1
|
Qi X, Yu X, Wei L, Jiang H, Dong J, Li H, Wei Y, Zhao L, Deng W, Guo W, Hu X, Li T. Novel α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator LT-102: A promising therapeutic agent for treating cognitive impairment associated with schizophrenia. CNS Neurosci Ther 2024; 30:e14713. [PMID: 38615362 PMCID: PMC11016348 DOI: 10.1111/cns.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.
Collapse
Affiliation(s)
- Xueyu Qi
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Han Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Jiangwen Dong
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Hongxing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
| | - Yingying Wei
- The Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Liansheng Zhao
- The Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineZhejiangHangzhouChina
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain MedicineZhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain‐Machine Integration, State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
- NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Rajagopal L, Huang M, Mahjour S, Ryan C, Elzokaky A, Svensson KA, Meltzer HY. The dopamine D1 receptor positive allosteric modulator, DETQ, improves cognition and social interaction in aged mice and enhances cortical and hippocampal acetylcholine efflux. Behav Brain Res 2024; 459:114766. [PMID: 38048913 DOI: 10.1016/j.bbr.2023.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Dopamine (DA) D1 and D2 receptors (Rs) are critical for cognitive functioning. D1 positive allosteric modulators (D1PAMs) activate D1Rs without desensitization or an inverted U-shaped dose response curve. DETQ, [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one] is highly selective for the human D1Rs as shown in humanized D1R knock-in (hD1Ki) mice. Here, we have ascertained the efficacy of DETQ in aged [13-23-month-old (mo)] hD1Ki mice and their corresponding age-matched wild-type (WT; C57BL/6NTac) controls. We found that in aged mice, DETQ, given acutely, subchronically, and chronically, rescued both novel object recognition memory and social behaviors, using novel object recognition (NOR) and social interaction (SI) tasks, respectively without any adverse effect on body weight or mortality. We have also shown, using in vivo microdialysis, a significant decrease in basal DA and norepinephrine, increase in glutamate (Glu) and gamma-amino butyric acid (GABA) efflux with no significant changes in acetylcholine (ACh) levels in aged vs young mice. In young and aged hD1Ki mice, DETQ, acutely and subchronically increased ACh in the medial prefrontal cortex and hippocampal regions in aged hD1Ki mice without affecting Glu. These results suggest that the D1PAM mechanism is of interest as potential treatment for cognitive and social behavioral deficits in neuropsychiatric disorders including but not restricted to neurodegenerative disorders, such as Parkinson's disease.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kjell A Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Rajagopal L, Mahjour S, Huang M, Ryan CA, Elzokaky A, Csakai AJ, Orr MJ, Scheidt K, Meltzer HY. NU-1223, a simplified analog of alstonine, with 5-HT 2cR agonist-like activity, rescues memory deficit and positive and negative symptoms in subchronic phencyclidine mouse model of schizophrenia. Behav Brain Res 2023; 454:114614. [PMID: 37572758 DOI: 10.1016/j.bbr.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
The serotonin (5-HT)2 C receptor(R) is a widely distributed G-protein-coupled receptor, expressed abundantly in the central nervous system. Alstonine is a natural product that has significant properties of atypical antipsychotic drugs (AAPDs), in part attributed to 5-HT2 CR agonism. Based on alstonine, we developed NU-1223, a simplified β carboline analog of alstonine, which shows efficacies comparable to alstonine and to other 5-HT2 CR agonists, Ro-60-0175 and lorcaserin. The 5-HT2 CR antagonism of some APDs, including olanzapine, contributes to weight gain, a major side effect which limits its tolerability, while the 5-HT2 CR agonists and/or modulators, may minimize weight gain. We used the well-established rodent subchronic phencyclidine (PCP) model to test the efficacy of NU-1223 on episodic memory, using novel object recognition (NOR) task, positive (locomotor activity), and negative symptoms (social interaction) of schizophrenia (SCH). We found that NU-1223 produced both transient and prolonged rescue of the subchronic PCP-induced deficits in NOR and SI. Further, NU-1223, but not Ro-60-0175, blocked PCP and amphetamine (AMPH)-induced increase in LMA in subchronic PCP mice. These transient efficacies in LMA were blocked by the 5-HT2 CR antagonist, SB242084. Sub-chronic NU-1223 treatment rescued NOR and SI deficits in subchronic PCP mice for at least 39 days after 3 days injection. Chronic treatment with NU-1223, ip, twice a day for 21 days, did not increase average body weight vs olanzapine. These findings clearly indicate NU-1223 as a class of small molecules with a possible 5-HT2 CR-agonist-like mechanism of action, attributing to its efficacy. Additional in-depth receptor mechanistic studies are warranted, as this small molecule, both transiently and chronically rescued PCP-induced deficits. Furthermore, NU-1223 did not induce weight gain post long-term administrations vs AAPDs such as olanzapine, making NU-1223 a putative therapeutic compound for SCH.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chelsea A Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Adam J Csakai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Meghan J Orr
