1
|
Pudełko-Malik N, Drulis-Fajdasz D, Pruss Ł, Mielko-Niziałek KA, Rakus D, Gizak A, Młynarz P. A single dose of glycogen phosphorylase inhibitor improves cognitive functions of aged mice and affects the concentrations of metabolites in the brain. Sci Rep 2024; 14:24123. [PMID: 39406810 PMCID: PMC11480434 DOI: 10.1038/s41598-024-74861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Inhibition of glycogen phosphorylase (Pyg) - a regulatory enzyme of glycogen phosphorolysis - influences memory formation in rodents. We have previously shown that 2-week intraperitoneal administration of a Pyg inhibitor BAY U6751 stimulated the "rejuvenation" of the hippocampal proteome and dendritic spines morphology and improved cognitive skills of old mice. Given the tedious nature of daily intraperitoneal drug administration, in this study we investigated whether a single dose of BAY U6751 could induce enduring behavioral effects. Obtained results support the efficacy of such treatment in significantly improving the cognitive performance of 20-22-month-old mice. Metabolomic analysis of alterations observed in the hippocampus, cerebellum, and cortex reveal that the inhibition of glycogen phosphorolysis impacts not only glucose metabolism but also various other metabolic processes.
Collapse
Affiliation(s)
- Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Łukasz Pruss
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
- Ardigen, Kraków, 30-394, Poland
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland.
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland.
| |
Collapse
|
2
|
Singh P, Vasundhara B, Das N, Sharma R, Kumar A, Datusalia AK. Metabolomics in Depression: What We Learn from Preclinical and Clinical Evidences. Mol Neurobiol 2024:10.1007/s12035-024-04302-5. [PMID: 38898199 DOI: 10.1007/s12035-024-04302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Boosani Vasundhara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Nabanita Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Centre, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
| |
Collapse
|
3
|
Kang S, Kim W, Nam J, Li K, Kang Y, Bae B, Chun KH, Chung C, Lee J. Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress. Int J Mol Sci 2024; 25:2443. [PMID: 38397124 PMCID: PMC10889542 DOI: 10.3390/ijms25042443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Depression is twice as prevalent in women as in men, however, most preclinical studies of depression have used male rodent models. This study aimed to examine how stress affects metabolic profiles depending on sex using a rodent depression model: sub-chronic variable stress (SCVS). The SCVS model of male and female mice was established in discovery and validation sets. The stress-induced behavioral phenotypic changes were similar in both sexes, however, the metabolic profiles of female plasma and brain became substantially different after stress, whereas those of males did not. Four stress-differential plasma metabolites-β-hydroxybutyric acid (BHB), L-serine, glycerol, and myo-inositol-could yield biomarker panels with excellent performance to discern the stressed individuals only for females. Disturbances in BHB, glucose, 1,5-anhydrosorbitol, lactic acid, and several fatty acids in the plasma of stressed females implied a systemic metabolic shift to β-oxidation in females. The plasma levels of BHB and corticosterone only in stressed females were observed not only in SCVS but also in an acute stress model. These results collectively suggest a sex difference in the metabolic responses by stress, possibly involving the energy metabolism shift to β-oxidation and the HPA axis dysregulation in females.
Collapse
Affiliation(s)
- Seulgi Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Jimin Nam
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Ke Li
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Yua Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Boyeon Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea;
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea; (W.K.); (J.N.); (C.H.C.)
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.K.); (K.L.); (Y.K.); (B.B.)
| |
Collapse
|
4
|
Lee D, Woo CW, Heo H, Ko Y, Jang JS, Na S, Kim N, Woo DC, Kim KW, Lee DW. Mapping Changes in Glutamate with Glutamate-Weighted MRI in Forced Swim Test Model of Depression in Rats. Biomedicines 2024; 12:384. [PMID: 38397986 PMCID: PMC10887078 DOI: 10.3390/biomedicines12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chemical exchange saturation transfer with glutamate (GluCEST) imaging is a novel technique for the non-invasive detection and quantification of cerebral Glu levels in neuromolecular processes. Here we used GluCEST imaging and 1H magnetic resonance spectroscopy (1H MRS) to assess in vivo changes in Glu signals within the hippocampus in a rat model of depression induced by a forced swim test. The forced swimming test (FST) group exhibited markedly reduced GluCEST-weighted levels and Glu concentrations when examined using 1H MRS in the hippocampal region compared to the control group (GluCEST-weighted levels: 3.67 ± 0.81% vs. 5.02 ± 0.44%, p < 0.001; and Glu concentrations: 6.560 ± 0.292 μmol/g vs. 7.133 ± 0.397 μmol/g, p = 0.001). Our results indicate that GluCEST imaging is a distinctive approach to detecting and monitoring Glu levels in a rat model of depression. Furthermore, the application of GluCEST imaging may provide a deeper insight into the neurochemical involvement of glutamate in various psychiatric disorders.
Collapse
Affiliation(s)
- Donghoon Lee
- Faculty of Health Sciences, Higher Colleges of Technology, Fujairah P.O. Box 1626, United Arab Emirates;
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (C.-W.W.); (D.-C.W.)
| | - Hwon Heo
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Yousun Ko
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Ji Sung Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (J.S.J.); (S.N.)
| | - Seongwon Na
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (J.S.J.); (S.N.)
| | - Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyung Won Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Do-Wan Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| |
Collapse
|
5
|
Loizeau V, Durieux L, Mendoza J, Wiborg O, Barbelivien A, Lecourtier L. Behavioural characteristics and sex differences of a treatment-resistant depression model: Chronic mild stress in the Wistar-Kyoto rat. Behav Brain Res 2024; 457:114712. [PMID: 37838247 DOI: 10.1016/j.bbr.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Depression affects 20% of the general population and is a leading cause of disability worldwide, with a strong female prevalence. Current pharmacotherapies have significant limitations, and one third of patients are unresponsive. Male Wistar-Kyoto rats exposed to chronic mild stress (CMS) were recently proposed as a model to study antidepressant resistance. However, sex differences and interindividual vulnerability to stress are yet unexplored in this model. We aimed to investigate these in the context of the behavioural impact of CMS in the sucrose preference test, elevated plus maze (EPM), forced swim test (FST), open field test and daily locomotor activity rhythms, in male and female WKY rats exposed or not to a 4-week CMS protocol. CMS-exposed animals were clustered through K-means into subgroups based on the EPM and FST results. In both sexes, one subgroup behaved similarly to non-stressed animals and was labelled stress-non vulnerable; the second exhibited less open arms exploration in the EPM and higher immobility in the FST and was named stress-vulnerable. Vulnerable males presented phase delay in daily locomotor activity following CMS, but no significant rhythm could be determined in females. CMS-exposed males of both groups showed hyperlocomotion in reaction to novelty and slower weight gain through the course of CMS, while CMS-exposed females showed smaller sucrose intake. Unexpectedly, CMS did not affect sucrose preference. Our findings strengthen the view that in models of psychiatric pathologies based on stress exposure it is important to consider the effect of sex and to differentiate the non vulnerable and vulnerable subpopulations.
Collapse
Affiliation(s)
- Vincent Loizeau
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Laura Durieux
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Jorge Mendoza
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, UPR 3212, Strasbourg, France
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alexandra Barbelivien
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Lucas Lecourtier
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France.
| |
Collapse
|
6
|
Zhang Y, Li XJ, Wang XR, Wang X, Li GH, Xue QY, Zhang MJ, Ao HQ. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals (Basel) 2023; 16:1607. [PMID: 38004472 PMCID: PMC10675308 DOI: 10.3390/ph16111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Depression can trigger an inflammatory response that affects the immune system, leading to the development of other diseases related to inflammation. Xiao-Yao-San (XYS) is a commonly used formula in clinical practice for treating depression. However, it remains unclear whether XYS has a modulating effect on the inflammatory response associated with depression. The objective of this study was to examine the role and mechanism of XYS in regulating the anti-inflammatory response in depression. A chronic unpredictable mild stress (CUMS) mouse model was established to evaluate the antidepressant inflammatory effects of XYS. Metabolomic assays and network pharmacology were utilized to analyze the pathways and targets associated with XYS in its antidepressant inflammatory effects. In addition, molecular docking, immunohistochemistry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), and Western Blot were performed to verify the expression of relevant core targets. The results showed that XYS significantly improved depressive behavior and attenuated the inflammatory response in CUMS mice. Metabolomic analysis revealed the reversible modulation of 21 differential metabolites by XYS in treating depression-related inflammation. Through the combination of liquid chromatography and network pharmacology, we identified seven active ingredients and seven key genes. Furthermore, integrating the predictions from network pharmacology and the findings from metabolomic analysis, Vascular Endothelial Growth Factor A (VEGFA) and Peroxisome Proliferator-Activated Receptor-γ (PPARG) were identified as the core targets. Molecular docking and related molecular experiments confirmed these results. The present study employed metabolomics and network pharmacology analyses to provide evidence that XYS has the ability to alleviate the inflammatory response in depression through the modulation of multiple metabolic pathways and targets.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao-Jun Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Xin-Rong Wang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao Wang
- Department of Basic Theory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Guo-Hui Li
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Qian-Yin Xue
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Ming-Jia Zhang
- Department of Basic Theory of TCM, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hai-Qing Ao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| |
Collapse
|
7
|
Behren LE, König S, May K. Genomic Selection for Dairy Cattle Behaviour Considering Novel Traits in a Changing Technical Production Environment. Genes (Basel) 2023; 14:1933. [PMID: 37895282 PMCID: PMC10606080 DOI: 10.3390/genes14101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cow behaviour is a major factor influencing dairy herd profitability and is an indicator of animal welfare and disease. Behaviour is a complex network of behavioural patterns in response to environmental and social stimuli and human handling. Advances in agricultural technology have led to changes in dairy cow husbandry systems worldwide. Increasing herd sizes, less time availability to take care of the animals and modern technology such as automatic milking systems (AMSs) imply limited human-cow interactions. On the other hand, cow behaviour responses to the technical environment (cow-AMS interactions) simultaneously improve production efficiency and welfare and contribute to simplified "cow handling" and reduced labour time. Automatic milking systems generate objective behaviour traits linked to workability, milkability and health, which can be implemented into genomic selection tools. However, there is insufficient understanding of the genetic mechanisms influencing cow learning and social behaviour, in turn affecting herd management, productivity and welfare. Moreover, physiological and molecular biomarkers such as heart rate, neurotransmitters and hormones might be useful indicators and predictors of cow behaviour. This review gives an overview of published behaviour studies in dairy cows in the context of genetics and genomics and discusses possibilities for breeding approaches to achieve desired behaviour in a technical production environment.
