1
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
2
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Fang Y, Pan H, Zhu H, Wang H, Ye M, Ren J, Peng J, Li J, Lu X, Huang C. Intranasal LAG3 antibody infusion induces a rapid antidepressant effect via the hippocampal ERK1/2-BDNF signaling pathway in chronically stressed mice. Neuropharmacology 2024; 259:110118. [PMID: 39153731 DOI: 10.1016/j.neuropharm.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.
Collapse
Affiliation(s)
- Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, #388 Zuchongzhi South Road, Kunshan, Suzhou, 215300, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jinxin Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, #288 Yanling East Road, Changzhou 223000, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
4
|
Zhu X, Wu S, Zhou Y, Xiao T, Xia L, Wang Y, Xiao A, Guo J, Zhang M, Wen Y, Shang D, Yu L. The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. J Biomol Struct Dyn 2024; 42:9309-9324. [PMID: 37632305 DOI: 10.1080/07391102.2023.2251067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Danzhi-xiaoyao-San (DZXYS), a Traditional Chinese Medicine, plays an essential role in the clinical treatment of depression, but its mechanisms in humans remain unclear. To investigate its pharmacological effects and mechanisms as an add-on therapy for depression, we conducted a double-blind, placebo-controlled trial with depressed patients receiving selective serotonin reuptake inhibitors (SSRIs). Serum and fecal samples were collected for metabolomic and microbiome analysis using UHPLC-QTRAP-MS/MS and 16S rRNA gene sequencing technologies, respectively. Depression symptoms were assessed using the 24-item Hamilton Depression Scale. We employed network pharmacology, metabolomics, and molecular docking to identify potential targets associated with DZXYS. We also examined the correlation between gut microbes and metabolites to understand how DZXYS affects the microbiota-gut-brain axis. The results showed that DZXYS combined with SSRIs was more effective than SSRIs alone in improving depression. We identified 39 differential metabolites associated with DZXYS treatment and found seven upregulated metabolic pathways. The active ingredients quercetin and luteolin were docked to targets (AVPR2, EGFR, F2, and CDK6) associated with the enriched pathways 'pancreatic cancer' and 'phospholipase D signaling pathway', which included the metabolite lysophosphatidic acid [LPA(0:0/16:0)]. Additionally, we identified 32 differential gut microbiota species related to DZXYS treatment, with Bacteroides coprophilus and Ruminococcus gnavus showing negative correlations with specific metabolites such as L-2-aminobutyric acid and LPA(0:0/16:0). Our findings indicate that DZXYS's antidepressant mechanisms involve multiple targets, pathways, and the regulation of LPA and the microbiota-gut-brain axis. These insights from our systems pharmacology analysis contribute to a better understanding of DZXYS's potential pharmacological mechanisms in depression treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengwei Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufang Zhou
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Xiao
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Liang Xia
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Materia Medica, Beijing, China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youtian Wang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aixiang Xiao
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Nursing Department, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxiong Guo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Zhang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Yu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
6
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Li J, Yu Y, Zhang Y, Zhou Y, Ding S, Dong S, Jin S, Li Q. Flavonoids Derived from Chinese Medicine: Potential Neuroprotective Agents. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1613-1640. [PMID: 39343989 DOI: 10.1142/s0192415x24500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
Collapse
Affiliation(s)
- Jinhua Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Ye Yu
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yanjie Zhang
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yilin Zhou
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuxian Ding
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuze Dong
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Sainan Jin
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Qin Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| |
Collapse
|
8
|
Safarzadeh E, Ataei S, Akbari M, Abolhasani R, Baziar M, Asghariazar V, Dadkhah M. Quercetin ameliorates cognitive deficit, expression of amyloid precursor gene, and pro-inflammatory cytokines in an experimental models of Alzheimer's disease in Wistar rats. Exp Gerontol 2024; 193:112466. [PMID: 38821324 DOI: 10.1016/j.exger.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Chronic stress (CS) is critically involved in the Alzheimer's disease (AD) pathogenesis resulting in cognitive disturbance. Also, amyloid precursor protein (APP) related gens, pro-inflammatory cytokines, and stress increases AD-related pathogenesis through increasing APP, all are important players in the development of AD. Herein, we explore the possible neuroprotective and anti-amnestic effect of quercetin (QUER) on cognitive deficits induced by scopolamine (SCOP) in stressed rats. Stress induction was performed by exposed of rats to 2-h chronic restraint stress for 10 days. Then rats were supplemented with QUER (25 mg/kg/day oral gavage, for 1 month). Ratswere submitted to intraperitoneal (i.p.) injection of SCOP (1 mg/kg) during the final 9 days of QUER supplementation to induce dementia like condition. Following the interventions, behavioral tests [elevated plus maze (EPM) and novel object recognition memory (NORM)] was examined to analysis the cognitive functions. Meanwhile, prefrontal cortex (PFC) and hippocampus of brain were used for gene expression and biochemical studies. Also, the plasma corticosterone (CORT) level was measured. We established that administration of QUER ameliorated the SCOP-related memory impairment. Also, QUER decreased stress related anxiety like behaviors in the EPM. QUER also altered the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in both PFC and hippocampus of SCOP treated rats in stress and non-stress conditions. We found that QUER increased APP and amyloid precursor-like protein 2 (APLP2) mRNA expression in both non-stress and stressed rats. Also, our findings imply that QUER suppress the effect of SCOP on cognitive functions. Moreover, decreased APP mRNA expression in the hippocampus were observed following pretreatment of rats with QUER in both stress and non-stress groups. Given that decreased amyloid beta (Aβ) expression in the hippocampus of stressed rats, it can be proposed that elevations in APP mRNA expression by QUER activates non-amyloidogenic pathways leading to reduction in Aβ levels. However, our findings indicate that QUER can be a therapeutic candidate, which exerts an anti-amnesic property against SCOP-induced memory decline. On the other hand, prior QUER administration in stress condition could be a promising approach against AD prevention.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Ataei