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karl Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Dutra-Tavares AC, Souza TP, Silva JO, Semeão KA, Mello FF, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Neonatal phencyclidine as a model of sex-biased schizophrenia symptomatology in adolescent mice. Psychopharmacology (Berl) 2023; 240:2111-2129. [PMID: 37530885 DOI: 10.1007/s00213-023-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Sex-biased differences in schizophrenia are evident in several features of the disease, including symptomatology and response to pharmacological treatments. As a neurodevelopmental disorder, these differences might originate early in life and emerge later during adolescence. Considering that the disruption of the glutamatergic system during development is known to contribute to schizophrenia, we hypothesized that the neonatal phencyclidine model could induce sex-dependent behavioral and neurochemical changes associated with this disorder during adolescence. C57BL/6 mice received either saline or phencyclidine (5, 10, or 20 mg/kg) on postnatal days (PN) 7, 9, and 11. Behavioral assessment occurred in late adolescence (PN48-50), when mice were submitted to the open field, social interaction, and prepulse inhibition tests. Either olanzapine or saline was administered before each test. The NMDAR obligatory GluN1 subunit and the postsynaptic density protein 95 (PSD-95) were evaluated in the frontal cortex and hippocampus at early (PN30) and late (PN50) adolescence. Neonatal phencyclidine evoked dose-dependent deficits in all analyzed behaviors and males were more susceptible. Males also had reduced GluN1 expression in the frontal cortex at PN30. There were late-emergent effects at PN50. Cortical GluN1 was increased in both sexes, while phencyclidine increased cortical and decreased hippocampal PSD-95 in females. Olanzapine failed to mitigate most phencyclidine-evoked alterations. In some instances, this antipsychotic aggravated the deficits or potentiated subthreshold effects. These results lend support to the use of neonatal phencyclidine as a sex-biased neurodevelopmental preclinical model of schizophrenia. Olanzapine null effects and deleterious outcomes suggest that its use during adolescence should be further evaluated.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thainá P Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Juliana O Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Keila A Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Felipe F Mello
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro (UERJ), RJ, São Gonçalo, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
5
|
Song M, Liu Y, Zhou J, Shi H, Su X, Shao M, Yang Y, Wang X, Zhao J, Guo D, Liu Q, Zhang L, Zhang Y, Lv L, Li W. Potential plasma biomarker panels identification for the diagnosis of first-episode schizophrenia and monitoring antipsychotic monotherapy with the use of metabolomics analyses. Psychiatry Res 2023; 321:115070. [PMID: 36706560 DOI: 10.1016/j.psychres.2023.115070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Schizophrenia (SCZ) is a severe mental disorder. Using liquid chromatography mass spectrometry, we performed comprehensive metabolomics analyses of plasma samples from healthy controls (HC) and first episode SCZ patients before and after an acute period of medication. Ten lipid metabolites and 27 soluble small molecules were identified as potential biomarkers associated with the diagnosis and treatment of SCZ. These metabolites were significantly reduced in SCZ, and lipids and sulfate were significantly increased after treatment. Of the metabolites identified, four showed significant correlations with the Positive and Negative Syndrome Scale total scores. A biomarker panel composed of alpha-dimorphecolic, Phosphatidylcholine (PC) (16:0/18:1(11Z)), 1-methylnicotinamide, Phosphatidylethanolamine (PE) (20:2(11Z,14Z)/18:2(9Z,12Z)), sulfate, and L-tryptophan was selected to distinguish SCZ from HC; this provided the maximum classification performance with an AUC of 0.972. A biomarker panel including C16 sphinganine, gamma-linolenic acid, linoleic acid, PC(16:0/18:1(11Z)), PE(20:2(11Z,14Z)/18:2(9Z,12Z)), and sulfate, was selected for discrimination between SCZ before and after medication, and produced the optimal classification performance with an AUC of 0.905. Disturbances in lipid metabolism, sulfation modification, tryptophan metabolism, anti-inflammatory and antioxidant systems, and unsaturated fatty acids metabolism, were identified in SCZ. Our findings could facilitate the development of objective diagnostic or drug treatment monitoring tools for schizophrenia.