Collapse
Affiliation(s)
- Larissa Elisabeth Behren
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390 Giessen, Germany
| |
Collapse
|
8
|
Zhang MJ, Song ML, Zhang Y, Yang XM, Lin HS, Chen WC, Zhong XD, He CY, Li T, Liu Y, Chen WG, Sun HT, Ao HQ, He SQ. SNS alleviates depression-like behaviors in CUMS mice by regluating dendritic spines via NCOA4-mediated ferritinophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116360. [PMID: 37028613 DOI: 10.1016/j.jep.2023.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is one of the most common mood disturbances worldwide. The Si-ni-san formula (SNS) is a famous classic Traditional Chinese Medicine (TCM) widely used to treat depression for thousands of years in clinics. However, the mechanism underlying the therapeutic effect of SNS in improving depression-like behaviors following chronic unpredictable mild stress (CUMS) remains unknown. AIM OF THE STUDY This study aimed to investigate whether SNS alleviates depression-like behaviors in CUMS mice by regulating dendritic spines via NCOA4-mediated ferritinophagy in vitro and in vivo. STUDY DESIGN AND METHODS In vivo, mice were exposed to CUMS for 42 days, and SNS (4.9, 9.8, 19.6 g/kg/d), fluoxetine (10 mg/kg/d), 3-methyladenine (3-MA) (30 mg/kg/d), rapamycin(1 mg/kg/d), and deferoxamine (DFO) (200 mg/kg/d) were conducted once daily during the last 3 weeks of the CUMS procedure. In vitro, a depressive model was established by culture of SH-SY5Y cells with corticosterone, followed by treatment with different concentrations of freeze-dried SNS (0.001, 0.01, 0.1 mg/mL) and rapamycin (10 nM), NCOA4-overexpression, Si-NCOA4. After the behavioral test (open-field test (OFT), sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST), dendritic spines, GluR2 protein expression, iron concentration, and ferritinophagy-related protein levels (P62, FTH, NCOA4, LC3-II/LC3-I) were tested in vitro and in vivo using immunohistochemistry, golgi staining, immunofluorescence, and Western blot assays. Finally, HEK-293T cells were transfected by si-NCOA4 or GluR2-and NCOA4-overexpression plasmid and treated with corticosterone(100 μM), freeze-dried SNS(0.01 mg/mL), rapamycin(25 nM), and 3-MA(5 mM). The binding amount of GluR2, NCOA4, and LC3 was assessed by the co-immunoprecipitation (CO-IP) assay. RESULTS 3-MA, SNS, and DFO promoted depressive-like behaviors in CUMS mice during OFT, SPT, FST and TST, improved the amount of the total, thin, mushroom spine density and enhanced GluR2 protein expression in the hippocampus. Meanwhile, treatment with SNS decreased iron concentrations and inhibited NCOA4-mediated ferritinophagy activation in vitro and in vivo. Importantly, 3-MA and SNS could prevent the binding of GluR2, NCOA4 and LC3 in corticosterone-treated HEK-293T, and rapamycin reversed this phenomenon after treatment with SNS. CONCLUSION SNS alleviates depression-like behaviors in CUMS mice by regulating dendritic spines via NCOA4-mediated ferritinophagy.
Collapse
Affiliation(s)
- Ming-Jia Zhang
- School Basic Medicine Science, Zhejiang Chinese Medical University(1), Zhejiang, 310053, PR China; Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Mao-Lin Song
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Yi Zhang
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Xue-Mei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hui-Shan Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Wei-Cong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Xiao-Dan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Chun-Yu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Tong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Yang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Wei-Guang Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Tao Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Hai-Qing Ao
- Department of Psychology, School of Economics and Management, Guang Zhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| | - Song-Qi He
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
9
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, Eckert A, Liechti ME. Ketanserin Reverses the Acute Response to LSD in a Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Participants. Int J Neuropsychopharmacol 2022; 26:97-106. [PMID: 36342343 PMCID: PMC9926053 DOI: 10.1093/ijnp/pyac075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is currently being investigated in psychedelic-assisted therapy. LSD has a long duration of acute action of 8-11 hours. It produces its acute psychedelic effects via stimulation of the serotonin 5-hydroxytryptamine-2A (HT2A) receptor. Administration of the 5-HT2A antagonist ketanserin before LSD almost fully blocks the acute subjective response to LSD. However, unclear is whether ketanserin can also reverse the effects of LSD when administered after LSD. METHODS We used a double-blind, randomized, placebo-controlled, crossover design in 24 healthy participants who underwent two 14-hour sessions and received ketanserin (40 mg p.o.) or placebo 1 hour after LSD (100 µg p.o.). Outcome measures included subjective effects, autonomic effects, acute adverse effects, plasma brain-derived neurotrophic factor levels, and pharmacokinetics up to 12 hours. RESULTS Ketanserin reversed the acute response to LSD, thereby significantly reducing the duration of subjective effects from 8.5 hours with placebo to 3.5 hours. Ketanserin also reversed LSD-induced alterations of mind, including visual and acoustic alterations and ego dissolution. Ketanserin reduced adverse cardiovascular effects and mydriasis that were associated with LSD but had no effects on elevations of brain-derived neurotrophic factor levels. Ketanserin did not alter the pharmacokinetics of LSD. CONCLUSIONS These findings are consistent with an interaction between ketanserin and LSD and the view that LSD produces its psychedelic effects only when occupying 5-HT2A receptors. Ketanserin can effectively be used as a planned or rescue option to shorten and attenuate the LSD experience in humans in research and LSD-assisted therapy. TRIAL REGISTRY ClinicalTrials.gov (NCT04558294).
