1
|
Takayama K, Mori K, Sasaki Y, Taguchi A, Taniguchi A, Miyazato M, Hayashi Y. Discovery of a Pentapeptide Antagonist to Human Neuromedin U Receptor 1. ACS Med Chem Lett 2024; 15:885-891. [PMID: 38894927 PMCID: PMC11181499 DOI: 10.1021/acsmedchemlett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Neuromedin U (NMU) activates two types of receptors (NMUR1 and NMUR2), and the former is mainly expressed in the peripheral tissues, including the intestinal tract and lung tissues. Since NMUR1 contributes to the promotion of type 2 inflammation in these tissues, it is a potential target to suppress inflammatory responses. However, promising antagonist candidates for human NMUR1 have not yet been developed. Here we successfully identified pentapeptide antagonist 9a through a structure-activity relationship study based on hexapeptide lead 1. Its antagonistic activity against human NMUR1 was 10 times greater than that against NMUR2. This is a breakthrough in the development of NMUR1-selective antagonists. Although 9a was relatively stable in the plasma, the C-terminal amide was rapidly degraded to the carboxylic acid by the serum endopeptidase thrombin, which acted as an amidase. This basic information would aid in sample handling in future biological evaluations.
Collapse
Affiliation(s)
- Kentaro Takayama
- Laboratory
of Environmental Biochemistry, Kyoto Pharmaceutical
University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Mori
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yu Sasaki
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mikiya Miyazato
- Department of Cardiac
Physiology and Department of Biochemistry, National Cerebral
and Cardiovascular Center Research
Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
2
|
Narumi T, Toyama D, Fujimoto J, Kyan R, Sato K, Mori K, Pearson JT, Mase N, Takayama K. Amide-to-chloroalkene substitution for overcoming intramolecular acyl transfer challenges in hexapeptidic neuromedin U receptor 2 agonists. Chem Commun (Camb) 2024; 60:3563-3566. [PMID: 38465405 DOI: 10.1039/d3cc06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
CPN-116 is a peptidic agonist that activates human neuromedin U receptor type 2 (NMUR2) but suffers from chemical instability due to inherent backbone isomerization on the Dap residue. To address this, a Leu-Dap-type (Z)-chloroalkene dipeptide isostere was synthesized diastereoselectively as a surrogate of the Leu-Dap peptide bond to develop a (Z)-chloroalkene analogue of CPN-116. The synthesized CPN-116 analogue is stable in 1.0 M phosphate buffer (pH 7.4) without backbone isomerization and can activate NMUR2 with similar potency to CPN-116 at nM concentrations (EC50 = 1.0 nM).
Collapse
Affiliation(s)
- Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daichi Toyama
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
| | - Ryuji Kyan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kenji Mori
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan.
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka 432-8561, Japan
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
3
|
Keskin M, Avul S, Beyaz A, Koca N. The association of Neuromedin U levels and non-alcoholic fatty liver disease: A comparative analysis. Heliyon 2024; 10:e27291. [PMID: 38486771 PMCID: PMC10937677 DOI: 10.1016/j.heliyon.2024.e27291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This comprehensive study delves into the potential link between Neuromedin U (NmU) serum levels and the development of non-alcoholic fatty liver disease (NAFLD), a condition of increasing global prevalence and significant public health concern. The research provides a nuanced understanding of the disease's etiology by examining a cohort of 112 participants, including individuals with and without NAFLD. The study meticulously considers a spectrum of variables such as demographic factors, body composition metrics, and blood parameters. Advanced diagnostic tools like Fibroscan® are employed to ascertain NAFLD presence, ensuring accurate and reliable results. The investigation reveals a noteworthy correlation between NAFLD and several risk factors, notably obesity, increased waist and neck circumferences, hypertriglyceridemia, and insulin resistance. These findings underscore the multifactorial nature of NAFLD and its intricate connection with metabolic syndromes. Intriguingly, the study observes lower NmU levels in individuals diagnosed with NAFLD. However, the role of NmU as an independent risk factor for NAFLD remains inconclusive, warranting further investigation. Although triglyceride level was observed to be an independent risk factor for NAFLD, this relationship was not associated with NmU. This research contributes significantly to the existing knowledge on NAFLD, highlighting the disease's complexity and the interplay of various risk factors. It also opens up new avenues for future research, particularly in exploring the role of NmU within the metabolic pathways associated with NAFLD. The insights gained from this study could guide the development of novel diagnostic and therapeutic strategies for NAFLD, addressing a crucial need in contemporary healthcare. In conclusion, the findings of this study not only enhance the understanding of NAFLD's pathophysiology but also emphasize the importance of comprehensive risk factor analysis in the management and prevention of this growing health concern.
Collapse
Affiliation(s)
- Murat Keskin
- Department of Gastroenterology, Medicana Private Hospital, Bursa, Turkey
| | - Sercan Avul
- Department of Internal Medicine, Birecik State Hospital, Şanlıurfa, Turkey
| | - Aylin Beyaz
- Department of Biochemistry, Kagizman State Hospital, Kars, Turkey
| | - Nizameddin Koca
- Department of Internal Medicine, University of Health Sciences, Bursa Faculty of Medicine, Bursa City Training & Research Hospital, Bursa, Turkey
| |
Collapse
|
4
|
Nomoto A, Suzuki Y, Morito K, Nagasawa K, Takayama K. Suppressive Effects of Neuromedin U Receptor 2-Selective Peptide Agonists on Appetite and Prolactin Secretion in Mice. ACS Med Chem Lett 2024; 15:376-380. [PMID: 38505846 PMCID: PMC10945547 DOI: 10.1021/acsmedchemlett.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Neuromedin U receptor 2 (NMUR2), which is expressed in the central nervous system (CNS) including the hypothalamus, has been noted as a therapeutic target against obesity. We previously reported that intranasal administration of CPN-219, a NMUR2-selective hexapeptide agonist, suppresses body weight gain in mice; however, there is no detailed information regarding its CNS effects. Recently, in addition to appetite suppression, stress responses and regulation of prolactin (PRL) secretion have also attracted attention. NMUR2 expressed in the hypothalamic tuberoinfundibular dopaminergic neurons has emerged as an alternative target for treating hyperprolactinemia. Here, CPN-219 decreased food intake up to 24 h after administration at a dose of 200 nmol, resulting in body weight gain suppression, although grooming and anxiety-like behaviors were transiently induced. Interestingly, the restraint stress-induced increase in plasma PRL levels was significantly suppressed at a lower dose of 20 nmol, indicating the potential for drug development as an anti-PRL agent of NMUR2-selective agonists.