Collapse
Affiliation(s)
- Meng Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Ya Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiahui Zhou
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Han Shi
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiujuan Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Jingyuan Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Dong Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Qing Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Luwen Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Olivola M, Bassetti N, Parente S, Arienti V, Civardi SC, Topa PA, Brondino N. Cognitive Effects of Lurasidone and Cariprazine: A Mini Systematic Review. Curr Neuropharmacol 2023; 21:2431-2446. [PMID: 37519001 PMCID: PMC10616918 DOI: 10.2174/1570159x21666230727140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 08/01/2023] Open
Abstract
Cognitive deficits are associated with schizophrenia and show a progressive worsening, often being unresponsive to treatment. New antipsychotic molecules acting as antagonist at the serotoninergic 5-hydroxytryptamine receptor 7 (e.g. lurasidone) or partial agonists at dopamine D3 receptor (e.g. cariprazine) could have an impact on cognition in this patient group. The aim of the systematic review is to explore the efficacy of lurasidone and cariprazine in improving cognition in both animal models and human studies. The following terms: (lurasidone AND cognit*) OR (cariprazine AND cognit*) were searched in Web of Science from inception to December 2021. We included all studies that assessed changes in cognitive function after treatment with cariprazine or lurasidone. Of 201 selected articles, 36 were included. Twenty-four articles used animal models (rats, mice and marmosets), five evaluating the effects of cariprazine and 19 the effects of lurasidone. Twelve articles were clinical studies (cariprazine n = 2; lurasidone n = 10). In both animal and human studies lurasidone showed a greater efficacy on cognitive performance compared to placebo, quetiapine, ziprasidone or treatmentas- usual. Cariprazine was superior to other antipsychotics in improving cognitive functions in both animal and human studies. The cognitive effect of lurasidone could be explained by its potent antagonism at the 5-HT7 receptors combined with partial agonism at 5-HT1A receptors. The pro-cognitive effect of cariprazine is probably explained by its very high affinity for D3 receptors. Head-to-head studies comparing lurasidone and cariprazine are needed to establish the "first-choice" treatment for cognitive dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- Miriam Olivola
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| | - Nicola Bassetti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Parente
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Vincenzo Arienti
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | - Serena Chiara Civardi
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
| | | | - Natascia Brondino
- Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, 27100, Italy
- Department of Mental Health and Addiction, ASST Pavia, Pavia, Italy
| |
Collapse
|
7
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
Rajagopal L, Huang M, He W, Ryan C, Elzokaky A, Banerjee P, Meltzer HY. Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behav Brain Res 2022; 432:113964. [PMID: 35718230 DOI: 10.1016/j.bbr.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Rajagopal L, Ryan C, Elzokaky A, Burstein ES, Meltzer HY. Pimavanserin augments the efficacy of atypical antipsychotic drugs in a mouse model of treatment-refractory negative symptoms of schizophrenia. Behav Brain Res 2021; 422:113710. [PMID: 34906610 DOI: 10.1016/j.bbr.2021.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
Negative symptoms are a core, pervasive, and often treatment-refractory phenotype of schizophrenia, one which contributes to poor functional outcome, ability to work, pursue educational goals, and quality of life, as well as caretaker burden. Improvement of negative symptoms in some patients with schizophrenia has been reported with some atypical antipsychotic drugs [AAPDs], but improvement is absent in many patients and partial in others. Therefore, more effective treatments are needed, and better preclinical models of negative symptoms are needed to identify them. Sub-chronic [sc] treatment of rodents with phencyclidine [PCP], a noncompetitive N-methyl-d-aspartate [NMDAR] antagonist, produces deficits in social interactions [SI] that have been widely studied as a model of negative symptoms in schizophrenia. Acute restraint stress [ARS] also provides a model of treatment-refractory negative symptoms [TRS] to AAPDs. By themselves, in sc-PCP mice, the AAPDs, risperidone, olanzapine, and aripiprazole, but not the selective 5-HT2AR inverse agonist, pimavanserin [PIM], rescued the SI deficit in sc-PCP mice, as did the combination of PIM with sub-effective doses of each of these AAPDs. These three AAPDs alone did not rescue SI deficit in sc-PCP+2h-ARS mice, indicating these mice were treatment refractory. However, co-administration of PIM with any of the AAPDs significantly restored SI in these mice. PIM may be an effective adjunctive therapy for treating negative symptoms of schizophrenia in some patients who have failed to respond to AAPDs, but further studies are needed.