Collapse
Affiliation(s)
- Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ioanna Istampoulouoglou
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Correspondence: Matthias E. Liechti, MD, Clinical Pharmacology, University Hospital Basel, Schanzenstrasse 55, Basel, CH-4056, Switzerland ()
| |
Collapse
|
11
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
12
|
Zhang Y, Fang YC, Cui LX, Jiang YT, Luo YS, Zhang W, Yu DX, Wen J, Zhou TT. Zhi-Zi-Chi Decoction Reverses Depressive Behaviors in CUMS Rats by Reducing Oxidative Stress Injury Via Regulating GSH/GSSG Pathway. Front Pharmacol 2022; 13:887890. [PMID: 35462900 PMCID: PMC9021728 DOI: 10.3389/fphar.2022.887890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is one of the main diseases that lead to disability and loss of ability to work. As a traditional Chinese medicine, Zhi-zi-chi decoction is utilized to regulate and improve depression. However, the research on the antidepressant mechanism and efficacy material basis of Zhi-zi-chi decoction has not been reported yet. Our previous research has found that Zhi-Zi-chi decoction can reduce glutamate-induced oxidative stress damage to PC 12 cells, which can exert a neuroprotective effect, and the antidepressant effect of Zhi-Zi-chi decoction was verified in CUMS rat models. In this study, the animal model of depression was established by chronic unpredictable mild stimulation combined with feeding alone. The brain metabolic profile of depressed rats was analyzed by the method of metabolomics based on ultra-performance liquid chromatography-quadrupole/time-of-flight mass. 26 differential metabolites and six metabolic pathways related to the antidepressant of Zhi-zi-chi decoction were screened and analyzed. The targeted metabolism of the glutathione metabolic pathway was analyzed. At the same time, the levels of reactive oxygen species, superoxide dismutase, glutathione reductase, glutathione peroxidase in the brain of depressed rats were measured. Combined with our previous study, the antioxidant effect of the glutathione pathway in the antidepressant effect of Zhi-zi-chi decoction was verified from the cellular and animal levels respectively. These results indicated that Zhi-zi-chi decoction exerted a potential antidepressive effect associated with reversing the imbalance of glutathione and oxidative stress in the brain of depressed rats.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Chengdu Institute for Drug Control, Chengdu, China
| | - Yi-Chao Fang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Li-Xun Cui
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yue-Tong Jiang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu-Sha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - De-Xun Yu
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| | - Ting-Ting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Jun Wen, ; Ting-Ting Zhou,
| |
Collapse
|
13
|
Multi Platforms Strategies and Metabolomics Approaches for the Investigation of Comprehensive Metabolite Profile in Dogs with Babesia canis Infection. Int J Mol Sci 2022; 23:ijms23031575. [PMID: 35163517 PMCID: PMC8835742 DOI: 10.3390/ijms23031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host–pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
Collapse
|
14
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
15
|
Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, Duthaler U, Varghese N, Eckert A, Grünblatt E, Liechti ME. Acute Effects of Psilocybin After Escitalopram or Placebo Pretreatment in a Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Subjects. Clin Pharmacol Ther 2021; 111:886-895. [PMID: 34743319 PMCID: PMC9299061 DOI: 10.1002/cpt.2487] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022]
Abstract
The psychedelic psilocybin is being investigated for the treatment of depression and anxiety. Unclear is whether antidepressant treatments interact with psilocybin. The present study used a double‐blind, placebo‐controlled, crossover design with two experimental test sessions to investigate the response to psilocybin (25 mg) in healthy subjects after pretreatment with escitalopram or placebo. The treatment order was random and counterbalanced. Pretreatment consisted of 10 mg escitalopram daily for 7 days, followed by 20 mg daily for 7 days, including the day of psilocybin administration, or 14 days of placebo pretreatment before psilocybin administration. Psilocybin treatments were separated by at least 16 days. The outcome measures included self‐rating scales that evaluated subjective effects, autonomic effects, adverse effects, plasma brain‐derived neurotrophic factor (BDNF) levels, electrocardiogram QTc time, whole‐blood HTR2A and SCL6A4 gene expression, and pharmacokinetics. Escitalopram pretreatment had no relevant effect on positive mood effects of psilocybin but significantly reduced bad drug effects, anxiety, adverse cardiovascular effects, and other adverse effects of psilocybin compared with placebo pretreatment. Escitalopram did not alter the pharmacokinetics of psilocin. The half‐life of psychoactive free (unconjugated) psilocin was 1.8 hours (range 1.1–2.2 hours), consistent with the short duration of action of psilocybin. Escitalopram did not alter HTR2A or SCL6A4 gene expression before psilocybin administration, QTc intervals, or circulating BDNF levels before or after psilocybin administration. Further studies are needed with a longer antidepressant pretreatment time and patients with psychiatric disorders to further define interactions between antidepressants and psilocybin.
Collapse
Affiliation(s)
- Anna M Becker
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Friederike Holze
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Tanja Grandinetti
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Aaron Klaiber
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanja E Toedtli
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Karolina E Kolaczynska
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- Psychiatric University Hospital, University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Psychiatric University Hospital, University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Matthias E Liechti
- Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Iliou A, Vlaikou AM, Nussbaumer M, Benaki D, Mikros E, Gikas E, Filiou MD. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress 2021; 24:952-964. [PMID: 34553679 DOI: 10.1080/10253890.2021.1973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Angeliki-Maria Vlaikou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Dimitra Benaki
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Chemistry, Section of Analytical Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michaela D Filiou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
17
|
Ghaffari-Nasab A, Badalzadeh R, Mohaddes G, Javani G, Ebrahimi-Kalan A, Alipour MR. Young Plasma Induces Antidepressant-Like Effects in Aged Rats Subjected to Chronic Mild Stress by Suppressing Indoleamine 2,3-Dioxygenase Enzyme and Kynurenine Pathway in the Prefrontal Cortex. Neurochem Res 2021; 47:358-371. [PMID: 34626305 DOI: 10.1007/s11064-021-03440-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain's responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A + CUMS), aged rats subjected to CUMS and treated with young plasma (A + CUMS + YP), and aged rats subjected to CUMS and treated with old plasma (A + CUMS + OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated.
Collapse
Affiliation(s)
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gonja Javani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Guo H, Deji C, Peng H, Zhang J, Chen Y, Zhang Y, Wang Y. The role of SIRT1 in the basolateral amygdala in depression-like behaviors in mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12765. [PMID: 34355499 DOI: 10.1111/gbb.12765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 01/25/2023]
Abstract
Previous investigations have implicated the basolateral amygdala (BLA) epigenetic mechanisms in the pathophysiology of depression. SIRT1 is a NAD+-dependent class III histone deacetylase, widely expresses in BLA. However, epigenetic mechanisms in the BLA under the regulation of SIRT1 in the depression are largely uncharacterized. Under the chronic unpredictable chronic mild stress (CUMS) mouse model, we used adeno-associated viral vectors (AAV) that encoded SIRT1-shRNA or SIRT1 to specifically knockdown or overexpress SIRT1 in BLA neurons, respectively. CUMS procedure induced significant depression symptoms including the decreased sucrose preference, the less bodyweight gained, the decreased immobile latency and the increased immobile time both in forced swim test (FST) and tail suspension test (TST). Knockdown of SIRT1 in BLA glutamatergic neurons reversed these depression-like behaviors and restored the synaptic abnormalities. Overexpression of SIRT1 in BLA glutamatergic neurons induced depression-like behaviors in non-stressed control mice. The result of protein expressions and ultrastructural changes were consistent with the behavioral results. Our study suggested that downregulation of SIRT1 in BLA has certain beneficial effect on CUMS-induced depression-like behaviors such as anorexia, anhedonia, hopelessness and despair. In addition, the increased expression of SIRT1 may be the immediate cause of depressive-like symptoms. The abnormal expression of SIRT1 may affect the transcriptional regulation mechanism and signaling protein acetylation, affecting neuroplasticity and ultimately contribute to MDD. In the stress-susceptible mice, these two mechanisms may co-exist, but the specific mechanism needs further research.