Collapse
Affiliation(s)
- Asuka Nomoto
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Yui Suzuki
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| |
Collapse
|
5
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
6
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
7
|
Yokogi K, Goto Y, Otsuka M, Ojima F, Kobayashi T, Tsuchiba Y, Takeuchi Y, Namba M, Kohno M, Tetsuka M, Takeuchi S, Matsuyama M, Aizawa S. Neuromedin U-deficient rats do not lose body weight or food intake. Sci Rep 2022; 12:17472. [PMID: 36302800 PMCID: PMC9614009 DOI: 10.1038/s41598-022-21764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023] Open
Abstract
Studies in genetically modified mice establish that essential roles of endogenous neuromedin U (NMU) are anorexigenic function and metabolic regulation, indicating that NMU is expected to be a potential target for anti-obesity agents. However, in central administration experiments in rats, inconsistent results have been obtained, and the essential role of NMU energy metabolism in rats remain unclear. This study aims to elucidate the role of endogenous NMU in rats. We generated NMU knockout (KO) rats that unexpectedly showed no difference in body weight, adiposity, circulating metabolic markers, body temperature, locomotor activity, and food consumption in both normal and high fat chow feeding. Furthermore, unlike reported in mice, expressions of Nmu and NMU receptor type 2 (Nmur2) mRNA were hardly detectable in the rat hypothalamic nuclei regulating feeding and energy metabolism, including the arcuate nucleus and paraventricular nucleus, while Nmu was expressed in pars tuberalis and Nmur2 was expressed in the ependymal cell layer of the third ventricle. These results indicate that the species-specific expression pattern of Nmu and Nmur2 may allow NMU to have distinct functions across species, and that endogenous NMU does not function as an anorexigenic hormone in rats.
Collapse
Affiliation(s)
- Kyoka Yokogi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Yuki Goto
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Mai Otsuka
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Fumiya Ojima
- grid.415086.e0000 0001 1014 2000Department of Natural Sciences and Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Tomoe Kobayashi
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Yukina Tsuchiba
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Yu Takeuchi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Masumi Namba
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Mayumi Kohno
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Minami Tetsuka
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Sakae Takeuchi
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| | - Makoto Matsuyama
- grid.415729.c0000 0004 0377 284XDivision of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Sayaka Aizawa
- grid.261356.50000 0001 1302 4472Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama 700-8530 Japan
| |
Collapse
|
8
|
Takayama K. Peptide Tool-Driven Functional Elucidation of Biomolecules Related to Endocrine System and Metabolism. Chem Pharm Bull (Tokyo) 2022; 70:413-419. [PMID: 35650039 DOI: 10.1248/cpb.c22-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enhancement of basic research based on biomolecule-derived peptides has the potential to elucidate their biological function and lead to the development of new drugs. In this review, two biomolecules, namely "neuromedin U (NMU)" and "myostatin," are discussed. NMU, a neuropeptide first isolated from the porcine spinal cord, non-selectively activates two types of receptors (NMUR1 and NMUR2) and displays a variety of physiological actions, including appetite suppression. The development of receptor-selective regulators helps elucidate each receptor's detailed biological roles. A structure-activity relationship (SAR) study was conducted to achieve this purpose using the amidated C-terminal core structure of NMU for receptor activation. Through obtaining receptor-selective hexapeptide agonists, molecular functions of the core structure were clarified. Myostatin is a negative regulator of skeletal muscle growth and has attracted attention as a target for treating atrophic muscle disorders. Although the protein inhibitors, such as antibodies and receptor-decoys have been developed, the inhibition by smaller molecules, including peptides, is less advanced. Focusing on the inactivation mechanism by prodomain proteins derived from myostatin-precursor, a first mid-sized α-helical myostatin-inhibitory peptide (23-mer) was identified from the mouse sequence. The detailed SAR study based on this peptide afforded the structural requirements for effective inhibition. The subsequent computer simulation proposed the docking mode at the activin type I receptor binding site of myostatin. The resulting development of potent inhibitors suggested the existence of a more appropriate binding mode linked to their β-sheet forming properties, suggesting that further investigations might be needed.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
9
|
A nutrient-responsive hormonal circuit mediates an inter-tissue program regulating metabolic homeostasis in adult Drosophila. Nat Commun 2021; 12:5178. [PMID: 34462441 PMCID: PMC8405823 DOI: 10.1038/s41467-021-25445-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.
Collapse
|
10
|
Neuromedin U, a Key Molecule in Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22084238. [PMID: 33921859 PMCID: PMC8074168 DOI: 10.3390/ijms22084238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is now a public health concern. The leading cause of obesity is an energy imbalance between ingested and expended calories. The mechanisms of feeding behavior and energy metabolism are regulated by a complex of various kinds of molecules, including anorexigenic and orexigenic neuropeptides. One of these neuropeptides, neuromedin U (NMU), was isolated in the 1980s, and its specific receptors, NMUR1 and NMUR2, were defined in 2000. A series of subsequent studies has revealed many of the physiological roles of the NMU system, including in feeding behavior, energy expenditure, stress responses, circadian rhythmicity, and inflammation. Particularly over the past decades, many reports have indicated that the NMU system plays an essential and direct role in regulating body weight, feeding behavior, energy metabolism, and insulin secretion, which are tightly linked to obesity pathophysiology. Furthermore, another ligand of NMU receptors, NMS (neuromedin S), was identified in 2005. NMS has physiological functions similar to those of NMU. This review summarizes recent observations of the NMU system in relation to the pathophysiology of obesity in both the central nervous systems and the peripheral tissues.
Collapse
|
11
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|
12
|
Tanaka Y, Taguchi S, Maruyama K, Mori K, Miyazato M, Kangawa K, Murakami N, Nakahara K. Comparison of physiological functions between neuromedin U-related peptide and neuromedin S-related peptide in the rat central nervous system. Biochem Biophys Res Commun 2020; 534:653-658. [PMID: 33228964 DOI: 10.1016/j.bbrc.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear. Therefore, the aim of this study was to characterize differences in the regions of the rat brain targeted by the NMU/NMS peptide family, including NURP and NSRP, and their physiological functions. First, we explored the regions of c-Fos expression after intracerebroventricular (i.c.v.) injection of NURP and NSRP and found that these were fewer than after i.c.v. injection of NMU and NMS in the hypothalamus, possibly because NURP and NSRP cannot activate NMU/NMS receptors. In the ventral subiculum, which is one region of the hippocampus, c-Fos expression was evident only after i.c.v. injection of NURP. We also examined the effects of NSRP on food intake, body temperature and locomotor activity. Like NURP, NSRP increased both body temperature and locomotor activity, but not food intake, indicating that NSRP is also a functional peptide. However, these effects of NSRP were distinctly weaker than those of NURP. These findings suggest differences in the affinity of NURP and/or NSRP for specific receptors, or in their respective biological activities.
Collapse
Affiliation(s)
- Yukie Tanaka
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Shimon Taguchi
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan.
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Noboru Murakami
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
13
|
Design and synthesis of peptidic partial agonists of human neuromedin U receptor 1 with enhanced serum stability. Bioorg Med Chem Lett 2020; 30:127436. [PMID: 32721452 DOI: 10.1016/j.bmcl.2020.127436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022]
Abstract
Neuromedin U (NMU) activates two receptors (NMUR1 and NMUR2) and is a promising candidate for development of drugs to combat obesity. Previously, we obtained hexapeptides as selective full NMUR agonists. Development of a partial agonist which mildly activates receptors is an effective strategy which lead to an understanding of the functions of NMU receptors. In 2014, we reported hexapeptide 3 (CPN-124) as an NMUR1-selective partial agonist but its selectivity and serum stability were unsatisfactory. Herein, we report the development of a hexapeptide-type partial agonist (8, CPN-223) based on a peptide (3) but with higher NMUR1-selectivity and enhanced serum stability. A structure-activity relationship study of synthetic pentapeptide derivatives suggested that a hexapeptide is a minimum structure consistent with both good NMUR1-selective agonistic activity and serum stability.