Collapse
Affiliation(s)
- L Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - C Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - A Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA
| | - E S Burstein
- Acadia Pharmaceuticals Inc, San Diego, CA, 92130 USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago IL 60611, USA.
| |
Collapse
|
10
|
Meltzer HY, Gadaleta E. Contrasting Typical and Atypical Antipsychotic Drugs. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:3-13. [PMID: 34483761 DOI: 10.1176/appi.focus.20200051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The beliefs that antipsychotic drugs (APDs) are 1) effective only to treat delusions and hallucinations (positive symptoms), 2) that typical and atypical APDs differ only in ability to cause extrapyramidal side effects, and 3) that their efficacy as antipsychotics is due solely to their dopamine D2 receptor blockade are outmoded concepts that prevent clinicians from achieving optimal clinical results when prescribing an APD. Atypical APDs are often more effective than typical APDs in treating negative symptoms, cognitive impairment, and mood symptoms as well as reducing the risk for suicide and decreasing aggression. This applies not only to those diagnosed with schizophrenia or schizoaffective disorder but also to bipolar disorder, major depression, and other psychiatric diagnoses. The greater advantage of an atypical APD is not evident in all patients for every atypical APD due, in part, to individual differences in genetic and epigenetic endowment and differences in the pharmacology of the atypical APDs, their mode of action being far more complex than that of the typical APDs. A common misconception is that among the atypical APDs, only clozapine is effective for reducing psychosis in treatment-resistant schizophrenia. Aripiprazole, lurasidone, olanzapine, and risperidone also can be more effective than typical APDs for treatment-resistant schizophrenia; clozapine is uniquely indicated for reducing the risk for suicide. The ability of the atypical APDs to improve cognition and negative symptoms in some patients together with lower propensity to cause tardive dyskinesia (an underappreciated advantage) leads to better overall outcomes. These advantages of the atypical APDs in efficacy and safety are due, in part, to initiation of synaptic plasticity via direct and indirect effects of the atypical APDs on a variety of proteins, especially G proteins, and release of neurotrophins (e.g., brain-derived neurotrophic factor). The typical APDs beneficial effects on psychosis are mainly the result of D2 receptor blockade, which can be associated with serious side effects and lack of tolerability.
Collapse
|
11
|
Holubova K, Chvojkova M, Hrcka Krausova B, Vyklicky V, Kudova E, Chodounska H, Vyklicky L, Vales K. Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia. Biomolecules 2021; 11:1026. [PMID: 34356650 PMCID: PMC8301783 DOI: 10.3390/biom11071026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.
Collapse
Affiliation(s)
- Kristina Holubova
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (M.C.); (K.V.)
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (M.C.); (K.V.)
| | - Barbora Hrcka Krausova
- Institute of Physiology CAS, Videnska 1083, 14220 Prague, Czech Republic; (B.H.K.); (V.V.); (L.V.)
| | - Vojtech Vyklicky
- Institute of Physiology CAS, Videnska 1083, 14220 Prague, Czech Republic; (B.H.K.); (V.V.); (L.V.)
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry CAS, Flemingovo namesti 542/2, 16000 Prague, Czech Republic; (E.K.); (H.C.)
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Flemingovo namesti 542/2, 16000 Prague, Czech Republic; (E.K.); (H.C.)
| | - Ladislav Vyklicky
- Institute of Physiology CAS, Videnska 1083, 14220 Prague, Czech Republic; (B.H.K.); (V.V.); (L.V.)
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; (M.C.); (K.V.)