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Akbari
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rozita Abolhasani
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; USERN Office, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
9
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Jia Y, Zhang X, Wang Y, Liu Y, Dai J, Zhang L, Wu X, Zhang J, Xiang H, Yang Y, Zeng Z, Chen Y. Knocking out Selenium Binding Protein 1 Induces Depressive-Like Behavior in Mice. Biol Trace Elem Res 2024; 202:3149-3162. [PMID: 37801218 DOI: 10.1007/s12011-023-03894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Selenium binding protein 1 (SELENBP1) is involved in neurologic disorders, such as multiple sclerosis, spinal cord injury, Parkinson's disease, epilepsy, and schizophrenia. However, the role of SELENBP1 in the neurogenesis of depression, which is a neurologic disorder, and the underlying mechanisms of oxidative stress and inflammation in depression remain unknown. In this study, we evaluated the changes in the expression levels of SELENBP1 in the hippocampus of a mouse model of depression and in the serum of human patients with depression using the Gene Expression Omnibus database. These changes were validated using blood samples from human patients with depression and mouse models with chronic unpredictable mild stress (CUMS)-induced depressive-like behavior. We also investigated the effects of SELENBP1 knockout (KO) on inflammation, oxidative stress, and hippocampal neurogenesis in mice with CUMS-induced depression. Our results revealed that SELENBP1 levels was decreased in the blood of human patients with depression and in the hippocampus of mice with CUMS-induced depression. SELENBP1 KO increased CUMS-induced depressive behavior in mice and caused dysregulation of inflammatory cytokines and oxidative stress. This led to a decrease in the numbers of doublecortin- and Ki67-positive cells, which might aggravate CUMS-induced depressive symptoms. These findings suggest that SELENBP1 might be involved in the regulation of neurogenesis in mice with depression and could be served as a potential target for diagnosing and treating depression.
Collapse
Affiliation(s)
- Yi Jia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China.
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China.
| | - Xin Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yongmei Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Dai
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Liangliang Zhang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xian Wu
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jie Zhang
- Department of Laboratory, the Second People's Hospital of Guizhou Province, Guiyang, 550004, Guizhou, China
| | - Hongxi Xiang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yulian Chen
- Mental Health Education and Counseling Center for College Students, Guizhou Medical University, Guiyang, 550025, China
- Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Tajabadi Farahani Z, Vaseghi S, Rajabbeigi E, Ghorbani Yekta B. The effect of olanzapine on spatial memory impairment, depressive-like behavior, pain perception, and BDNF and synaptophysin expression following childhood chronic unpredictable mild stress in adult male and female rats. Behav Brain Res 2024; 468:115039. [PMID: 38718877 DOI: 10.1016/j.bbr.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.
Collapse
Affiliation(s)
- Zahra Tajabadi Farahani
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Elham Rajabbeigi
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
13
|
Bai C, Wang J, Wang Y, Liu H, Li J, Wang S, Bai Z, Guo R. Exploration of the mechanism of Traditional Chinese Medicine for anxiety and depression in patients with diarrheal irritable bowel syndrome based on network pharmacology and meta-analysis. Front Pharmacol 2024; 15:1404738. [PMID: 38835657 PMCID: PMC11148253 DOI: 10.3389/fphar.2024.1404738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Background The efficacy of Chinese herbal medicine (CHM) in managing irritable bowel syndrome with diarrhea (IBS-D) accompanied by anxiety and depression remains uncertain. Thus, a systematic review was carried out employing meta-analysis and network pharmacology to ascertain the efficacy and underlying mechanisms of CHM therapy. Methods By conducting a systematic review, including literature search, screening, and data extraction, we identified 25 randomized controlled trials to assess CHM's effectiveness in treating irritable bowel syndrome alongside anxiety and depression. Network pharmacology was utilized to scrutinize the metabolite utility of CHM in addressing this condition. Potential primary mechanisms were synthesized using information sourced from the PubMed database. Results Twenty-five studies, including 2055 patients, were analyzed, revealing significant treatment efficacy for IBS-D in the trial group compared to controls [OR = 4.01, 95% CI (2.99, 5.36), I2 = 0%] Additionally, treatment for depression [SMD = -1.08, 95% CI (-1.30, -0.86), p < 0.00001, I2 = 68%; SDS: SMD = -1.69, 95% CI (-2.48, -0.90), p < 0.0001, I2 = 96%] and anxiety [HAMA: SMD = -1.29, 95% CI (-1.68, -0.91), p < 0.00001, I2 = 89%; SAS: SMD = -1.75, 95% CI (-2.55, -0.95), p < 0.00001, I2 = 96%] significantly improved in the trial group. Furthermore, the trial group exhibited a significantly lower disease relapse rate [OR = 0.30, 95% CI (0.20, 0.44), p < 0.00001, I2 = 0%]. CHM treatment consistently improved IBS severity (IBS-SSS) and symptom scores. Network pharmacology analysis identified key chemical metabolites in traditional Chinese medicine formulations, including Beta-sitosterol, Stigmasterol, Quercetin, Naringenin, Luteolin, Kaempferol, Nobiletin, Wogonin, Formononetin, and Isorhamnetin. Utilizing the STRING database and Cytoscape v3.9.0 software, a protein-protein interaction (PPI) network revealed the top eight key targets: IL-6, TNF, PPARG, PTGS2, ESR1, NOS3, MAPK8, and AKT1, implicated in anti-inflammatory responses, antioxidant stress modulation, and neurotransmitter homeostasis maintenance. Conclusion Chinese Herbal Medicine (CHM) offers a promising and safe treatment approach for patients dealing with Diarrheal Irritable Bowel Syndrome (IBS-D) accompanied by anxiety and depression; thus, indicating its potential for practical implementation. The most active metabolites of CHM could simultaneously act on the pathological targets of IBS-D, anxiety, and depression.The diverse scope of CHM's therapeutic role includes various aspects and objectives, underscoring its potential for broad utilization.