Collapse
|
14
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
15
|
Anan M, Higa R, Shikano K, Shide M, Soda A, Carrasco Apolinario ME, Mori K, Shin T, Miyazato M, Mimata H, Hikida T, Hanada T, Nakao K, Kangawa K, Hanada R. Cocaine has some effect on neuromedin U expressing neurons related to the brain reward system. Heliyon 2020; 6:e03947. [PMID: 32462086 PMCID: PMC7240118 DOI: 10.1016/j.heliyon.2020.e03947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Neuromedin U (NMU) is a bioactive neuropeptide, highly distributed in the gastrointestinal tract and the central nervous system. NMU has various physiological functions related to feeding behavior, energy metabolism, stress responses, circadian rhythmicity and inflammation. Recently, several reports indicate that the central NMU system plays an important role in the reward systems in the brain. However, the underlying molecular mechanisms are not yet fully defined. In this study, we found that some of cocaine-induced c-Fos immunoreactive cells were co-localized with NMU in the nucleus accumbens (NAc), caudate putamen (CPu), and basolateral amygdala (BLA), which are key brain regions associated with the brain reward system, in wild type mice. Whereas, a treatment with cocaine did not influence the kinetics of NMU or NMU receptors mRNA expression in these brain regions, and NMU-knockout mice did not show any higher preference for cocaine compared with their control mice. These results indicate that cocaine has some effect on NMU expressing neurons related to the brain reward system, and this suggests NMU system may have a role on the brain reward systems activated by cocaine.
Collapse
Affiliation(s)
- Madoka Anan
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryoko Higa
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masahito Shide
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Akinobu Soda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | | | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
16
|
Takayama K, Mori K, Tanaka A, Sasaki Y, Sohma Y, Taguchi A, Taniguchi A, Sakane T, Yamamoto A, Miyazato M, Minamino N, Kangawa K, Hayashi Y. A chemically stable peptide agonist to neuromedin U receptor type 2. Bioorg Med Chem 2020; 28:115454. [PMID: 32247748 DOI: 10.1016/j.bmc.2020.115454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Neuromedin U (NMU) is a peptide with appetite suppressive activity and other physiological activities via activation of the NMU receptors NMUR1 and NMUR2. In 2014, we reported the first NMUR2 selective agonist, 3-cyclohexylpropionyl-Leu-Leu-Dap-Pro-Arg-Asn-NH2 (CPN-116). However, we found that CPN-116 in phosphate buffer is unstable because of Nα-to-Nβ acyl migration at the Dap residue. In this study, the chemical stability of CPN-116 was evaluated under various conditions, and it was found to be relatively stable in buffers such as HEPES and MES. We also performed a structure-activity relationship study to obtain an NMUR2-selective agonist with improved chemical stability. Consequently, CPN-219 bearing a Dab residue in place of Dap emerged as a next-generation hexapeptidic NMUR2 agonist.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan.
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Akiko Tanaka
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Yu Sasaki
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuko Sohma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshiyasu Sakane
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
17
|
Tanaka A, Takayama K, Furubayashi T, Mori K, Takemura Y, Amano M, Maeda C, Inoue D, Kimura S, Kiriyama A, Katsumi H, Miyazato M, Kangawa K, Sakane T, Hayashi Y, Yamamoto A. Transnasal Delivery of the Peptide Agonist Specific to Neuromedin-U Receptor 2 to the Brain for the Treatment of Obesity. Mol Pharm 2019; 17:32-39. [PMID: 31765157 DOI: 10.1021/acs.molpharmaceut.9b00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obesity and metabolic syndrome are threats to the health of large population worldwide as they are associated with high mortality, mainly linked to cardiovascular diseases. Recently, CPN-116 (CPN), which is an agonist peptide specific to neuromedin-U receptor 2 (NMUR2) that is expressed predominantly in the brain, has been developed as a new therapeutic candidate for the treatment of obesity and metabolic syndrome. However, treatment with CPN poses a challenge due to the limited delivery of CPN to the brain. Recent studies have clarified that the direct anatomical connection of the nasal cavity with brain allows delivery of several drugs to the brain. In this study, we confirm the nasal cavity as a promising CPN delivery route to the brain for the treatment of obesity and metabolic syndrome. According to the pharmacokinetic study, the clearance of CPN from the blood was very rapid with a half-life of 3 min. In vitro study on its stability in the serum and cerebrospinal fluid (CSF) indicates that CPN was more stable in the CSF than in the blood. The concentration of CPN in the brain was higher after nasal administration, despite its lower concentrations in the plasma than that after intravenous administration. The study on its pharmacological potency suggests the effective suppression of increased body weight in mice in a dose-dependent manner due to the direct activation of NMUR2 by CPN. This results from the higher concentration of corticosterone in blood after nasal administration of CPN as compared to nasal application of saline. In conclusion, the above findings indicate that the nasal cavity is a promising CPN delivery route to the brain to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan.,Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kenji Mori
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Yuki Takemura
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mayumi Amano
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Chiaki Maeda
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Daisuke Inoue
- College of Pharmaceutical Sciences , Ritsumeikan University , 1-1-1 Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Akiko Kiriyama
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mikiya Miyazato
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Kenji Kangawa
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| |
Collapse
|
18
|
Takayama K. [Medicinal Chemistry Focused on Mid-sized Peptides Derived from Biomolecules]. YAKUGAKU ZASSHI 2019; 139:1377-1384. [PMID: 31685733 DOI: 10.1248/yakushi.19-00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomolecule-derived peptides are attractive research resources to develop drugs and elucidate the basic mechanisms of life phenomena. This review article focuses on two biomolecules called "neuromedin U (NMU)" and "myostatin" that are deeply involved in obesity and muscle weakness caused by modern lifestyles and aging. A structure-activity relationship (SAR) study based on a biomolecule reveals the structural features required for the biological activity and gives clues leading the drug discovery process. NMU activates two types of receptors (NMUR1 and NMUR2). NMU, which is an attractive candidate for treating obesity, displays a variety of physiological actions in addition to appetite suppression. The discovery of useful receptor-selective agonists helps in elucidating the detailed roles of the respective receptors for each action and in developing therapeutic drugs based on receptor function. Hence, SAR studies focused on the amidated C-terminal heptapeptide of NMU were carried out to obtain selective agonists. Consequently, the respective hexapeptidic NMUR1 and NMUR2 agonists CPN-267 and CPN-116 were discovered. Myostatin, an endogenous negative regulator of skeletal muscle mass, is a promising target for treating muscle atrophy disorders. Focused on the inactivation mechanism of mature myostatin by the myostatin precursor-derived prodomain, a core peptide (23-mer) for effective myostatin inhibition was identified from the mouse myostatin prodomain sequence. The SAR study based on this core peptide afforded a 25-fold more potent derivative (16-mer), which increased skeletal muscle mass and hindlimb grip strength. Therefore, this derivative could be a novel platform for a peptidic drug useful in the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Kentaro Takayama
- Departmant of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
19
|
Nakahara K, Maruyama K, Ensho T, Mori K, Miyazato M, Kangawa K, Uemura R, Sakoda H, Nakazato M, Murakami N. Neuromedin U suppresses prolactin secretion via dopamine neurons of the arcuate nucleus. Biochem Biophys Res Commun 2019; 521:521-526. [PMID: 31677791 DOI: 10.1016/j.bbrc.2019.10.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022]
Abstract
Neuromedin U (NMU) has a precursor that contains one additional peptide consisting of 33 or 36 amino acid residues. Recently, we identified this second peptide from rat brain and designated it neuromedin U precursor-related peptide (NURP), showing it to stimulate prolactin release from the pituitary when injected via the intracerebroventricular (icv) route. Here, we examined whether NMU, like NURP, also stimulates prolactin release. Unlike NURP, icv injection of NMU significantly decreased the secretion of prolactin from the pituitary. This suppression of prolactin release by NMU was observed in hyper-prolactin states such as lactation, stress, pseudopregnancy, domperidone (dopamine antagonist) administration, and icv injection of NURP. Immunohistochemical analysis revealed that icv injection of NMU induced cFos expression in dopaminergic neurons of the arcuate nucleus, but not the substantia nigra. Mice with double knockout of NMU and neuromedin S (NMS), the latter also binding to NMU receptors, showed a significant increase of the plasma prolactin level after domperidone treatment relative to wild-type mice. These results suggest that NMU and NURP may play important reciprocal roles in physiological prolactin secretion.