- Institute of Physiology CAS, Videnska 1083, 14220 Prague, Czech Republic; (B.H.K.); (V.V.); (L.V.)
| |
Collapse
|
12
|
Cao T, Tang M, Jiang P, Zhang B, Wu X, Chen Q, Zeng C, Li N, Zhang S, Cai H. A Potential Mechanism Underlying the Therapeutic Effects of Progesterone and Allopregnanolone on Ketamine-Induced Cognitive Deficits. Front Pharmacol 2021; 12:612083. [PMID: 33767621 PMCID: PMC7985688 DOI: 10.3389/fphar.2021.612083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine exposure can model cognitive deficits associated with schizophrenia. Progesterone (PROG) and its active metabolite allopregnanolone (ALLO) have neuroprotective effects and the pathway involving progesterone receptor membrane component 1 (PGRMC1), epidermal growth factor receptor (EGFR), glucagon-like peptide-1 receptor (GLP-1R), phosphatidylinositol 3 kinase (PI3K), and protein kinase B (Akt) appears to play a key role in their neuroprotection. The present study aimed to investigate the effects of PROG (8,16 mg kg−1) and ALLO (8,16 mg kg−1) on the reversal of cognitive deficits induced by ketamine (30 mg kg−1) via the PGRMC1 pathway in rat brains, including hippocampus and prefrontal cortex (PFC). Cognitive performance was evaluated by Morris water maze (MWM) test. Western blot and real-time quantitative polymerase chain reaction were utilized to assess the expression changes of protein and mRNA. Additionally, concentrations of PROG and ALLO in plasma, hippocampus and PFC were measured by a liquid chromatography-tandem mass spectrometry method. We demonstrated that PROG or ALLO could reverse the impaired spatial learning and memory abilities induced by ketamine, accompanied with the upregulation of PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway. Additionally, the coadministration of AG205 abolished their neuroprotective effects and induced cognitive deficits similar with ketamine. More importantly, PROG concentrations were markedly elevated in PROG-treated groups in hippocampus, PFC and plasma, so as for ALLO concentrations in ALLO-treated groups. Interestingly, ALLO (16 mg kg−1) significantly increased the levels of PROG. These findings suggest that PROG can exert its neuroprotective effects via activating the PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway in the brain, whereas ALLO also restores cognitive deficits partially via increasing the level of PROG in the brain to activate the PGRMC1 pathway.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - MiMi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Jiang
- Institute of Clinical Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Kim HR, Rajagopal L, Meltzer HY, Martina M. Depolarizing GABA A current in the prefrontal cortex is linked with cognitive impairment in a mouse model relevant for schizophrenia. SCIENCE ADVANCES 2021; 7:eaba5032. [PMID: 33789887 PMCID: PMC8011979 DOI: 10.1126/sciadv.aba5032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2021] [Indexed: 05/06/2023]
Abstract
Cognitive impairment in schizophrenia (CIAS) is the most critical predictor of functional outcome. Limited understanding of the cellular mechanisms of CIAS hampers development of more effective treatments. We found that in subchronic phencyclidine (scPCP)-treated mice, an animal model that mimics CIAS, the reversal potential of GABAA currents in pyramidal neurons of the infralimbic prefrontal cortex (ILC) shifts from hyperpolarizing to depolarizing, the result of increased expression of the chloride transporter NKCC1. Further, we found that in scPCP mice, the NKCC1 antagonist bumetanide normalizes GABAA current polarity ex vivo and improves performance in multiple cognitive tasks in vivo. This behavioral effect was mimicked by selective, bilateral, NKCC1 knockdown in the ILC. Thus, we show that depolarizing GABAA currents in the ILC contributes to cognitive impairments in scPCP mice and suggest that bumetanide, an FDA-approved drug, has potential to treat or prevent CIAS and other components of the schizophrenia syndrome.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Lakshmi Rajagopal
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA.
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA.