Collapse
Affiliation(s)
- Chen Bai
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxiu Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Siyi Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Bai
- Department of Medical Equipment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongjuan Guo
- Psychosomatic Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Ning B, Ge T, Wu Y, Wang Y, Zhao M. Role of Brain-Derived Neurotrophic Factor in Anxiety or Depression After Percutaneous Coronary Intervention. Mol Neurobiol 2024; 61:2921-2937. [PMID: 37946008 DOI: 10.1007/s12035-023-03758-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Anxiety or depression after percutaneous coronary intervention (PCI) is one of the key clinical problems in cardiology that need to be solved urgently. Brain-derived neurotrophic factor (BDNF) may be a potential biomarker for the pathogenesis and treatment of anxiety or depression after PCI. This article reviews the correlation between BDNF and cardiovascular system and nervous system from the aspects of synthesis, release and action site of BDNF, and focuses on the latest research progress of the mechanism of BDNF in anxiety or depression after PCI. It includes the specific mechanisms by which BDNF regulates the levels of inflammatory factors, reduces oxidative stress damage, and mediates multiple signaling pathways. In addition, this review summarizes the therapeutic potential of BDNF as a potential biomarker for anxiety or depression after PCI.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yongqing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mingjun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China.
| |
Collapse
|
15
|
Hassan YR, El-Shiekh RA, El Hefnawy HM, Mohamed OG, Abu-Elfotuh K, Hamdan AM, Darwish A, Gowifel AMH, Tripathi A, Michael CG. A mechanistic exploration of the metabolome of African mango seeds and its potential to alleviate cognitive impairment induced by high-fat/high-carbohydrate diets: Involvement of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2, and AMPK/SIRT-1/mTOR Axes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117747. [PMID: 38218500 DOI: 10.1016/j.jep.2024.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 μg Gallic acid equivalent/mg extract and 8.039 ± 0.53 μg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3β/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.
Collapse
Affiliation(s)
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama G Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ahmed M Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
16
|
Ran S, Peng R, Guo Q, Cui J, Chen G, Wang Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:512. [PMID: 38675471 PMCID: PMC11054835 DOI: 10.3390/ph17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. Chaihu (Bupleurum) has been traditionally used for liver conditions such as hepatitis, liver inflammation, liver fibrosis, and liver cancer. It is believed to have hepatoprotective effects, promoting liver cell regeneration and protecting against liver damage. In addition, Bupleurum has also been used as a Jie Yu (depression-relieving) medicine in China, Japan, Republic of Korea, and other Asian countries for centuries. This review article aims to summarize the research conducted on the antidepressant properties and mechanisms of Bupleurum, as well as discuss the potential of TCM formulas containing Bupleurum. This review highlights various antidepressant ingredients isolated from Bupleurum, including saikosaponin A, saikosaponin D, rutin, puerarin, and quercetin, each with distinct mechanisms of action. Additionally, Chinese herb prescriptions and extracts containing Bupleurum, such as Chaihu Shugansan, Xiaoyaosan, and Sinisan, are also included due to their demonstrated antidepressant effects. This review reveals that these Bupleurum compounds exhibit antidepressant effects through the regulation of neurotransmitter mechanisms (such as 5-HT and DA), the NMDA (N-methyl-D-aspartate) system, brain-derived neurotrophic factor (BDNF), and other intracellular signaling pathways. Collectively, this comprehensive review provides insights into the multiple applications of Bupleurum in the treatment of depression and highlights its potential as an alternative or complementary approach to traditional therapies. However, it is essential to consider the potential adverse effects and clinical restrictions of Bupleurum despite its promising potential. Further research is needed to elucidate its specific mechanisms of action and evaluate its effectiveness in human subjects.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| |
Collapse
|
17
|
Li B, Yan Y, Zhang T, Xu H, Wu X, Yao G, Li X, Yan C, Wu LL. Quercetin reshapes gut microbiota homeostasis and modulates brain metabolic profile to regulate depression-like behaviors induced by CUMS in rats. Front Pharmacol 2024; 15:1362464. [PMID: 38595919 PMCID: PMC11002179 DOI: 10.3389/fphar.2024.1362464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Quercetin, an abundant flavonoid compound in plants, is considered a novel antidepressant; however, its mechanisms of action are poorly understood. This study aimed to investigate the therapeutic effects of quercetin on chronic unpredictable mild stress (CUMS)-induced depression-like behaviors in rats and explore the underlying mechanisms by combining untargeted metabolomics and 16S rRNA sequencing analysis of brain tissue metabolites and gut microbiota. Gut microbiota analysis revealed that at the phylum level, quercetin reduced Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio and enhanced Cyanobacteria. At the genus level, quercetin downregulated 6 and upregulated 14 bacterial species. Metabolomics analysis revealed that quercetin regulated multiple metabolic pathways, including glycolysis/gluconeogenesis, sphingolipid metabolism, the pentose phosphate pathway, and coenzyme A biosynthesis. This modulation leads to improvements in depression-like phenotypes, anxiety-like phenotypes, and cognitive function, highlighting the therapeutic potential of quercetin in treating depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Can Yan
