovered in young adult mice. Using spontaneous Y-maze, novel object recognition (NOR), and open field (OF) tasks, we found that antenatal hypoxia exacerbated cognitive decline in offspring of 5xFAD compared with normoxia control. Of interest, fetal hypoxia did not alter intraneuronal soluble amyloid-β (Aβ) oligomer accumulation in the cortex and hippocampus in 5xFAD mouse offspring, indicating that antenatal hypoxia increased the vulnerability of the brain to synaptotoxic Aβ in the disease onset later in life. Consistent with the early occurrence of cognitive decline, we found synapse loss but not neuronal death in the cerebral cortex in 5xFAD but not wild-type (WT) offspring exposed to antenatal hypoxia. Furthermore, we also demonstrated that antenatal hypoxia significantly increased microglial number and activation, and reactive astrogliosis in the cerebral cortex in WT offspring. Moreover, antenatal hypoxia resulted in an exacerbated increase of microgliosis and astrogliosis in the early stage of AD in 5xFAD offspring. Together, our study reveals a causative link between fetal stress and the accelerated onset of AD-related pathology, and provides mechanistic insights into the developmental origin of aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
46
|
Roberts ER, Dossat AM, Del Mar Cortijo M, Brundin P, Wesson DW. Alterations in odor hedonics in the 5XFAD Alzheimer's disease mouse model and the influence of sex. Behav Neurosci 2020; 134:407-416. [PMID: 32757584 DOI: 10.1037/bne0000400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Olfactory impairments, including deficits in odor detection, discrimination, recognition, and changes in odor hedonics, are reported in the early stages of Alzheimer's disease (AD). Rodent models of AD display deficits in odor learning, detection, and discrimination-recapitulating the clinical condition. However, the impact of familial AD genetic mutations on odor hedonics is unknown. We tested 2-, 4-, and 6-month-old 5XFAD (Tg6799) mice in the 5-port odor multiple-choice task designed to assay a variety of odor-guided behaviors, including odor preferences/hedonics. We found that 5XFAD mice investigated odors longer than controls, an effect that was driven by 6-month-old mice. Interestingly, this effect was carried by females in the 5XFAD group, who investigated odors longer than age-matched males. Upon examining behavior directed toward individual odors to test for aberrant odor preferences, we uncovered that 5XFAD females at several ages displayed heightened preferences toward some of the odors, indicating aberrant hedonics. We observed no impairments in the ability to engage in the task in 5XFAD mice. Taken together, 5XFAD mice, particularly 5XFAD females, displayed prolonged odor investigation behavior and enhanced preferences to certain odors. The data provide insight into hedonic alterations that may occur in AD mouse models and how these are influenced by biological sex. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Amanda M Dossat
- Department of Pharmacology and Therapeutics, University of Florida
| | | | | | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida
| |
Collapse
|
47
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Romanyuk A, Compans RW, Prausnitz MR, Skountzou I. Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of anti-ganglioside antibodies. Hum Vaccin Immunother 2020; 16:2072-2091. [PMID: 32758106 PMCID: PMC7553697 DOI: 10.1080/21645515.2020.1775460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) causes moderate to severe neuro-ocular sequelae, with symptoms ranging from conjunctivitis to Guillain-Barré Syndrome (GBS). Despite the international threat ZIKV poses, no licensed vaccine exists. As ZIKV and DENV are closely related, antibodies against one virus have demonstrated the ability to enhance the other. To examine if vaccination can confer robust, long-term protection against ZIKV, preventing neuro-ocular pathology and long-term inflammation in immune-privileged compartments, BALB/c mice received two doses of unadjuvanted inactivated whole ZIKV vaccine (ZVIP) intramuscularly (IM) or cutaneously with dissolving microneedle patches (MNP). MNP immunization induced significantly higher B and T cell responses compared to IM vaccination, resulting in increased antibody titers with greater avidity for ZPIV as well as increased numbers of IFN-γ, TNF-α, IL- and IL-4 secreting T cells. When compared to IM vaccination, antibodies generated by cutaneous vaccination demonstrated greater neutralization activity, increased cross-reactivity with Asian and African lineage ZIKV strains (PRVABC59, FLR, and MR766) and Dengue virus (DENV) serotypes, limited ADE, and lower reactivity to GBS-associated gangliosides. MNP vaccination effectively controlled viremia and inflammation, preventing neuro-ocular pathology. Conversely, IM vaccination exacerbated ocular pathology, resulting in uncontrolled, long-term inflammation. Importantly, neuro-ocular pathology correlated with anti-ganglioside antibodies implicated in demyelination and GBS. This study highlights the importance of longevity studies in ZIKV immunization, and the need of exploring alternative vaccination platforms to improve the quality of vaccine-induced immune responses.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Laboratory of Pathologic Anatomy, Aristotle University of Thessaloniki , Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Andrey Romanyuk
- Department of Biomedical Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, GA, USA
| | - Richard W Compans
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Mark R Prausnitz
- Department of Biomedical Engineering, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
48