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Liao Z, Zhao X, Li T, Mao Y, Hu J, Le D, Pei Y, Chen Y, Qiu Y, Zhu J, Lin J, Su H, Zhang L, Yu E. EEG power spectral analysis reveals tandospirone improves anxiety symptoms in patients with Alzheimer's disease: a prospective cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:64. [PMID: 33553357 PMCID: PMC7859764 DOI: 10.21037/atm-20-6647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background To study the efficacy of tandospirone citrate in treating Alzheimer’s disease (AD) patients with anxiety. Methods Thirty mild-to-moderate AD patients with anxiety symptoms were randomly divided into a monotherapy group (donepezil) and a combination therapy group (donepezil and tandospirone). The treatment lasted for 12 weeks. Drug efficacy was regularly assessed using psychological assessment scales and quantitative pharmaco-electroencephalogram (QPEEG) power spectral analysis. Results After 12 weeks of treatment, the mean Hamilton Anxiety Scale (HAMA) score and mean Neuropsychiatric Inventory (NPI) score of the combination therapy group were 5.13±4.18 and 4.2±5.0, respectively, which was significantly lower compared to baseline and the monotherapy group (all P<0.05). The mean attention score on the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog) was 0.07±0.26 for the combination group, which was significantly lower than that of the monotherapy group (P<0.05). QPEEG revealed that the power values of the δ wave in the right prefrontal lobe, left middle temporal lobe and right posterior temporal lobe decreased in the combination therapy group but not in the monotherapy group. Similarly, the power values of the α2 wave in the right parietal, right posterior temporal and left middle temporal lobes, and the β1 wave power values of left middle temporal and left posterior temporal lobes were also significantly decreased in the combination therapy group, but not in the monotherapy group. Conclusions Tandospirone citrate can significantly improve anxiety symptoms and attention in patients with mild to moderate AD. QPEEG examination might provide a objective way for the efficacy of the tandospirone in anxiety symptoms of the patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiaoyu Zhao
- Department of Electrical Science, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ting Li
- The Medical Department of Qingdao University, Qingdao, China
| | - Yanping Mao
- Department of Psychological Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiaojiao Hu
- Department of Psychological Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dansheng Le
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Yan Chen
- Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yaju Qiu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Junpeng Zhu
- Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jixin Lin
- Department of Internal Medicine, Shengsi County People's Hospital, Zhoushan, China
| | - Heng Su
- Department of Psychiatry, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Linju Zhang
- Department of Electrical Science, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Enyan Yu
- Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Abstract
Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer’s Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer’s Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer’s Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer’s pathology in previous studies.
Collapse
|
16
|
Percelay S, Since M, Lagadu S, Freret T, Bouet V, Boulouard M. Antipsychotic lurasidone: Behavioural and pharmacokinetic data in C57BL/6 mice. Pharmacol Biochem Behav 2020; 194:172933. [DOI: 10.1016/j.pbb.2020.172933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
|
17
|
Abstract
PURPOSE/BACKGROUND In addition to clozapine, other atypical antipsychotic drugs pharmacologically similar to clozapine, for example, olanzapine, risperidone, and melperone, are also effective in a similar proportion of treatment-resistant schizophrenia (TRS) patients, ~40%. The major goal of this study was to compare 2 doses of lurasidone, another atypical antipsychotic drug, and time to improvement in psychopathology and cognition during a 6-month trial in TRS patients. METHODS/PROCEDURES The diagnosis of TRS was based on clinical history and lack of improvement in psychopathology during a 6-week open trial of lurasidone 80 mg/d (phase 1). This was followed by a randomized, double-blind, 24-week trial of lurasidone, comparing 80- and 240-mg/d doses (phase 2). FINDINGS/RESULTS Significant non-dose-related improvement in the Positive and Negative Syndrome Scale-Total and subscales and in 2 of 7 cognitive domains, speed of processing and executive function, were noted. Twenty-eight (41.8%) of 67 patients in the combined sample improved ≥20% in the Positive and Negative Syndrome Scale-Total. Of the 28 responders, 19 (67.9%) first reached ≥20% improvement between weeks 6 and 24 during phase 2, including some who had previously failed to respond to clozapine. IMPLICATIONS/CONCLUSIONS Improvement with lurasidone is comparable with those previously reported for clozapine, melperone, olanzapine, and risperidone in TRS patients. In addition, this study demonstrated that 80 mg/d lurasidone, an effective and tolerable dose for non-TRS patients, was also effective in TRS patients but required longer duration of treatment. Direct comparison of lurasidone with clozapine in TRS patients is indicated.