Collapse
Affiliation(s)
- Hao Guo
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China.,School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Cuola Deji
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Han Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jinyu Zhang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yuanyuan Chen
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| | - Yunpeng Wang
- College of Forensic Science, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
20
|
Ghaffari-Nasab A, Badalzadeh R, Mohaddes G, Alipour MR. Young plasma administration mitigates depression-like behaviours in chronic mild stress-exposed aged rats by attenuating apoptosis in prefrontal cortex. Exp Physiol 2021; 106:1621-1630. [PMID: 34018261 DOI: 10.1113/ep089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? Young plasma contains several rejuvenating factors that exert beneficial effects in ageing and neurodegenerative diseases: can repeated transfusion of young plasma improve depressive behaviour in aged rats? What is the main finding and its importance? Following chronic transfusion of young plasma, depressive behaviour was improved in the depression model of aged rats, which was associated with reduced apoptosis process in the prefrontal cortex. ABSTRACT Brain ageing alters brain responses to stress, playing an essential role in the pathophysiology of late-life depression. Moreover, apoptotic activity is up-regulated in the prefrontal cortex in ageing and stress-related mood disorders. Considerable evidence suggests that factors in young blood could reverse age-related dysfunctions in organs, especially in the brain. Therefore, this study investigated the effect of young plasma administration on depressive behaviours in aged rats exposed to chronic unpredictable mild stress (CUMS), with a focus on the apoptosis process. Young (3 months old) and aged (22 months old) male rats were randomly assigned into four groups: young control (YC), aged control (AC), aged rats subjected to CUMS (A+CUMS) and aged rats subjected to CUMS and treated with young plasma (A+CUMS+YP). In the A+CUMS and A+CUMS+YP groups, CUMS was used to generate the depression rat model. Moreover, the A+CUMS+YP group received pooled plasma (1 ml, intravenously), collected from young rats, three times per week for 4 weeks. Young plasma administration significantly improved CUMS-induced depression-like behaviours, including decreased sucrose consumption ratio, reduced locomotor activity and prolonged immobility time. Importantly, young plasma reduced neuronal apoptosis in the prefrontal cortex that was associated with reduced TUNEL-positive cells and cleaved caspase-3 protein levels in the A+CUMS+YP compared with the A+CUMS group. Young plasma can partially improve the neuropathology of late-life depression through the apoptotic signalling pathways.
Collapse
Affiliation(s)
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
22
|
Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, Duthaler U, Varghese N, Eckert A, Borgwardt S, Liechti ME. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 2021; 46:537-544. [PMID: 33059356 PMCID: PMC8027607 DOI: 10.1038/s41386-020-00883-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Growing interest has been seen in using lysergic acid diethylamide (LSD) in psychiatric research and therapy. However, no modern studies have evaluated subjective and autonomic effects of different and pharmaceutically well-defined doses of LSD. We used a double-blind, randomized, placebo-controlled, crossover design in 16 healthy subjects (eight women, eight men) who underwent six 25 h sessions and received placebo, LSD (25, 50, 100, and 200 µg), and 200 µg LSD 1 h after administration of the serotonin 5-hydroxytryptamine-2A (5-HT2A) receptor antagonist ketanserin (40 mg). Test days were separated by at least 10 days. Outcome measures included self-rating scales that evaluated subjective effects, autonomic effects, adverse effects, plasma brain-derived neurotrophic factor levels, and pharmacokinetics up to 24 h. The pharmacokinetic-subjective response relationship was evaluated. LSD showed dose-proportional pharmacokinetics and first-order elimination and dose-dependently induced subjective responses starting at the 25 µg dose. A ceiling effect was observed for good drug effects at 100 µg. The 200 µg dose of LSD induced greater ego dissolution than the 100 µg dose and induced significant anxiety. The average duration of subjective effects increased from 6.7 to 11 h with increasing doses of 25-200 µg. LSD moderately increased blood pressure and heart rate. Ketanserin effectively prevented the response to 200 µg LSD. The LSD dose-response curve showed a ceiling effect for subjective good effects, and ego dissolution and anxiety increased further at a dose above 100 µg. These results may assist with dose finding for future LSD research. The full psychedelic effects of LSD are primarily mediated by serotonin 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Friederike Holze
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Laura Ley
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Müller
- grid.6612.30000 0004 1937 0642Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Patrick Dolder
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Melanie Stocker
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Urs Duthaler
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Nimmy Varghese
- grid.6612.30000 0004 1937 0642Psychiatric University Hospital, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- grid.6612.30000 0004 1937 0642Psychiatric University Hospital, University of Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- grid.6612.30000 0004 1937 0642Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Matthias E. Liechti
- grid.410567.1Department of Biomedicine and Department of Clinical Research, Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland ,grid.6612.30000 0004 1937 0642Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Peng G, Yang L, Wu CY, Zhang LL, Wu CY, Li F, Shi HW, Hou J, Zhang LM, Ma X, Xiong J, Pan H, Zhang GQ. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int 2020; 142:104926. [PMID: 33276022 DOI: 10.1016/j.neuint.2020.104926] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that brings great harm and burden to both patients and society. This study aimed to examine the effects of whole-body vibration (WBV) training on a chronic restraint stress (CRS) induced depression rat model and provide an initial understanding of related molecular mechanisms. Adult Sprague-Dawley male rats were randomly divided into the following three groups: a) control group, b) depressive disorder group, and c) depression with WBV training treatment group. Daily food intake, body weight, sucrose preference test, open field test, elevated plus maze, forced swimming test, and Barnes maze task tests were performed. Immunofluorescence staining and ELISA analysis were used to assess neuronal damage, synaptic proteins, glial cells, and trophic factors. The data of behavioral tests and related biochemical indicators were statistically analyzed and compared between groups. Rats undergoing CRS showed increased anxiety-like behavior and memory impairment, along with synaptic atrophy and neuronal degeneration. WBV could reverse behavioral dysfunction, inhibit the degeneration of neurons, alleviate the damage of neurons and the pathological changes of glial cells, enhance trophic factor expression, and ameliorate the downregulation of dendritic and synaptic proteins after CRS. The effect of WBV in rats may be mediated via the reduction of hippocampal neuronal degeneration and by improving expression of synaptic proteins. WBV training exerts multifactorial benefits on MDD that supports its use as a promising new therapeutic option for improving depression-like behaviors in the depressive and/or potentially depressive.