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Skountzou I. Zika virus-induced neuro-ocular pathology in immunocompetent mice correlates with anti-ganglioside autoantibodies. Hum Vaccin Immunother 2020; 16:2092-2108. [PMID: 32758108 PMCID: PMC7553712 DOI: 10.1080/21645515.2020.1775459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A severe consequence of adult Zika virus (ZIKV) infection is Guillain-Barré Syndrome (GBS), where autoreactive antibodies attack peripheral and central nervous systems (CNS) resulting in neuro-ocular pathology and fatal complications. During virally induced GBS, autoimmune brain demyelination and macular degeneration correlate with low virus neutralization and elevated antibody-mediated infection among Fcγ-R bearing cells. The use of interferon-deficient mice for ZIKV studies limits elucidation of antibody-dependent enhancement (ADE) and long-term pathology (≥120 days), due to high lethality post-infection. Here we used immunocompetent BALB/c mice, which generate robust humoral immune responses, to investigate long-term impacts of ZIKV infection. A high infectious dose (1x106 FFU per mouse) of ZIKV was administered intravenously. Control animals received a single dose of anti-IFNAR blocking monoclonal antibody and succumbed to lethal neurological pathology within 13 days. Immunocompetent mice exhibited motor impairment such as arthralgia, as well as ocular inflammation resulting in retinal vascular damage, and corneal edema. This pathology persisted 100 days after infection with evidence of chronic inflammation in immune-privileged tissues, demyelination in the hippocampus and motor cortex regions of the brain, and retinal/corneal hyperplasia. Anti-inflammatory transcriptional responses were tissue-specific, likely contributing to differential pathology in these organs. Pathology in immunocompetent animals coincided with weakly neutralizing antibodies and increased ADE among ZIKV strains (PRVABC59, FLR, and MR766) and all Dengue virus (DENV) serotypes. These antibodies were autoreactive to GBS-associated gangliosides. This study highlights the importance of longevity studies in ZIKV infection and confirms the role of anti-ganglioside antibodies in ZIKV-induced neuro-ocular disease.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
49
|
O'Leary TP, Stover KR, Mantolino HM, Darvesh S, Brown RE. Intact olfactory memory in the 5xFAD mouse model of Alzheimer's disease from 3 to 15 months of age. Behav Brain Res 2020; 393:112731. [PMID: 32522622 DOI: 10.1016/j.bbr.2020.112731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes profound cognitive dysfunction. Deficits in olfactory memory occur in early stages of AD and may be useful in AD diagnosis. The 5xFAD mouse is a commonly used model of AD, as it develops neuropathology, cognitive and sensori-motor dysfunctions similar to those seen in AD. However, olfactory memory dysfunction has not been studied adequately or in detail in 5xFAD mice. Furthermore, despite sex differences in AD prevalence and symptom presentation, few studies using 5xFAD mice have examined sex differences in learning and memory. Therefore, we tested olfactory memory in male and female 5xFAD mice from 3 to 15 months of age using a conditioned odour preference task. Olfactory memory was not impaired in male or female 5xFAD mice at any age tested, nor were there any sex differences. Because early-onset impairments in very long-term (remote) memory have been reported in 5xFAD mice, we trained a group of mice at 3 months of age and tested olfactory memory 90 days later. Very long-term olfactory memory in 5xFAD mice was not impaired, nor was their ability to perform the discrimination task with new odourants. Examination of brains from 5xFAD mice confirmed extensive Aβ-plaque deposition spanning the olfactory memory system, including the olfactory bulb, hippocampus, amygdala and piriform cortex. Overall this study indicates that male and female 5xFAD mice do not develop olfactory memory deficits, despite extensive Aβ deposition within the olfactory-memory regions of the brain.
Collapse
Affiliation(s)
- T P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - K R Stover
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - H M Mantolino
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - S Darvesh
- Department of Medicine (Neurology) and Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - R E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
50
|
Suryadevara V, Klüppel M, Monte FD, Willis MS. The Unraveling: Cardiac and Musculoskeletal Defects and Their Role in Common Alzheimer Disease Morbidity and Mortality. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1609-1621. [PMID: 32407731 DOI: 10.1016/j.ajpath.2020.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is characterized by deterioration of cognitive capabilities with an estimated 44 million individuals worldwide living with it. Beyond memory deficits, the most common AD co-morbidities include swallowing defects (muscle), fractures (bone, muscle), and heart failure. The underlying causes of these co-morbidities and their role in AD pathophysiology are currently unknown. This review is the first to summarize the emerging picture of the cardiac and musculoskeletal deficits in human AD. We present the involvement of the heart, characterized by diastolic heart failure, the presence of amyloid deposits, and electrophysiological changes, compared with age-matched control subjects. The characteristic musculoskeletal defects in AD come from recent clinical studies and include potential underlying mechanisms (bone) in animal models. These studies detail a primary muscle weakness (without a loss of muscle mass) in patients with mild cognitive impairment, with progression of cognitive impairment to AD associating with ongoing muscle weakness and the onset of muscle atrophy. We conclude by reviewing the loss of bone density in patients with AD, paralleling the increase in fracture and fall risk in specific populations. These studies paint AD as a systemic disease in broad strokes, which may help elucidate AD pathophysiology and to allow for new ways of thinking about therapeutic interventions, diagnostic biomarkers, and the pathogenesis of this multidisciplinary disease.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Klüppel
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana; Section of Cardiology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|