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Integrative Medicine Research Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Palepu MSK, Gajula SNR, K M, Sonti R, Dandekar MP. SCFAs Supplementation Rescues Anxiety- and Depression-like Phenotypes Generated by Fecal Engraftment of Treatment-Resistant Depression Rats. ACS Chem Neurosci 2024; 15:1010-1025. [PMID: 38382546 DOI: 10.1021/acschemneuro.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Malleshwari K
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
19
|
Wang T, Lv L, Feng H, Gu W. Unlocking the Potential: Quercetin and Its Natural Derivatives as Promising Therapeutics for Sepsis. Biomedicines 2024; 12:444. [PMID: 38398046 PMCID: PMC10887054 DOI: 10.3390/biomedicines12020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by an uncontrolled inflammatory response, which can seriously endanger life. Currently, there is still a shortage of specific therapeutic drugs. Quercetin and its natural derivatives have received a lot of attention recently for their potential in treating sepsis. Here, we provide a comprehensive summary of the recent research progress on quercetin and its derivatives, with a focus on their specific mechanisms of antioxidation and anti-inflammation. To obtain the necessary information, we conducted a search in the PubMed, Web of Science, EBSCO, and Cochrane library databases using the keywords sepsis, anti-inflammatory, antioxidant, anti-infection, quercetin, and its natural derivatives to identify relevant research from 6315 articles published in the last five years. At present, quercetin and its 11 derivatives have been intensively studied. They primarily exert their antioxidation and anti-inflammation effects through the PI3K/AKT/NF-κB, Nrf2/ARE, and MAPK pathways. The feasibility of these compounds in experimental models and clinical application were also discussed. In conclusion, quercetin and its natural derivatives have good application potential in the treatment of sepsis.
Collapse
Affiliation(s)
- Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Hui Feng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Alcázar Magaña A, Vaswani A, Brown KS, Jiang Y, Alam MN, Caruso M, Lak P, Cheong P, Gray NE, Quinn JF, Soumyanath A, Stevens JF, Maier CS. Integrating High-Resolution Mass Spectral Data, Bioassays and Computational Models to Annotate Bioactives in Botanical Extracts: Case Study Analysis of C. asiatica Extract Associates Dicaffeoylquinic Acids with Protection against Amyloid-β Toxicity. Molecules 2024; 29:838. [PMID: 38398590 PMCID: PMC10892090 DOI: 10.3390/molecules29040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aβ cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid β-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aβ-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashish Vaswani
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Kevin S. Brown
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th Street, Corvallis, OR 97331, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA;
| | - Md Nure Alam
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Paul Cheong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
| | - Nora E. Gray
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (M.C.); (J.F.Q.)
| | - Jan F. Stevens
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (A.V.); (M.N.A.); (P.L.); (P.C.)
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (N.E.G.); (A.S.); (J.F.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Jia K, Li C, Xu M, Dai G, Zhou J, Chen B, Zou J, Li J, Zhang Q, Ju W. Exploring the mechanism of Si-Ni-San against depression by UPLC-Q-TOF-MS/MS integrated with network pharmacology: experimental research. Ann Med Surg (Lond) 2024; 86:172-189. [PMID: 38222693 PMCID: PMC10783272 DOI: 10.1097/ms9.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 01/16/2024] Open
Abstract
Background Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.
Collapse
Affiliation(s)
- Keke Jia
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
- Department of Clinical Pharmacology
| | | | | | | | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Biqing Chen
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | | | - Jia Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | - Qingyu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | | |
Collapse
|
22
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
23
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
24
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
26
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
27
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
28
|
Hayashi Y, Hyodo F, Tana, Nakagawa K, Ishihara T, Matsuo M, Shimohata T, Nishihira J, Kobori M, Nakagawa T. Continuous intake of quercetin-rich onion powder may improve emotion but not regional cerebral blood flow in subjects with cognitive impairment. Heliyon 2023; 9:e18401. [PMID: 37533986 PMCID: PMC10391933 DOI: 10.1016/j.heliyon.2023.e18401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Depression in later life is associated with dementia. Changes in motivated behavior are an important mechanism contributing to dysfunctional cognitive control in depression. Although continuous intake of quercetin-rich onion suppresses cognitive decline in aged people by improving their emotional condition, the effect of quercetin-rich onion on emotional condition in people living with cognitive impairment remains unclear. In this randomized, double-blind, placebo-controlled study of subjects with cognitive impairment, we found that subjects wrote more adjectives and adverbs per sentence on the Mini-Mental State Examination after intake of quercetin-rich onion powder than before intake, although regional cerebral blood flow on n-isopropyl-4-[123]iodoamphetamine hydrochloride single-photon emission computed tomography was not changed. In the EPM, mice that had received a quercetin-supplemented chow diet made a significantly increased number of exploratory head dips from the open arms of the maze. Moreover, the 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl decay rate, reflecting redox activity, was increased in mice fed a quercetin-added diet. These results indicate that quercetin-rich onion may affect motivated behavior in subjects with cognitive impairment, for whom quercetin intake may preserve redox homeostasis in the brain.