Collapse
Affiliation(s)
- Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Keisuke Maruyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Ryoko Uemura
- Department of Veterinary Domestic Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
20
|
Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 2019; 51:1129-1152. [DOI: 10.1007/s00726-019-02762-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
21
|
Teranishi H, Hayashi M, Higa R, Mori K, Miyazawa T, Hino J, Amano Y, Tozawa R, Ida T, Hanada T, Miyazato M, Hanada R, Kangawa K, Nakao K. Role of neuromedin U in accelerating of non-alcoholic steatohepatitis in mice. Peptides 2018; 99:134-141. [PMID: 29017855 DOI: 10.1016/j.peptides.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
Neuromedin U (NMU), a neuropeptide originally isolated from porcine spinal cord, has multiple physiological functions and is involved in obesity and inflammation. Excessive fat accumulation in the liver leads to non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is closely associated with obesity. NAFLD and NASH develop and progress via complex pathophysiological processes, and it remains unclear to what extend the NMU system contributes to the risk of obesity-related disorders such as NAFLD and NASH. Here, we demonstrate that the NMU system plays a role in NAFLD/NASH pathogenesis. In the normal mouse liver, NMU mRNA was not detectable, and expression of the mRNA encoding neuromedin U receptor 1 (NMUR1), the peripheral receptor of NMU, was low. However, the expression of both was significantly increased in the livers of NASH mice. Furthermore, overproduction of NMU induced the mouse liver by hydrodynamic injection, exacerbated NASH pathogenesis. These data indicate a novel role for the peripheral NMU system, providing new insights into the pathogenesis of NAFLD/NASH.
Collapse
Affiliation(s)
- Hitoshi Teranishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Hayashi
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryoko Higa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takashi Miyazawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuichiro Amano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Ryuichi Tozawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takanori Ida
- Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan
| | - Toshikatsu Hanada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Reiko Hanada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan.
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Takayama K, Mori K, Tanaka A, Nomura E, Sohma Y, Mori M, Taguchi A, Taniguchi A, Sakane T, Yamamoto A, Minamino N, Miyazato M, Kangawa K, Hayashi Y. Discovery of a Human Neuromedin U Receptor 1-Selective Hexapeptide Agonist with Enhanced Serum Stability. J Med Chem 2017; 60:5228-5234. [PMID: 28548497 DOI: 10.1021/acs.jmedchem.7b00694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuromedin U (NMU) activates two NMU receptors (NMUR1 and NMUR2) and is a useful antiobesity drug lead. We report discovery of a hexapeptide agonist, 2-thienylacetyl-Trp1-Phe(4-F)2-Arg3-Pro4-Arg5-Asn6-NH2 (4). However, the NMUR1 selectivity and serum stability of this agonist were unsatisfactory. Through a structure-activity relationship study focused on residue 2 of agonist 4, serum stability, and pharmacokinetic properties, we report here the discovery of a novel NMUR1 selective hexapeptide agonist 7b that suppresses body weight gain in mice.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Akiko Tanaka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Erina Nomura
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuko Sohma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Miwa Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Toshiyasu Sakane
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University , 4-19-1 Motoyamakitamachi, Higashinada, Kobe, Hyogo 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University , 5 Misasaginakauchi-cho, Yamashina, Kyoto 607-8414, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center , 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
23
|
Gianfagna F, Grippi C, Ahrens W, Bailey MES, Börnhorst C, De Henauw S, Foraita R, Koni AC, Krogh V, Mårild S, Molnár D, Moreno L, Pitsiladis Y, Russo P, Siani A, Tornaritis M, Veidebaum T, Iacoviello L. The role of neuromedin U in adiposity regulation. Haplotype analysis in European children from the IDEFICS Cohort. PLoS One 2017; 12:e0172698. [PMID: 28235053 PMCID: PMC5325300 DOI: 10.1371/journal.pone.0172698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/08/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND AIMS Neuromedin U (NMU) is a hypothalamic neuropeptide with important roles in several metabolic processes, recently suggested as potential therapeutic target for obesity. We analysed the associations between NMU gene variants and haplotypes and body mass index (BMI) in a large sample of European children. METHODS AND RESULTS From a large European multi-center study on childhood obesity, 4,528 children (2.0-9.9 years, mean age 6.0±1.8 SD; boys 52.2%) were randomly selected, stratifying by age, sex and country, and genotyped for tag single nucleotide polymorphisms (SNPs; rs6827359, T:C; rs12500837, T:C; rs9999653,C:T) of NMU gene, then haplotypes were inferred. Regression models were applied to estimate the associations between SNPs or haplotypes and BMI as well as other anthropometric measures. BMI was associated with all NMU SNPs (p<0.05). Among five haplotypes inferred, the haplotype carrying the minor alleles (CCT, frequency = 22.3%) was the only associated with lower BMI values (beta = -0.16, 95%CI:-0.28,-0.04, p = 0.006; z-score, beta = -0.08, 95%CI:-0.14,-0.01, p = 0.019) and decreased risk of overweight/obesity (OR = 0.81, 95%CI:0.68,0.97, p = 0.020) when compared to the most prevalent haplotype (codominant model). Similar significant associations were also observed using the same variables collected after two years' time (BMI, beta = -0.25, 95%CI:-0.41,-0.08, p = 0.004; z-score, beta = -0.10, 95%CI:-0.18,-0.03, p = 0.009; overweight/obesity OR = 0.81, 95%CI:0.66,0.99, p = 0.036). The association was age-dependent in girls (interaction between CCT haplotypes and age, p = 0.008), more evident between 7 and 9 years of age. The CCT haplotype was consistently associated with lower levels of fat mass, skinfold thickness, hip and arm circumferences both at T0 and at T1, after adjustment for multiple testing (FDR-adjusted p<0.05). CONCLUSIONS This study shows an association between a NMU haplotype and anthropometric indices, mainly linked to fat mass, which appears to be age- and sex-specific in children. Genetic variations within or in linkage with this haplotype should be investigated to identify functional variants responsible for the observed phenotypic variation.