Collapse
Affiliation(s)
- Guangcong Peng
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Luodan Yang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chong Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Ling L Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Chun Y Wu
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Fan Li
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hai W Shi
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jun Hou
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Li M Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China
| | - Hongying Pan
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| | - Guang Q Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, China.
| |
Collapse
|
24
|
Zhang T, Zheng H, Fan K, Xia N, Li J, Yang C, Gao H, Yang Y. NMR-based metabolomics characterizes metabolic changes in different brain regions of streptozotocin-induced diabetic mice with cognitive decline. Metab Brain Dis 2020; 35:1165-1173. [PMID: 32643092 DOI: 10.1007/s11011-020-00598-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Diabetes at advanced age increases rise of cognitive impairment, but its potential mechanisms are still far from being fully understood. In this study, we analyzed the metabolic alterations in six different brain regions between streptozotocin (STZ)-induced diabetic mice with cognitive decline (DM) and age-matched controls (CON) using a 1H NMR-based metabolomics approach, to explore potential metabolic mechanisms underlying diabetes-induced cognitive decline. The results show that DM mice had a peculiar metabolic phenotype in all brain regions, mainly involving increased lactate level, decreased choline and energy metabolism as well as disrupted astrocyte-neuron metabolism. Furthermore, these metabolic changes exhibited a brain region-specific pattern. Collectively, our results suggest that brain region-specific metabolic disorders may be responsible for diabetes-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kai Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nengzhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Changwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
25
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
26
|
Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, Varghese N, Eckert A, Feilding A, Ramaekers JG, Kuypers KPC. Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacol Transl Sci 2020; 4:461-466. [PMID: 33860175 PMCID: PMC8033605 DOI: 10.1021/acsptsci.0c00099] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/18/2022]
Abstract
![]()
Despite preclinical evidence for
psychedelic-induced neuroplasticity,
confirmation in humans is grossly lacking. Given the increased interest
in using low doses of psychedelics for psychiatric indications and
the importance of neuroplasticity in the therapeutic response, this
placebo-controlled within-subject study investigated the effect of
single low doses of LSD (5, 10, and 20 μg) on circulating BDNF
levels in healthy volunteers. Blood samples were collected every 2
h over 6 h, and BDNF levels were determined afterward in blood plasma
using ELISA. The findings demonstrated an increase in BDNF blood plasma
levels at 4 h (5 μg) and 6 h (5 and 20 μg) compared to
that for the placebo. The finding that LSD acutely increases BDNF
levels warrants studies in patient populations.
Collapse
Affiliation(s)
- Nadia R P W Hutten
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Natasha L Mason
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Patrick C Dolder
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Eef L Theunissen
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Friederike Holze
- Department of Biomedicine and Department of Clinical Research, Division of Clinical Pharmacology and Toxicology, University Hospital Basel, University of Basel, Basel 4003, Switzerland
| | - Matthias E Liechti
- Department of Biomedicine and Department of Clinical Research, Division of Clinical Pharmacology and Toxicology, University Hospital Basel, University of Basel, Basel 4003, Switzerland
| | - Nimmy Varghese
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel 4003, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel 4003, Switzerland
| | - Amanda Feilding
- The Beckley Foundation, Beckley Park, Oxford OX3 9SY, United Kingdom
| | - Johannes G Ramaekers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
27
|
Li Z, Gao C, Peng J, Liu M, Cong B. Multi-omics analysis of pathological changes in the amygdala of rats subjected to chronic restraint stress. Behav Brain Res 2020; 392:112735. [PMID: 32502515 DOI: 10.1016/j.bbr.2020.112735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Overwhelming stress potentially results in the occurrence of many mental diseases. The amygdala is one region in the brain targeted by stress. Recent studies have shown that changes in the amygdala of subjects under stress are related to depression, anxiety and post-traumatic stress disorder (PTSD). However, researchers have not clearly elucidated the changes in the amygdala in response to stress and the underlying mechanism. We conducted several experiments to understand this mechanism. METHODS In this study, we first established a rat model of chronic restraint stress (CRS) and observed the changes in behavior and neurons in the amygdala. Second, an integrated metabolomics and proteomics experiment was conducted to identify potential stress-related biomarkers. Finally, we validated two molecules of interest and detected four apoptosis-related proteins using Western blotting to further determine the related mechanisms. RESULTS Our study revealed the presence of anxiety-like behaviors and pathological changes in amygdalar neurons in the rat model. In the multi-omics analysis, 19 potential molecules were identified. Western blotting confirmed consistent changes in the levels of Cry1 and Brcc36 obtained in previous results. The levels of proteins in the ataxia telangiectasia mutated (ATM) pathway were increased in the CRS group. CONCLUSIONS CRS causes anxiety-like behaviors that are potentially related to decreased levels of GABA in the amygdala. Moreover, CRS potentially alters the levels of Cry1 and Brcc36 and results in circadian rhythm disorder and impairments in DNA repair and apoptosis in the amygdala through a mechanism mediated by the ATM pathway.