Collapse
Affiliation(s)
- Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Institute for Advanced Study Gifu University, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Nursing, University of Tokyo Health Science, Tokyo, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Masuko Kobori
- Institute of Food Research, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
29
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
30
|
Gamage E, Orr R, Travica N, Lane MM, Jacka F, Dissanayaka T, Kim JH, Grosso G, Godos J, Marx W. Polyphenols as novel interventions for depression: exploring the efficacy, mechanisms of action, and implications for future research. Neurosci Biobehav Rev 2023; 151:105225. [PMID: 37164045 DOI: 10.1016/j.neubiorev.2023.105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Numerous animal and human studies have assessed the relationship between polyphenols and outcomes related to depression. However, no comprehensive synthesis of the main findings has been conducted. The aim of this manuscript was to systematically review the available evidence from animal and human studies on the association and the effects of dietary polyphenols on depression and provide recommendations for future research. We based our review on 163 preclinical animal, 16 observational and 44 intervention articles assessing the relationship between polyphenols and outcomes related to depression. Most animal studies demonstrated that exposure to polyphenols alleviated behaviours reported to be associated with depression. However, human studies are less clear, with some studies reporting and inverse relationship between the intake of some polyphenols, and polyphenol rich foods and depression risk and symptoms, while others reporting no association or effect. Hence, while there has been extensive research conducted in animals and there is some supporting evidence in humans, further human studies are required, particularly in younger and clinical populations.
Collapse
Affiliation(s)
- Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Rebecca Orr
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Melissa M Lane
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Thusharika Dissanayaka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Jee H Kim
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
31
|
Satti S, Palepu MSK, Singh AA, Jaiswal Y, Dash SP, Gajula SNR, Chaganti S, Samanthula G, Sonti R, Dandekar MP. Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats. Neurochem Int 2023; 163:105483. [PMID: 36641109 DOI: 10.1016/j.neuint.2023.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1β, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.
Collapse
Affiliation(s)
- Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India.
| |
Collapse
|
32
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
33
|
Wang Z, Cheng YT, Lu Y, Sun GQ, Pei L. Baicalin Ameliorates Corticosterone-Induced Depression by Promoting Neurodevelopment of Hippocampal via mTOR/GSK3 β Pathway. Chin J Integr Med 2023; 29:405-412. [PMID: 36607586 DOI: 10.1007/s11655-022-3590-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin. METHODS Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively. RESULTS Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3 β (GSK3 β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05). CONCLUSION Baicalin can promote the development of hippocampal neurons via mTOR/GSK3 β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.
Collapse
Affiliation(s)
- Zhe Wang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ya-Ting Cheng
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ye Lu
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, 050031, China
| | - Guo-Qiang Sun
- Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, 050031, China
| | - Lin Pei
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China. .,Hebei Province Academy of Chinese Medicine Sciences, Shijiazhuang, 050031, China.
| |
Collapse
|
34
|
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, Jha SK, Kumar D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 2023; 144:104955. [PMID: 36395983 DOI: 10.1016/j.neubiorev.2022.104955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
Quercetin is a naturally occurring bioactive flavonoid abundant in many plants and fruits. Quercetin and its derivatives have shown an array of pharmacological activities in preclinical tests against various illnesses and ailments. Owing to its protective role against oxidative stress and neuroinflammation, quercetin is a possible therapeutic choice for the treatment of neurological disorders. Quercetin and its derivatives can modulate a variety of signal transductions, including neuroreceptor, neuroinflammatory receptor, and redox signaling events. The research on quercetin and its derivatives in neurology-related illnesses mainly focused on the targets, such as redox stress, neuroinflammation, and signaling pathways; however, the function of quercetin and its derivatives on specific molecular targets, such as nuclear receptors and proinflammatory mediators are yet to be explored. Findings showed that various molecular targets of quercetin and its derivatives have therapeutic potential against psychological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Saniya Arfin
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Dhruv Kumar
- School of Health sciences & Technology, UPES University, Dehradun, Uttarakhand, India, 248007.
| |
Collapse
|
35
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
36
|
Manosso LM, Arent CO, Borba LA, Abelaira HM, Réus GZ. Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:237-254. [PMID: 35352639 DOI: 10.2174/1570159x20666220329143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
37
|
Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis 2023; 38:195-219. [PMID: 36399239 DOI: 10.1007/s11011-022-01124-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Mohammad-Sadegh Alizadeh
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Cellular and Molecular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Leaves of Cedrela sinensis Attenuate Chronic Unpredictable Mild Stress-Induced Depression-like Behavior via Regulation of Hormonal and Inflammatory Imbalance. Antioxidants (Basel) 2022; 11:antiox11122448. [PMID: 36552656 PMCID: PMC9774296 DOI: 10.3390/antiox11122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the protective effects of ethyl acetate fraction from Cedrela sinensis (EFCS) against chronic unpredictable mild stress (CUMS)-induced behavioral dysfunction and stress response in C57BL/6 mice. The physiological compounds of EFCS were identified as rutin, isoquercitrin, ethyl gallate, quercitrin, kaempferol-3-O-rhamnoside, and ethyl digallate, using UPLC-Q-TOF/MSE. To evaluate the neuroprotective effect of EFCS, H2O2- and corticosterone-induced neuronal cell viability was conducted in human neuroblastoma MC-IXC cells. It was found that EFCS alleviated depression-like behavior by conducting the sucrose preference test (SPT), forced swimming test (FST), open field test (OFT), and tail suspension test (TST). EFCS inhibited mitochondrial dysfunction related to neuronal energy metabolism by regulating reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and ATP contents in brain tissue. In addition, the administration of EFCS regulated the stress hormones in serum. EFCS regulated stress-related indicators such as CRF, ACTH, CYP11B1, and BDNF. Moreover, EFCS downregulated the inflammatory responses and apoptosis proteins such as caspase-1, TNF-α, IL-1β, p-JNK, BAX, and p-tau in brain tissues. These results suggest that EFCS might be a potential natural plant material that alleviates CUMS-induced behavior disorder by regulating inflammation in brain tissue against CUMS-induced depression.