Collapse
Affiliation(s)
- Francesco Gianfagna
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
- EPIMED Research Center, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
- * E-mail:
| | - Claudio Grippi
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Mathematics and Computer Science, Institute of Statistics, Bremen University, Bremen, Germany
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Claudia Börnhorst
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Stefan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Anna C. Koni
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vittorio Krogh
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Staffan Mårild
- Dept. of Paediatrics, Inst. of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Paediatrics, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Luis Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Yannis Pitsiladis
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, United Kingdom
| | - Paola Russo
- Unit of Epidemiology & Population Genetics, Institute of Food Sciences, CNR, Avellino, Italy
| | - Alfonso Siani
- Unit of Epidemiology & Population Genetics, Institute of Food Sciences, CNR, Avellino, Italy
| | | | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Licia Iacoviello
- Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
24
|
Gajjar S, Patel BM. Neuromedin: An insight into its types, receptors and therapeutic opportunities. Pharmacol Rep 2017; 69:438-447. [PMID: 31994106 DOI: 10.1016/j.pharep.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022]
Abstract
Neuropeptides are small protein used by neurons in signal communications. Neuromedin U was the first neuropeptide discovered from the porcine spinal and showed its potent constricting activities on uterus hence was entitled with neuromedin U. Following neuromedin U another of its isoform was discovered neuromedin S which was observed in suprachiasmatic nucleus hence was entitled neuromedin S. Neuromedin K and neuromedin L are of kanassin class which belong to tachykinin family. Bombesin family consists of neuromedin B and neuromedin C. All these different neuromedins have various physiological roles like constrictive effects on the smooth muscles, control of blood pressure, pain sensations, hunger, bone metastasis and release and regulation of hormones. Over the years various newer physiological roles have been observed thus opening ways for various novel therapeutic treatments. This review aims to provide an overview of important different types of neuromedin, their receptors, signal transduction mechanism and implications for various diseases.
Collapse
|
25
|
Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife 2016; 5:16799. [PMID: 27845623 PMCID: PMC5182061 DOI: 10.7554/elife.16799] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI:http://dx.doi.org/10.7554/eLife.16799.001
Collapse
Affiliation(s)
- Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Peters
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles BJ, Montz CJ, Chakravarthy S, Zimmerman S, Salehi-Ashtiani K, Vidal M, Schier AF, Prober DA. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 2016; 89:842-56. [PMID: 26889812 DOI: 10.1016/j.neuron.2016.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/16/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022]
Abstract
Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.
Collapse
Affiliation(s)
- Cindy N Chiu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric A Mosser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shijia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett J Niles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christin J Montz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sridhara Chakravarthy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Harvard University, Cambridge, MA 02138, USA.
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
27
|
Vallöf D, Vestlund J, Engel JA, Jerlhag E. The Anorexigenic Peptide Neuromedin U (NMU) Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice. PLoS One 2016; 11:e0154477. [PMID: 27139195 PMCID: PMC4854378 DOI: 10.1371/journal.pone.0154477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc) suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU). We therefore investigated the effects of intracerebroventricular (icv) administration of NMU on amphetamine’s well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP) was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv) reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence.
Collapse
Affiliation(s)
- Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Nakahara K, Akagi A, Shimizu S, Tateno S, Qattali AW, Mori K, Miyazato M, Kangawa K, Murakami N. Involvement of endogenous neuromedin U and neuromedin S in thermoregulation. Biochem Biophys Res Commun 2016; 470:930-5. [PMID: 26826380 DOI: 10.1016/j.bbrc.2016.01.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 11/25/2022]
Abstract
We investigated the possible involvement of neuromedin U (NMU) and neuromedin S (NMS) in thermoregulation in rats. Intracerebroventricular (icv) injection of NMU or NMS increased the back surface temperature (BS-T) in a dose-dependent manner during both the light and dark periods. Pre-treatment with the β3 blocker SR59230A, and the cyclooxygenase blocker indomethacin, inhibited the increase in BS-T induced by NMS. Icv injection of NMS and NMU increased the expression of mRNAs for prostaglandin E synthase and cyclooxygenase 2 (COX2) in the hypothalamus, and that of mRNA for uncoupling protein 1 (UCP1) in the brown adipose tissue. Comparison of thermogenesis in terms of body temperature under normal and cold conditions revealed that NMS-KO and double-KO mice had a significantly low BS-T during the active phase, whereas NMU-KO mice did not. Exposure to low temperature decreased the BS temperature in all KO mice, but BS-T was lower in NMS-KO and double-KO mouse than in NMU-KO mice. Calorie and oxygen consumption was also significantly lower in all KO mice than in wild-type mice during the dark period. These results suggest that NMU and NMS are involved in thermoregulation via the prostaglandin E2 and β3 adrenergic receptors, but that endogenous NMS might play a more predominant role than NMU.
Collapse
Affiliation(s)
- Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Ai Akagi
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Seiya Shimizu
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Satoshi Tateno
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Abdul Wahid Qattali
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| |
Collapse
|
29
|
Li S, Xiao L, Liu Q, Zheng B, Chen H, Liu X, Zhang Y, Lin H. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper. J Mol Endocrinol 2015; 55:95-106. [PMID: 26162607 DOI: 10.1530/jme-15-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Ling Xiao
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Qiongyu Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Binbin Zheng
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Xiaochun Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Yong Zhang
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Haoran Lin
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
30
|
Takayama K, Mori K, Sohma Y, Taketa K, Taguchi A, Yakushiji F, Minamino N, Miyazato M, Kangawa K, Hayashi Y. Discovery of potent hexapeptide agonists to human neuromedin u receptor 1 and identification of their serum metabolites. ACS Med Chem Lett 2015; 6:302-7. [PMID: 25815150 DOI: 10.1021/ml500494j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/28/2015] [Indexed: 11/30/2022] Open
Abstract
Neuromedin U (NMU) and S (NMS) display various physiological activities, including an anorexigenic effect, and share a common C-terminal heptapeptide-amide sequence that is necessary to activate two NMU receptors (NMUR1 and NMUR2). On the basis of this knowledge, we recently developed hexapeptide agonists 2 and 3, which are highly selective to human NMUR1 and NMUR2, respectively. However, the agonists are still less potent than the endogenous ligand, hNMU. Therefore, we performed an additional structure-activity relationship study, which led to the identification of the more potent hexapeptide 5d that exhibits similar NMUR1-agonistic activity as compared to hNMU. Additionally, we studied the stability of synthesized agonists, including 5d, in rat serum, and identified two major biodegradation sites: Phe(2)-Arg(3) and Arg(5)-Asn(6). The latter was more predominantly cleaved than the former. Moreover, substitution with 4-fluorophenylalanine, as in 5d, enhanced the metabolic stability at Phe(2)-Arg(3). These results provide important information to guide the development of practical hNMU agonists.