Collapse
Affiliation(s)
- Zhonghua Li
- West China School of Basic Medical Sciences & Forensic Science, Sichuan University, Chengdu, 610041 China; Procuratorial Technology Department of the People's Procuratorate of Sichuan Province, Chengdu, 610041 China
| | - Chong Gao
- Procuratorial Technology Information Center of the Supreme People's Procuratorate, Beijing, 100726 China
| | - Jin Peng
- West China School of Basic Medical Sciences & Forensic Science, Sichuan University, Chengdu, 610041 China
| | - Min Liu
- West China School of Basic Medical Sciences & Forensic Science, Sichuan University, Chengdu, 610041 China
| | - Bin Cong
- West China School of Basic Medical Sciences & Forensic Science, Sichuan University, Chengdu, 610041 China; Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017 China.
| |
Collapse
|
28
|
Duan J, Xie P. The potential for metabolomics in the study and treatment of major depressive disorder and related conditions. Expert Rev Proteomics 2020; 17:309-322. [DOI: 10.1080/14789450.2020.1772059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiajia Duan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Chrishtop VV, Tomilova IK, Rumyantseva TA, Mikhaylenko EV, Avila-Rodriguez MF, Mikhaleva LM, Nikolenko VN, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. The Effect of Short-Term Physical Activity on the Oxidative Stress in Rats with Different Stress Resistance Profiles in Cerebral Hypoperfusion. Mol Neurobiol 2020; 57:3014-3026. [PMID: 32458388 DOI: 10.1007/s12035-020-01930-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 01/03/2023]
Abstract
Oxidative stress associated with chronic cerebral hypoperfusion is one of the fundamental factors leading to neurodegenerative diseases. To prevent oxidative stress, physical activity is effective. Physical exercise enables development of rehabilitation techniques that can progressively increase patients' stress resistance. We determined the oxidative stress dynamics in experimental hypoperfusion and modeled rehabilitation measures, comparing sex and stress resistance levels. The experiment was performed on 240 Wistar rats of both sexes over a period of 90 days. Based on behavioral test results obtained using the open field test, the rats were divided into active animals with predicted higher stress resistance (HSR) and passive animals with predicted lower stress resistance (LSR). TBA (thiobarbituric acid) plasma concentration of the active products (malondialdehyde-MDA), blood plasma (NO-X) concentration, and L-citrulline (LC) concentration were determined spectrophotometrically at the corresponding wave length (nm). The intensity of oxidative stress was evaluated using the chemoluminscent method to determine the blood plasma antioxidant activity on the BCL-07 biochemoluminometer. This study revealed two stages of oxidative stress: a less pronounced phase covering the first days after surgery and a main one, which starts from the month after the operation to 3 months. Female sex and a high initial level of stress resistance reduced the severity of oxidative stress. Physical activity commencing a week after the surgery resulted in "reloading" the adaptive mechanisms and slowed the onset of the main stage, leading to a decrease in the free-radical process in all studied subgroups and the greater blood plasma (NO)-X decrease in the male animals. Future neuropharmacological intervention most likely will be able to determine the pathophysiology mechanism of chronic brain hypoperfusion and potentially extending adaptive responses.
Collapse
Affiliation(s)
- Vladimir V Chrishtop
- Central Research Laboratory, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, Russian Federation, 153012
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, Russian Federation, 153012
| | - Tatiana A Rumyantseva
- Department of Human Anatomy, Yaroslavl State Medical University, Street Revolutsionnaya 5, Yaroslavl, Russian Federation, 150000
| | - Elizaveta V Mikhaylenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, Russia, 119991
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinic Sciences, University of Tolima, Barrio Santa Helena, Ibagué, 730006, Colombia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, Russian Federation, 117418
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, Russia, 119991.,Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, Russia, 119991
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, USA
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, 1 Severny pr., Chernogolovka, Moscow Region, Russia, 142432
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, Russia, 119991. .,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, Russian Federation, 117418. .,Institute of Physiologically Active Compounds of Russian Academy of Sciences, 1 Severny pr., Chernogolovka, Moscow Region, Russia, 142432. .,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Yang AK, Mendoza JA, Lafferty CK, Lacroix F, Britt JP. Hippocampal Input to the Nucleus Accumbens Shell Enhances Food Palatability. Biol Psychiatry 2020; 87:597-608. [PMID: 31699294 DOI: 10.1016/j.biopsych.2019.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Insight into the neural basis of hedonic processing has come from studies of food palatability in rodents. Pharmacological manipulations of the nucleus accumbens shell (NAcSh) have repeatedly been demonstrated to increase hedonic taste reactivity, yet the contribution of specific NAcSh circuit components is unknown. METHODS Bidirectional optogenetic manipulations were targeted to the principal NAcSh projection neurons and afferent pathways in mice during free feeding assays. Number of licks per bout of consumption was used as a measure of food palatability as it was confirmed to track sucrose concentration and subjective flavor preferences. RESULTS Photoinhibition of NAcSh neurons, whether general or cell-type specific, was found to alter consumption without affecting its hedonic impact. Among the principal excitatory afferent pathways, we showed that ventral hippocampal (vHipp) input alone enhances palatability upon low-frequency photostimulation time-locked to consumption. This enhancement in palatability was independent of opioid signaling and not recapitulated by NAcSh or dopamine neuron photostimulation. We further demonstrated that vHipp input photostimulation is sufficient to condition a flavor preference, while its inhibition impedes sucrose-driven flavor preference conditioning. CONCLUSIONS These results demonstrate a novel contribution of vHipp-NAcSh pathway activity to palatability that may relate to its innervation of a particular region or neuronal ensemble in the NAcSh. These findings are consistent with the evidence that vHipp-NAcSh activity is relevant to the pathophysiology of anhedonia and depression as well as the increasing appreciation of hippocampal involvement in people's food pleasantness ratings, hunger, and weight.