Collapse
|
18
|
Malt EA, Juhasz K, Frengen A, Wangensteen T, Emilsen NM, Hansen B, Agafonov O, Nilsen HL. Neuropsychiatric phenotype in relation to gene variants in the hemizygous allele in 3q29 deletion carriers: A case series. Mol Genet Genomic Med 2019; 7:e889. [PMID: 31347308 PMCID: PMC6732294 DOI: 10.1002/mgg3.889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Genetic risk variants in the hemizygous allele may influence neuropsychiatric manifestations and clinical course in 3q29 deletion carriers. Methods In‐depth phenotypic assessment in two deletion carriers included medical records, medical, genetic, psychiatric and neuropsychological evaluations, brain MRI scan and EEG. Blood samples were analyzed for copy number variations, and deep sequencing of the affected 3q29 region was performed in patients and seven first‐degree relatives. Risk variants were identified through bioinformatic analysis. Results One deletion carrier was diagnosed with learning difficulties and childhood autism, the other with mild intellectual disability and schizophrenia. EEG abnormalities in childhood normalized in adulthood in both. Cognitive abilities improved during adolescence in one deletion carrier. Both had microcytic, hypochromic erythrocytes and suffered from chronic pain and fatigue. Molecular and bioinformatic analyses identified risk variants in the hemizygous allele that were not present in the homozygous state in relatives in genes involved in cilia function and insulin action in the autistic individual and in synaptic function and neurosteroid transport in the subject with schizophrenia. Conclusion 3q29 deletion carriers may undergo developmental phenotypic transition and need regular medical follow‐up. Identified risk variants in the remaining hemizygous allele should be explored further in autism and schizophrenia research.
Collapse
Affiliation(s)
- Eva Albertsen Malt
- Department of Adult Habilitation, Akershus University Hospital, Lorenskog, Norway.,Campus Ahus, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital, Lorenskog, Norway
| | - Anna Frengen
- Campus Ahus, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section for Clinical Molecular Biology, Akershus University Hospital, Lorenskog, Norway
| | | | - Nina Merete Emilsen
- Department of Adult Habilitation, Akershus University Hospital, Lorenskog, Norway
| | - Borre Hansen
- Department of Adult Habilitation, Akershus University Hospital, Lorenskog, Norway
| | - Oleg Agafonov
- Bioinformatics Core Facility, Department of Core Facilities, Institute of Cancer Research, Radium Hospital, Part of Oslo University Hospital, Oslo, Norway
| | - Hilde Loge Nilsen
- Campus Ahus, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section for Clinical Molecular Biology, Akershus University Hospital, Lorenskog, Norway
| |
Collapse
|
19
|
Rajagopal L, Huang M, Michael E, Kwon S, Meltzer HY. TPA-023 attenuates subchronic phencyclidine-induced declarative and reversal learning deficits via GABA A receptor agonist mechanism: possible therapeutic target for cognitive deficit in schizophrenia. Neuropsychopharmacology 2018; 43:2468-2477. [PMID: 30093697 PMCID: PMC6180114 DOI: 10.1038/s41386-018-0160-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
GABAergic drugs are of interest for the treatment of anxiety, depression, bipolar disorder, pain, cognitive impairment associated with schizophrenia (CIAS), and other neuropsychiatric disorders. Some evidence suggests that TPA-023, (7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine), a GABAA α2,3 subtype-selective GABAA partial agonist and α1/5 antagonist, and the neurosteroid, pregnenolone sulfate, a GABAA antagonist, may improve CIAS in pilot clinical trials. The goal of this study was to investigate the effect of TPA-023 in mice after acute or subchronic (sc) treatment with the N-methyl-D-aspartate receptor (NMDAR) antagonist, phencyclidine (PCP), on novel object recognition (NOR), reversal learning (RL), and locomotor activity (LMA) in rodents. Acute TPA-023 significantly reversed scPCP-induced NOR and RL deficits. Co-administration of sub-effective dose (SED) TPA-023 with SEDs of the atypical antipsychotic drug, lurasidone, significantly potentiated the effect of TPA-023 in reversing the scPCP-induced NOR deficit. Further, scTPA-023 co-administration significantly prevented scPCP-induced NOR deficit for 5 weeks. Also, administration of TPA-023 for 7 days following scPCP reversed the NOR deficit for 1 week. However, TPA-023 did not blunt acute PCP-induced hyperactivity, suggesting lack of efficacy as a treatment for psychosis. Systemic TPA-023 significantly blocked lurasidone-induced increases in cortical acetylcholine, dopamine, and glutamate without affecting increases in norepinephrine and with minimal effect on basal release of these neurotransmitters. TPA-023 significantly inhibited PCP-induced cortical and striatal dopamine, serotonin, norepinephrine, and glutamate efflux. These results suggest that TPA-023 and other GABAA agonists may be of benefit to treat CIAS.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mei Huang