Collapse
|
39
|
Jiang C, Wang H, Qi J, Li J, He Q, Wang C, Gao Y. Antidepressant effects of cherry leaf decoction on a chronic unpredictable mild stress rat model based on the Glu/GABA-Gln metabolic loop. Metab Brain Dis 2022; 37:2883-2901. [PMID: 36181653 DOI: 10.1007/s11011-022-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Cherry leaves (Prunus pseudocerasus Lindl. [Rosaceae]), a traditional Chinese herbal medicine, can regulate the factors closely related to depression including inflammatory cytokines, oxidative stress and blood glucose level. However, the antidepressant effects of cherry leaves and underlying neuromodulatory mechanisms remain relatively have not been elucidated explicitly. The present study investigated the antidepressant effects of cherry leaf decoction (CLD). The underlying neuromodulatory mechanism was explored by examining the glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop. The chronic unpredictable mild stress (CUMS) rodent model was used in this study. The main flavonoids components of CLD were identified using high-performance liquid chromatography (HPLC). The antidepressant effects of CLD were assessed throughout behavioural tests including the bodyweight, sucrose preference test (SPT), forced swimming test (FPT) and tail suspension test (TST). Moreover, The baseline levels of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were quantified. The expression of proteins integrally involved in the Glu/GABA-Gln metabolic loop were observed and quantified by Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. This study found that CLD ameliorated depressive-like behaviours induced by CUMS. The increase of serum ACTH and CORT baseline levels induced by CUMS was also reversed after CLD intervention. Furthermore, CUMS reduced the expression of GAD65, GAD67, GLT-1, GS and GABAA and increased NMDAR1 levels in the rat hippocampus, which was normalized by CLD treatment. The findings demonstrated that CLD could ameliorate the depression-like behaviours induced by CUMS, potentially through the inhibition of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and the regulation of Glu/GABA-Gln metabolic loop.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hua Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jiaying Qi
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jinghan Li
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Qianqian He
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Chaonan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
- Hebei Key Laboratory of Chinese Medicine Research On Cardio-Cerebrovascular Disease, Shijiazhuang, 050200, Hebei, People's Republic of China.
| |
Collapse
|
40
|
Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut-Brain Axis. Int J Mol Sci 2022; 23:ijms232314968. [PMID: 36499295 PMCID: PMC9737781 DOI: 10.3390/ijms232314968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Modern neurological approaches enable detailed studies on the pathophysiology and treatment of depression. An imbalance in the microbiota-gut-brain axis contributes to the pathogenesis of depression. This extensive review aimed to elucidate the antidepressive effects of brain-derived neurotrophic factor (BDNF)-targeting therapeutic natural products and their derivatives on the gut-brain axis. This information could facilitate the development of novel antidepressant drugs. BDNF is crucial for neuronal genesis, growth, differentiation, survival, plasticity, and synaptic transmission. Signaling via BDNF and its receptor tropomyosin receptor kinase B (TrkB) plays a vital role in the etiopathogenesis of depression and the therapeutic mechanism of antidepressants. This comprehensive review provides information to researchers and scientists for the identification of novel therapeutic approaches for neuropsychiatric disorders, especially depression and stress. Future research should aim to determine the possible causative role of BDNF-TrkB in the gut-brain axis in depression, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
|
41
|
Dl-3-n-butylphthalide prevents chronic restraint stress-induced depression-like behaviors and cognitive impairment via regulating CaMKII/CREB/BDNF signaling pathway in hippocampus. Neuroreport 2022; 33:597-603. [DOI: 10.1097/wnr.0000000000001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Lin L, Zhang J, Dai X, Xiao N, Ye Q, Chen X. A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice. Brain Sci 2022; 12:brainsci12081081. [PMID: 36009144 PMCID: PMC9405600 DOI: 10.3390/brainsci12081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain.
Collapse
Affiliation(s)
- Lanyan Lin
- Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaoman Dai
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Nai’an Xiao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Qinyong Ye
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
- Correspondence: ; Tel.: +86-591-8333-3995; Fax: +86-591-8337-0393
| |
Collapse
|
43
|
Zubillaga M, Rosa D, Astiz M, Tricerri MA, Arnal N. Effect of Sublethal Copper Overload on Cholesterol De Novo Synthesis in Undifferentiated Neuronal Cells. ACS OMEGA 2022; 7:25022-25030. [PMID: 35910134 PMCID: PMC9330139 DOI: 10.1021/acsomega.2c00703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although copper (Cu) is an essential trace metal for cells, it can induce harmful effects as it participates in the Fenton reaction. Involuntary exposure to Cu overload is much more common than expected and has been linked with neurodegeneration, particularly with Alzheimer's disease (AD) evidenced by a positive correlation between free Cu in plasma and the severity of the disease. It has been suggested that Cu imbalance alters cholesterol (Chol) homeostasis and that high membrane Chol promotes the amyloidogenic processing of the amyloid precursor protein (APP) secreting the β-amyloid (Aβ) peptide. Despite the wide knowledge on the effects of Cu in mature brain metabolism, the consequence of its overload on immature neurons remains unknown. Therefore, we used an undifferentiated human neuroblastoma cell line (SH-SY5Y) to analyze the effect of sublethal concentrations of Cu on 1- de novo Chol synthesis and membrane distribution; 2-APP levels in cells and its distribution in membrane rafts; 3-the levels of Aβ in the culture medium. Our results demonstrated that Cu increases reactive oxygen species (ROS) and favors Chol de novo synthesis in both ROS-dependent and independent manners. Also, at least part of these effects was due to the activation of 3-hydroxy-3-methyl glutaryl CoA reductase (HMGCR). In addition, Cu increases the Chol/PL ratio in the cellular membranes, specifically Chol content in membrane rafts. We found no changes in total APP cell levels; however, its presence in membrane rafts increases with the consequent increase of Aβ in the culture medium. We conclude that Cu overload favors Chol de novo synthesis in both ROS-dependent and independent manners, being at least in part, responsible for the high Chol levels found in the cell membrane and membrane rafts. These may promote the redistribution of APP into the rafts, favoring the amyloidogenic processing of this protein and increasing the levels of Aβ.