Collapse
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | - Yuko Sohma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Koji Taketa
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumika Yakushiji
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
31
|
Martinez VG, O'Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem 2015; 61:471-82. [PMID: 25605682 DOI: 10.1373/clinchem.2014.231753] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Neuromedin U (NmU) belongs to the neuromedin family, comprising a series of neuropeptides involved in the gut-brain axis and including neuromedins B and C (bombesin-like), K (neurokinin B), L (neurokinin A or neurotensin), N, S, and U. CONTENT Although initially isolated from porcine spinal cord on the basis of their ability to induce uterine smooth muscle contraction, these peptides have now been found to be expressed in several different tissues and have been ascribed numerous functions, from appetite regulation and energy balance control to muscle contraction and tumor progression. NmU has been detected in several species to date, particularly in mammals (pig, rat, rabbit, dog, guinea pig, human), but also in amphibian, avian, and fish species. The NmU sequence is highly conserved across different species, indicating that this peptide is ancient and plays an important biological role. Here, we summarize the main structural and functional characteristics of NmU and describe its many roles, highlighting the jack-of-all-trades nature of this neuropeptide. SUMMARY NmU involvement in key processes has outlined the possibility that this neuropeptide could be a novel target for the treatment of obesity and cancer, among other disorders. Although the potential for NmU as a therapeutic target is obvious, the multiple functions of this molecule should be taken into account when designing an approach to targeting NmU and/or its receptors.
Collapse
Affiliation(s)
- Vanesa G Martinez
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
32
|
Takayama K, Mori K, Taketa K, Taguchi A, Yakushiji F, Minamino N, Miyazato M, Kangawa K, Hayashi Y. Discovery of Selective Hexapeptide Agonists to Human Neuromedin U Receptors Types 1 and 2. J Med Chem 2014; 57:6583-93. [DOI: 10.1021/jm500599s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kentaro Takayama
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | - Koji Taketa
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumika Yakushiji
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
33
|
Honda K, Saneyasu T, Yamaguchi T, Shimatani T, Aoki K, Nakanishi K, Kamisoyama H. Intracerebroventricular administration of novel glucagon-like peptide suppresses food intake in chicks. Peptides 2014; 52:98-103. [PMID: 24361510 DOI: 10.1016/j.peptides.2013.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Abstract
Glucagon-related peptides such as glucagon, glucagon-like peptide-1, and oxyntomodulin suppress food intake in mammals and birds. Recently, novel glucagon-like peptide (GCGL) was identified from chicken brain, and a comparatively high mRNA expression level of GCGL was detected in the hypothalamus. A number of studies suggest that the hypothalamus plays a critical role in the regulation of food intake in mammals and birds. In the present study, we investigated whether GCGL is involved in the central regulation of food intake in chicks. Male 8-day-old chicks (Gallus gallus) were used in all experiments. Intracerebroventricular administration of GCGL in chicks significantly suppressed food intake. Plasma glucose level was significantly decreased by GCGL, whereas plasma corticosterone level was not affected. Central administration of a corticotrophin-releasing factor (CRF) receptor antagonist, α-helical CRF, attenuated GCGL-suppressed food intake. It seems likely that CRF receptor is involved in the GCGL-induced anorexigenic pathway. All our findings suggest that GCGL functions as an anorexigenic peptide in the central nervous system of chicks.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Takaoki Saneyasu
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takuya Yamaguchi
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | - Koji Aoki
- Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan
| | - Kiwako Nakanishi
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
34
|
Helfer G, Ross AW, Morgan PJ. Neuromedin U partly mimics thyroid-stimulating hormone and triggers Wnt/β-catenin signalling in the photoperiodic response of F344 rats. J Neuroendocrinol 2013; 25:1264-1272. [PMID: 24164054 PMCID: PMC4253136 DOI: 10.1111/jne.12116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/20/2013] [Indexed: 01/22/2023]
Abstract
In seasonal animals, photoperiod exerts profound effects on physiology, such as growth, energy balance and reproduction, via changes in the neuroendocrine axes. A key element of the photoperiodic response is the thyroid hormone level in the hypothalamus, which is controlled via retrograde transport of thyroid-stimulating hormone (TSH) from the pars tuberalis of the pituitary. TSH regulates type II deiodinase (Dio2) expression, which transforms inactive thyroid hormone to its active form, via TSH receptors expressed in the ependymal cells of the hypothalamus. In the present study, we hypothesised that a second peptide hormone, neuromedin U (NMU), may play a role in the photoperiodic response alongside TSH because the gene for NMU is also expressed in a strongly photoperiod-dependent manner in the pars tuberalis and its receptor NMU2 is expressed in the ependymal layer of the third ventricle in photoperiod-sensitive F344 rats. Consistent with other studies conducted in nonseasonal mammals, we found that acute i.c.v. injections of NMU into the hypothalamus negatively regulated food intake and body weight and increased core body temperature in F344 rats. At the same time, NMU increased Dio2 mRNA expression in the ependymal region of the hypothalamus similar to the effects of TSH. These data suggest that NMU may affect acute and photoperiodically controlled energy balance through distinct pathways. We also showed that TSH inhibits the expression of type III deiodinase (Dio3) in F344 rats, a response not mimicked by NMU. Furthermore, NMU also increased the expression of genes from the Wnt/β-catenin pathway within the ependymal layer of the third ventricle. This effect was not influenced by TSH. These data indicate that, although NMU acts with some similarities to TSH, it also has completely distinct signalling functions that do not overlap. In summary, the present study of NMU signalling reveals the potential for a new player in the control of seasonal biology.
Collapse
Affiliation(s)
- G Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| | - A W Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| | - P J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| |
Collapse
|
35
|
Aizawa S, Sakata I, Nagasaka M, Higaki Y, Sakai T. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin. PLoS One 2013; 8:e67118. [PMID: 23843987 PMCID: PMC3699551 DOI: 10.1371/journal.pone.0067118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
The pars tuberalis (PT) is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD), such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU) that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2) mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Mai Nagasaka
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Yuriko Higaki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| |
Collapse
|
36
|
The mechanism underlying the central glucagon-induced hyperglycemia and anorexia in chicks. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:260-4. [PMID: 22909790 DOI: 10.1016/j.cbpa.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
We investigated the mechanism underlying central glucagon-induced hyperglycemia and anorexia in chicks. Male 8-day-old chicks (Gallus gallus) were used in all experiments. Intracerebroventricular administration of glucagon in chicks induced hyperglycemia and anorexia from 30 min after administration. However, the plasma insulin level did not increase until 90 min after glucagon administration, suggesting that glucose-stimulated insulin secretion from pancreatic beta cells may be suppressed by central glucagon. The plasma corticosterone concentration significantly increased from 30 min to 120 min after administration, suggesting that central glucagon activates the hypothalamic pituitary adrenal (HPA) axis in chicks. However, central administration of corticotropin-releasing factor (CRF), which activates the HPA axis in chicken hypothalamus, significantly reduced not only food intake but also plasma glucose concentration, suggesting that CRF and the activation of the HPA axis are related to the glucagon-induced anorexia but not hyperglycemia in chicks. Phentolamine, an α-adrenergic receptor antagonist, significantly attenuated the glucagon-induced hyperglycemia, suggesting that glucagon induced hyperglycemia at least partly via α-adrenergic neural pathway. Co-administration of phentolamine and α-helical CRF, a CRF receptor antagonist, significantly attenuated glucagon-induced hyperglycemia and anorexia. It is therefore likely that central administration of glucagon suppresses food intake at least partly via CRF-induced anorexigenic pathway in chicks.