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Eric Michael
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sunoh Kwon
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Herbert Y. Meltzer
- 0000 0001 2299 3507grid.16753.36Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
20
|
Huang M, Kwon S, Rajagopal L, He W, Meltzer HY. 5-HT 1A parital agonism and 5-HT 7 antagonism restore episodic memory in subchronic phencyclidine-treated mice: role of brain glutamate, dopamine, acetylcholine and GABA. Psychopharmacology (Berl) 2018; 235:2795-2808. [PMID: 30066135 DOI: 10.1007/s00213-018-4972-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE The effect of atypical antipsychotic drugs (AAPDs), e.g., lurasidone, to improve cognitive impairment associated with schizophrenia (CIAS), has been suggested to be due, in part, to enhancing release of dopamine (DA), acetylcholine (ACh), and glutamate (Glu) in cortex and hippocampus. RESULTS The present study found acute lurasidone reversed the cognitive deficit in novel object recognition (NOR) in subchronic (sc) phencyclidine (PCP)-treated mice, an animal model for CIAS. This effect of lurasidone was blocked by pretreatment with the 5-HT1AR antagonist, WAY-100635, or the 5-HT7R agonist, AS 19. Lurasidone significantly increased medial prefrontal cortex (mPFC) ACh, DA, and Glu efflux, all of which were blocked by WAY-100635, with similar effects in the dorsal striatum (dSTR), except for the absence of an effect on Glu increase. AS 19 inhibited Glu, but not DA efflux, in the dSTR. The selective 5-HT7R antagonist, SB-26970, increased mPFC DA, 5-HT, Glu, and, importantly, also GABA efflux and striatal DA, NE, 5-HT, and Glu efflux, indicating tonic inhibition of the release of these neurotransmitters by 5-HT7R stimulation. These results provide new evidence that GABA release in the mPFC is tonically inhibited by 5-HT7R stimulation and suggest that a selective 5-HT7R antagonist might be clinically useful to enhance cortical GABAergic release. All SB-269970 effects were blocked by AS 19 or WAY-100635, suggesting 5-HT1AR agonism is necessary for the release of these neurotransmitters by SB-269970. Lurasidone increased ACh, DA, and NE but not Glu efflux in mPFC and dSTR DA and Glu efflux in 5-HT7 KO mice. CONCLUSION We conclude that lurasidone-induced Glu efflux in mPFC requires 5-HT7R antagonism while its effects on cortical ACh and DA efflux are mainly due to 5-HT1AR stimulation.
Collapse
Affiliation(s)
- Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Sunoh Kwon
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA.,K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Ward Building 7-014, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Quercetin Reduces Cortical GABAergic Transmission and Alleviates MK-801-Induced Hyperactivity. EBioMedicine 2018; 34:201-213. [PMID: 30057312 PMCID: PMC6116474 DOI: 10.1016/j.ebiom.2018.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
An imbalance between neuronal excitation and inhibition represents a core feature in multiple neuropsychiatry disorders, necessitating the development of novel strategies to calibrate the excitatory–inhibitory balance of therapeutics. Here we identify a natural compound quercetin that reduces prefrontal cortical GABAergic transmission and alleviates the hyperactivity induced by glutamatergic N-methyl-d-aspartate receptor antagonist MK-801. Quercetin markedly reduced the GABA-activated currents in a noncompetitive manner in cultured cortical neurons, and moderately inhibited spontaneous and electrically-evoked GABAergic inhibitory postsynaptic current in mouse prefrontal cortical slices. Notably, systemic and prefrontal-specific delivery of quercetin reduced basal locomotor activity in addition to alleviated the MK-801-induced hyperactivity. The effects of quercetin were not exclusively dependent on α5-subunit-containing A type GABA receptors (GABAARs), as viral-mediated, region-specific genetic knockdown of the α5-subunit in prefrontal cortex improved the MK-801-evoked psychotic symptom but reserved the pharmacological responsivity to quercetin. Both interventions together completely normalized the locomotor activity. Together, quercetin as a negative allosteric GABAAR modulator exerted antipsychotic activity, facilitating further therapeutic development for the excitatory–inhibitory imbalance disorders.
Collapse
|