Collapse
Affiliation(s)
- Marlene Zubillaga
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Diana Rosa
- Laboratorio
de Nutrición Mineral, Fac. Cs Veterinarias, UNLP (Universidad Nacional de La Plata). Calle 60 CP 1900 La Plata, Argentina
| | - Mariana Astiz
- Institute
of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Strasse, 23562 Lübeck, Germany
| | - M. Alejandra Tricerri
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Nathalie Arnal
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| |
Collapse
|
44
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
45
|
Wang B, Teng Y, Li Y, Lai S, Wu Y, Chen S, Li T, Han X, Zhou H, Wang Y, Lu Z, Li H, Ding Y, Ma L, Zhao M, Wang X. Evidence and Characteristics of Traditional Chinese Medicine for Coronary Heart Disease Patients With Anxiety or Depression: A Meta-Analysis and Systematic Review. Front Pharmacol 2022; 13:854292. [PMID: 35600859 PMCID: PMC9117623 DOI: 10.3389/fphar.2022.854292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: The objective of this study was to assess the efficacy and potential mechanisms of Chinese herbal medicine (CHM) for treating coronary heart disease (CHD) patients with anxiety or depression.Methods: A systematic literature search was performed. Screening studies, extracting data, and assessing article quality were carried out independently by two researchers. The active ingredients of CHM for the treatment of CHD with anxiety or depression were analyzed by the network pharmacology, and the main potential mechanisms were summarized by the database of Web of Science.Results: A total of 32 studies were included. The results showed that compared with the blank control groups, CHM was more beneficial in treating anxiety or depression in patients with CHD [anxiety: OR = 3.22, 95% CI (1.94, 5.35), p < 0.00001, I2 = 0%; depression: OR = 3.27, 95% CI (1.67, 6.40), p = 0.0005, I2 = 0%], and the efficacy of CHM was not inferior to that of Western medicine (WM) [anxiety: OR = 1.58, 95%CI (0.39, 6.35), p = 0.52, I2 = 67%; depression: OR = 1.97, 95%CI (0.73, 5.28), p = 0.18, I2 = 33%,]. Additionally, CHM also showed a significant advantage in improving angina stability (AS) in CHD patients with anxiety or depression compared with blank groups [anxiety: SMD = 0.55, 95%CI (0.32, 0.79), p < 0.00001, I2 = 0%; depression: p = 0.004] and WM groups [anxiety: SMD = 1.14, 95%CI (0.80, 1.47), p < 0.00001, I2 = 0%; depression: SMD = 12.15, 95%CI (6.07, 18.23), p < 0.0001, I2 = 0%]. Angina frequency (AF) and electrocardiogram (ECG) analysis after using CHM demonstrated similar trends. Based on the network pharmacology, quercetin, kaempferol, luteolin, beta-sitosterol, puerarin, stigmasterol, isorhamnetin, baicalein, tanshinone IIa, and nobiletin were most closely and simultaneously related to the pathological targets of CHD, anxiety, and depression. The main underlying mechanisms might involve anti-damage/apoptosis, anti-inflammation, antioxidative stress, and maintaining neurotransmitter homeostasis.Conclusion: CHM exhibited an obvious efficacy in treating CHD patients with anxiety or depression, especially for improving the symptom of angina pectoris. The most active compounds of CHM could simultaneously act on the pathological targets of CHD, anxiety, and depression. Multiple effective components and multiple targets were the advantages of CHM compared with WM.
Collapse
Affiliation(s)
- Baofu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sijia Lai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hufang Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziwen Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yukun Ding
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Ma
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Cardiovascular Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Mingjing Zhao, ; Xian Wang,
| | - Xian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute of Cardiovascular Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Mingjing Zhao, ; Xian Wang,
| |
Collapse
|
46
|
A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life (Basel) 2022; 12:life12040591. [PMID: 35455082 PMCID: PMC9027262 DOI: 10.3390/life12040591] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Quercetin is one of the most common, naturally occurring flavonoids, structurally classified to the flavonol subfamily. This compound, found in many edible and medicinal plants either as a free or glycosidated form, has been scientifically exploited for many years, and one could hardly expect it could be a hero of some additional story. Commonly recognized as an anti-inflammatory agent, quercetin not only limits capillary vessel permeability by inhibiting hyaluronidase but also blocks cyclooxygenases and lipoxygenases. As a typical flavonoid, it is also known for its antioxidant effect, which was confirmed by many in vitro and in vivo studies. Throughout the years, numerous other activities were reported for quercetin, including antidiabetic, anti-proliferative, or anti-viral. Of note, recent data have revealed its potential role as a therapeutic agent for several central nervous system disorders. This review provides an overview of available experimental data on quercetin and its complexes with respect to central nervous system diseases, with a main focus on some aspects that were not discussed previously, such as anti-anxiolytic effects, anti-Huntington’s disease activity, or therapeutic potential in brain cancer. Moreover, quercetin’s protective role in some of these diseases is discussed, especially as an anti-neuroinflammatory agent. Bearing in mind the poor bioavailability of this compound, possible options that would enhance its delivery to the site of action are also presented.