Collapse
|
37
|
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63:97-110. [PMID: 22710442 DOI: 10.1016/j.neuropharm.2012.04.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023]
Abstract
Exposure to stress is inevitable, and it may occur, to varying degrees, at different phases throughout the lifespan. The impact of stress experienced in later life has been well documented as many populations in modern society experience increasing socio-economic demands. The effects of stress early in life are less well known, partly as the impact of an early exposure may be difficult to quantify, however emerging evidence shows it can impact later in life. One of the major impacts of stress besides changes in psychosocial behaviour is altered feeding responses. The system that regulates stress responses, the hypothalamo-pituitary-adrenal axis, also regulates feeding responses because the neural circuits that regulate food intake converge on the paraventricular nucleus, which contains corticotrophin releasing hormone (CRH), and urocortin containing neurons. In other words the systems that control food intake and stress responses share the same anatomy and thus each system can influence each other in eliciting a response. Stress is known to alter feeding responses in a bidirectional pattern, with both increases and decreases in intake observed. Stress-induced bidirectional feeding responses underline the complex mechanisms and multiple contributing factors, including the levels of glucocorticoids (dependent on the severity of a stressor), the interaction between glucocorticoids and feeding related neuropeptides such as neuropeptide Y (NPY), alpha-melanocyte stimulating hormone (α-MSH), agouti-related protein (AgRP), melanocortins and their receptors, CRH, urocortin and peripheral signals (leptin, insulin and ghrelin). This review discusses the neuropeptides that regulate feeding behaviour and how their function can be altered through cross-talk with hormones and neuropeptides that also regulate the hypothalamo-pituitary-adrenal axis. In addition, long-term stress induced alterations in feeding behaviour, and changes in gene expression of neuropeptides regulating stress and food intake through epigenetic modifications will be discussed. This article is part of a Special Issue entitled 'SI: Central Control of Food Intake'.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
38
|
Nixon JP, Kotz CM, Novak CM, Billington CJ, Teske JA. Neuropeptides controlling energy balance: orexins and neuromedins. Handb Exp Pharmacol 2012:77-109. [PMID: 22249811 DOI: 10.1007/978-3-642-24716-3_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.
Collapse
Affiliation(s)
- Joshua P Nixon
- Veterans Affairs Medical Center, Research Service (151), Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
39
|
Greenwood HC, Bloom SR, Murphy KG. Peptides and their potential role in the treatment of diabetes and obesity. Rev Diabet Stud 2011; 8:355-68. [PMID: 22262073 DOI: 10.1900/rds.2011.8.355] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is estimated that 347 million people worldwide have diabetes and that over 1.5 billion adults worldwide are overweight. Predictions suggest these rates are increasing. Diabetes is a common complication in overweight and obese subjects, and in 2004, an estimated 3.4 million people died from consequences of high blood sugar. Thus, there is great interest in revealing the physiological systems that regulate body weight and blood sugar. Several peptidergic systems within the central nervous system and the periphery regulate energy homeostasis. A number of these systems have been investigated as potential treatments for obesity and the metabolic syndrome. However, manipulation of peptidergic systems poses many problems. This review discusses the peptidergic systems currently attracting research interest for their clinical potential to treat obesity. We consider first neuropeptides in the brain, including the orexigenic neuropeptide Y and melanin-concentrating hormone, and anorectic factors such as the melanocortins, ciliary neurotrophic factor, and neuromedin U. We subsequently discuss the utility of targeting peripheral gut peptides, including pancreatic polypeptide, peptide YY, amylin, and the gastric hormone ghrelin. Also, we analyze the evidence that these factors or drugs based on them may be therapeutically useful, while considering the disadvantages of using such peptides in a clinical context.
Collapse
Affiliation(s)
- Hannah C Greenwood
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
40
|
Peier AM, Desai K, Hubert J, Du X, Yang L, Qian Y, Kosinski JR, Metzger JM, Pocai A, Nawrocki AR, Langdon RB, Marsh DJ. Effects of peripherally administered neuromedin U on energy and glucose homeostasis. Endocrinology 2011; 152:2644-54. [PMID: 21586559 DOI: 10.1210/en.2010-1463] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuromedin U (NMU) is a highly conserved peptide reported to modulate energy homeostasis. Pharmacological studies have shown that centrally administered NMU inhibits food intake, reduces body weight, and increases energy expenditure. NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU become lean and hypophagic. Two high-affinity NMU receptors, NMUR1 and NMUR2, have been identified. NMUR1 is found primarily in the periphery and NMUR2 primarily in the brain, where it mediates the anorectic effects of centrally administered NMU. Given the broad expression pattern of NMU, we evaluated whether peripheral administration of NMU has effects on energy homeostasis. We observed that acute and chronic peripheral administration of NMU in rodents dose-dependently reduced food intake and body weight and that these effects required NMUR1. The anorectic effects of NMU appeared to be partly mediated by vagal afferents. NMU treatment also increased core body temperature and metabolic rate in mice, suggesting that peripheral NMU modulates energy expenditure. Additionally, peripheral administration of NMU significantly improved glucose excursion. Collectively, these data suggest that NMU functions as a peripheral regulator of energy and glucose homeostasis and the development of NMUR1 agonists may be an effective treatment for diabetes and obesity.
Collapse
Affiliation(s)
- Andrea M Peier
- Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ahnaou A, Drinkenburg WHIM. Neuromedin U(2) receptor signaling mediates alteration of sleep-wake architecture in rats. Neuropeptides 2011; 45:165-74. [PMID: 21296417 DOI: 10.1016/j.npep.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Growing evidence indicates that neuromedin U (NmU) neuropeptide system plays an integral role in mediating the stress response through the corticotrophin-releasing factor (CRF) pathways. Stress is often associated with alteration in sleep-wake architecture both in human and laboratory animals. Here, we investigated whether activation of the NmU₂ receptor, a major high affinity receptor for NmU predominantly expressed in the brain, affects sleep behavior in rats. Effects of single (acute) intracebroventricular (icv) infusion of 2.5 nmol of the full agonists porcine NmU8 and rat NmU23 were assessed on sleep-wake architecture in freely moving rats, which were chronically implanted with EEG and EMG electrodes. In addition, repeated once daily administration of NmU8 at 2.5 nmol during 8 consecutive days (sub-chronic) was studied. Acute icv infusion of NmU23 elicited a robust alteration in sleep-wake architecture, namely enhanced wakefulness and suppressed sleep during the first 4h after administration. Acute infusion NmU8 had no effect on spontaneous sleep-wake architecture. However, sub-chronic icv infusion of NmU8 increased the amount of rapid eye movement (REM) sleep and intermediate stage (IS), while decreased light sleep. Additionally, NmU8 increased transitions from sleep states towards wakefulness suggesting a disruption in sleep continuity. The present results show that central-activation of NmU₂ receptor markedly reduced sleep duration and disrupted the mechanisms underlying NREM-REM sleep transitions. Given that sleep-wakefulness cycle is strongly influenced by stress and the role of NmU/NmU₂ receptor signaling in stress response, the disruption in sleep pattern associated with peptides species may support at least some signs of stress.