Collapse
Affiliation(s)
- Angela K Yang
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Jesse A Mendoza
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Christopher K Lafferty
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Franca Lacroix
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Jonathan P Britt
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology 2020; 45:462-471. [PMID: 31733631 PMCID: PMC6969135 DOI: 10.1038/s41386-019-0569-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Lysergic acid diethylamide (LSD) is a classic psychedelic, 3,4-methylenedioxymethamphetamine (MDMA) is an empathogen, and D-amphetamine is a classic stimulant. All three substances are used recreationally. LSD and MDMA are being investigated as medications to assist psychotherapy, and D-amphetamine is used for the treatment of attention-deficit/hyperactivity disorder. All three substances induce distinct acute subjective effects. However, differences in acute responses to these prototypical psychoactive substances have not been characterized in a controlled study. We investigated the acute autonomic, subjective, and endocrine effects of single doses of LSD (0.1 mg), MDMA (125 mg), D-amphetamine (40 mg), and placebo in a randomized, double-blind, cross-over study in 28 healthy subjects. All of the substances produced comparable increases in hemodynamic effects, body temperature, and pupil size, indicating equivalent autonomic responses at the doses used. LSD and MDMA increased heart rate more than D-amphetamine, and D-amphetamine increased blood pressure more than LSD and MDMA. LSD induced significantly higher ratings on the 5 Dimensions of Altered States of Consciousness scale and Mystical Experience Questionnaire than MDMA and D-amphetamine. LSD also produced greater subjective drug effects, ego dissolution, introversion, emotional excitation, anxiety, and inactivity than MDMA and D-amphetamine. LSD also induced greater impairments in subjective ratings of concentration, sense of time, and speed of thinking compared with MDMA and D-amphetamine. MDMA produced greater ratings of good drug effects, liking, high, and ego dissolution compared with D-amphetamine. D-Amphetamine increased ratings of activity and concentration compared with LSD. MDMA but not LSD or D-amphetamine increased plasma concentrations of oxytocin. None of the substances altered plasma concentrations of brain-derived neurotrophic factor. These results indicate clearly distinct acute effects of LSD, MDMA, and D-amphetamine and may assist the dose-finding in substance-assisted psychotherapy research.
Collapse
|
32
|
Pharmacogenetics of Antidepressants: from Genetic Findings to Predictive Strategies. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The constantly growing contribution of depressive disorders to the global disease statistics calls for a growth of treatment effectiveness and optimization. Antidepressants are the most frequently prescribed medicines for depressive disorders. However, development of a standardized pharmacotherapeutic approach is burdened by the genomic heterogeneity, lack of reliable predictive biomarkers and variability of the medicines metabolism aggravated by multiple side effects of antidepressants. According to modern assessments up to 20 % of the genes expressed in our brain are involved in the pathogenesis of depression. Large-scale genetic and genomic research has found a number of potentially prognostic genes. It has also been proven that the effectiveness and tolerability of antidepressants directly depend on the variable activity of the enzymes that metabolize medicines. Almost all modern antidepressants are metabolized by the cytochrome P450 family enzymes. The most promising direction of research today is the GWAS (Genome-Wide Association Study) method that is aimed to link genomic variations with phenotypical manifestations. In this type of research genomes of depressive patients with different phenotypes are compared to the genomes of the control group containing same age, sex and other parameters healthy people. Notably, regardless of the large cohorts of patients analyzed, none of the GWA studies conducted so far can reliably reproduce the results of other analogous studies. The explicit heterogeneity of the genes associated with the depression pathogenesis and their pleiotropic effects are strongly influenced by environmental factors. This may explain the difficulty of obtaining clear and reproducible results. However, despite any negative circumstances, the active multidirectional research conducted today, raises the hope of clinicians and their patients to get a whole number of schedules how to achieve remission faster and with guaranteed results
Collapse
|
33
|
Yang X, Wang G, Gong X, Huang C, Mao Q, Zeng L, Zheng P, Qin Y, Ye F, Lian B, Zhou C, Wang H, Zhou W, Xie P. Effects of chronic stress on intestinal amino acid pathways. Physiol Behav 2019; 204:199-209. [PMID: 30831184 DOI: 10.1016/j.physbeh.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
Abstract
Major depressive disorder (MDD) is a debilitating mental disorder with a high prevalence and severe impacts on quality of life. However, the pathophysiological mechanisms underlying MDD remain poorly understood. Here, we used high-performance liquid chromatography with ultraviolet detection-based targeted metabolomics to identify amino acid changes in the small intestine, in a rat model of chronic unpredictable mild stress (CUMS). Pearson's correlation analysis was conducted to investigate the correlations between amino acid changes and behavioral outcomes. Western blot analysis was employed to verify intestinal amino acid transport function. Moreover, we performed an integrated analysis of related differential amino acids in the hippocampus, peripheral blood mononuclear cells (PBMCs), urine and cerebellum identified in our previous studies using the CUMS rat model to further our understanding of amino acid metabolism in depression. Decreased concentrations of glutamine and glycine and upregulation of aspartic acid were found in CUMS model rats. These changes were significantly correlated with depressive-like behaviors. Western blot analysis revealed that CUMS rats exhibited a reduction in the expression levels of amino acid transporters ASCT2 and B0AT1, as well as an increase in LAT1 expression. Impaired transport of glycine and glutamine into the small intestine may contribute to a central deficiency. The current findings suggest that the glycine and glutamine uptake systems may be potential therapeutic targets for depression. The integrated analysis strategy used in the current study may provide new insight into the cellular and molecular mechanisms underlying the gut-brain axis, and help to elucidate the pathophysiological changes in central and peripheral systems in depression.
Collapse
Affiliation(s)
- Xun Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Guowei Wang
- Ning Xia Medical University, Yin Chuan, Ning Xia 750004, China
| | - Xue Gong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Cheng Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Qiang Mao
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; The Second Affiliated Hospital of Chongqing Medical University, Department of Pharmacy, Chongqing, China
| | - Li Zeng
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Nephrology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Yinhua Qin
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Bin Lian
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Chanjuan Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Haiyang Wang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Wei Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
| |
Collapse
|