Collapse
|
47
|
Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Front Pharmacol 2022; 13:865376. [PMID: 35462940 PMCID: PMC9024056 DOI: 10.3389/fphar.2022.865376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a global health problem with growing prevalence rates and serious impacts on the daily life of patients. However, the side effects of currently used antidepressants greatly reduce the compliance of patients. Quercetin is a flavonol present in fruits, vegetables, and Traditional Chinese medicine (TCM) that has been proved to have various pharmacological effects such as anti-depressant, anti-cancer, antibacterial, antioxidant, anti-inflammatory, and neuroprotective. This review summarizes the evidence for the pharmacological application of quercetin to treat depression. We clarified the mechanisms of quercetin regulating the levels of neurotransmitters, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and reducing inflammatory states and anti-oxidative stress. We also summarized the antidepressant effects of some quercetin glycoside derivatives to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Dong,
| |
Collapse
|
48
|
Wang Z, Cheng Y, Lu Y, Sun G, Pei L. Baicalin coadministration with lithium chloride enhanced neurogenesis via GSK3β pathway in corticosterone induced PC-12 cells. Biol Pharm Bull 2022; 45:605-613. [PMID: 35296580 DOI: 10.1248/bpb.b21-01046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating studies suggest that hippocampal neurogenesis plays a crucial role in the pathological mechanism of depression. As a classic antidepressant, lithium chloride can play an antidepressant role by inhibiting GSK3β and promoting neurogenesis. Correspondingly, baicalin is a compound extracted from natural plants, which shows potential antidepressant effect, however, whether baicalin exerts antidepressant effects by promoting neurogenesis still needs further investigation. In the current study, we established an in vitro depression model through corticosterone induced PC-12 cells, and explored the potential mechanism of baicalin's antidepressant effect by comparing it with lithium chloride alone and the coadministration with lithium chloride. We used CCK-8 assay, EdU staining and cell cycle analysis to evaluate the state of cell survival and cell proliferation. The protein expression levels of neurodevelopmental related factors DCX, BDNF, and the GSK3β pathway-related proteins and mRNA were detected by Western blot and Real-time PCR. The results showed that baicalin could decrease the expression level of GSK3β, while upregulate the expression level of DCX, BDNF, Cyclin D1-CDK4/6, thus promoted cell proliferation and survival in CORT induced PC-12 cells. Moreover, this effect was enhanced when baicalin and lithium chloride were coadministration. Taking the above results together, we conclude that baicalin can promote the proliferation and development of PC-12 cells by regulating GSK3β pathway, so as to reverse the depressive-like pathological changes induced by corticosterone.
Collapse
Affiliation(s)
- Zhe Wang
- Hebei University of Chinese Medicine
| | | | - Ye Lu
- Hebei Province Academy of Chinese Medicine Sciences
| | - Guoqiang Sun
- Hebei Province Academy of Chinese Medicine Sciences
| | - Lin Pei
- Hebei University of Chinese Medicine.,Hebei Province Academy of Chinese Medicine Sciences
| |
Collapse
|
49
|
Zhao K, Yao M, Zhang X, Xu F, Shao X, Wei Y, Wang H. Flavonoids and intestinal microbes interact to alleviate depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1311-1318. [PMID: 34625972 DOI: 10.1002/jsfa.11578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids have a variety of biological activities that are beneficial to human health. However, owing to low bioavailability, most flavonoids exert beneficial effects in the intestine through metabolism by the flora into a variety of structurally different derivatives. Also, flavonoids can modulate the type and structure of intestinal microorganisms to improve human health. It has been reported that the development of depression is accompanied by changes in the type and number of intestinal microorganisms, and gut microbes can significantly improve depressive symptoms through the gut-brain axis. Therefore, the interaction between flavonoids and intestinal microbes to alleviate depression is discussed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Mei Yao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Feng Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Yingying Wei
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Hongfei Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
50
|
Zhang C, Zhu L, Lu S, Li M, Bai M, Li Y, Xu E. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice. Brain Res 2022; 1783:147844. [PMID: 35218705 DOI: 10.1016/j.brainres.2022.147844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Previous studies reported the neuroprotective effects of formononetin (FMN), however, whether it has antidepressant-like effects have not been reported. To evaluate the antidepressant-like effects of FMN, a mice model of depression was established by chronic corticosterone (CORT) injection. The serum corticosterone levels and hippocampal protein expression were detected by ELISA and Western blot. Nissl staining was used to observe the damage of hippocampal neurons and immunofluorescence was used to observe the neurogenesis in the hippocampus. Our results showed that FMN significantly increased the sucrose preference and shorten the immobility time in the forced swimming test in CORT-treated mice. Moreover, FMN reduced the serum corticosterone levels, upregulated the protein expression levels of the glucocorticoid receptor (GR), and brain-derived neurotrophic factor (BDNF) in the hippocampus, protected against the CORT-induced neuronal impairment, and promoted the neurogenesis in the hippocampus. Taken together, the present study was the first to demonstrate the antidepressant-like effects of FMN in the CORT-induced mice model of depression, which may contribute to the discovery of a new candidate for treating depression.
Collapse
Affiliation(s)
- Changjing Zhang
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Leilei Zhu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Shuaifei Lu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Mengyuan Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Ming Bai
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Yucheng Li
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Erping Xu
- Henan Key Laboratory for Modern Research on Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|