Collapse
Affiliation(s)
- A Ahnaou
- Janssen Pharmaceutical Companies of Johnson & Johnson, Dept. of Neurosciences, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | |
Collapse
|
42
|
Maruyama K, Kaiya H, Miyazato M, Konno N, Wakasugi T, Uchiyama M, Shioda S, Murakami N, Matsuda K. Isolation and characterisation of two cDNAs encoding the neuromedin U receptor from goldfish brain. J Neuroendocrinol 2011; 23:282-91. [PMID: 21182546 DOI: 10.1111/j.1365-2826.2010.02106.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracerebroventricular administration of neuromedin U (NMU) exerts an anorexigenic effect in a goldfish model. However, little is known about the NMU receptor and its signalling system in fish. In the present study, we isolated and cloned two cDNAs encoding different proteins comprising 429 and 388 amino acid residues from the goldfish brain based on the nucleotide sequences of human NMU receptor 1 (NMU-R1) and receptor 2 (NMU-R2). Hydropathy and phylogenetic analyses suggested that these two proteins were orthologues of NMU-R1 and -R2 of goldfish. We established two human embryonic kidney 293 cell lines stably expressing putative NMU-R1 and -R2, respectively, and showed that NMU induced an increase in intracellular calcium concentration ([Ca(2+)](i)) in these cells. We examined the presence of NMU-R1 and -R2 in the goldfish brain by western blotting analysis using affinity-purified antisera raised against peptide fragments derived from these receptors. NMU-R1-specific and NMU-R2-specific antisera detected a 49-kDa and 45-kDa immunopositive bands, respectively, in the brain extract. The mass of each band corresponded to that of the deduced respective primary structures. Reverse transcriptase-polymerase chain reaction analysis showed that NMU-R1 and -R2 transcripts were detected in several tissues. In particular, both mRNAs were strongly expressed in the goldfish brain. By contrast, NMU-R2 mRNA was also expressed in the gut. These results indicate for the first time that NMU-R orthologues exist in goldfish, and suggest physiological roles of NMU and its receptor system in fish.
Collapse
Affiliation(s)
- K Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Budhiraja S, Chugh A. Neuromedin U: physiology, pharmacology and therapeutic potential. Fundam Clin Pharmacol 2009; 23:149-57. [PMID: 19645813 DOI: 10.1111/j.1472-8206.2009.00667.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuromedin U (NmU), a multifunctional neuropeptide, belongs to a family of neuropeptides, the neuromedins. It is ubiquitously distributed with highest levels found in the gastrointestinal tract and pituitary. The conservation of structural elements of NmU across species, the widespread distribution of NmU and its receptors throughout the body point to a fundamental role in key physiological processes. Two G protein coupled receptors for NmU have been cloned NmU R1 and NmU R2. NmU R1 is expressed pre-dominantly in the periphery especially the gastrointestinal tract whereas NmU R2 is expressed pre-dominantly in the central nervous system. Current evidence suggests a role of NmU in pain, in regulation of feeding and energy homeostasis, stress, cancer, immune mediated inflammatory diseases like asthma, inflammatory diseases, maintaining the biological clock, in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract, and in the control of blood flow and blood pressure. With the development of drugs selectively acting on receptors and knockout animal models, exact pathophysiological roles of NmU will become clearer.
Collapse
Affiliation(s)
- S Budhiraja
- Department of Pharmacology, Pt. B. D. Sharma, PGIMS, Rohtak-124001, Haryana, India.
| | | |
Collapse
|
44
|
Maruyama K, Wada K, Ishiguro K, Shimakura SI, Wakasugi T, Uchiyama M, Shioda S, Matsuda K. Neuromedin U-induced anorexigenic action is mediated by the corticotropin-releasing hormone receptor-signaling pathway in goldfish. Peptides 2009; 30:2483-6. [PMID: 19699772 DOI: 10.1016/j.peptides.2009.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 01/15/2023]
Abstract
Our recent research has indicated that neuromedin U (NMU) orthologs exist in goldfish, and that NMU consisting of 21 amino acid residues (NMU-21) can potently inhibit food intake in goldfish, as is the case in rodents. However, the anorexigenic pathway of NMU-21 has not yet been clarified in this species. Corticotropin-releasing hormone (CRH), CRH-related peptides and alpha-melanocyte-stimulating hormone (alpha-MSH), which exert potent anorexigenic effects, are important mediators involved in feeding regulation in fish. We examined whether CRH or alpha-MSH mediates NMU-21-induced anorexigenic action in goldfish. We first investigated the effect of intracerebroventricular (ICV) administration of NMU-21 at 100 pmol/g body weight (BW), which is enough to suppress food intake, on expression levels of mRNA for CRH and proopiomelanocortin (POMC) in the hypothalamus. ICV-injected NMU-21 induced a significant increase in the expression level of CRH mRNA, but not that of POMC mRNA. We also examined the effects of ICV administration of the CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), and the melanocortin 4 receptor antagonist, HS024, on the anorexigenic action of ICV-injected NMU-21. The anorexigenic effect of NMU-21 was blocked by treatment with alpha-helical CRH((9-41)) at 400 pmol/g BW, but not HS024 at 200 pmol/g BW. These results suggest that the anorexigenic action of NMU-21 is mediated by the CRH 1 or 2 receptor-signaling pathway in goldfish.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yayou K, Kitagawa S, Ito S, Kasuya E, Sutoh M. Effects of intracerebroventricular administration of neuromedin U or neuromedin S in steers. Gen Comp Endocrinol 2009; 163:324-8. [PMID: 19442664 DOI: 10.1016/j.ygcen.2009.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
Although neuromedin U (NMU) and neuromedin S (NMS) are reported to modulate stress responses mainly through corticotropin-releasing hormone system in rodents, the in vivo effects of centrally administered NMU or NMS on stress regulation have not been fully elucidated in cattle. We examined adrenocorticotropic hormone levels, body temperature, and behavioral responses to intracerebroventricularly (ICV) administered rat NMU or rat NMS in steers. ICV NMU and NMS (0.2, 2, and 20 nmol/200 microl) evoked a dose-related increase in plasma cortisol concentrations (CORT). There was a significant time-treatment interaction for the time course of CORT (p<0.001). ICV NMU evoked a dose-related increase in rectal temperature (RT). There was a significant time-treatment interaction for the change in RT from pre-injection value (p<0.05). There was a significant difference among treatments in the percentage of time spent lying (Friedman's test, chi(2)=15.6, p<0.01) and in the total number of head shaking (Friedman's test, chi(2)=14.49, p<0.01). A high dose of NMS tended to shorten the duration of lying and increase the number of head shaking. These findings indicate that both central NMU and NMS might participate in controlling the hypothalamo-pituitary-adrenal axis, that central NMU might participate in controlling body temperature, and that central NMS is likely to be involved in behavioral activation in cattle.
Collapse
Affiliation(s)
- K Yayou
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | |
Collapse
|
46
|
Egecioglu E, Ploj K, Xu X, Bjursell M, Salomé N, Andersson N, Ohlsson C, Taube M, Hansson C, Bohlooly-Y M, Morgan DGA, Dickson SL. Central NMU signaling in body weight and energy balance regulation: evidence from NMUR2 deletion and chronic central NMU treatment in mice. Am J Physiol Endocrinol Metab 2009; 297:E708-16. [PMID: 19584200 DOI: 10.1152/ajpendo.91022.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the role of the central neuromedin U (NMU) signaling system in body weight and energy balance regulation, we examined the effects of long-term intracerebroventricular (icv) infusion of NMU in C57Bl/6 mice and in mice lacking the gene encoding NMU receptor 2. In diet-induced obese male and female C57BL/6 mice, icv infusion of NMU (8 microg x day(-1) x mouse(-1)) for 7 days decreased body weight and total energy intake compared with vehicle treatment. However, these parameters were unaffected by NMU treatment in lean male and female C57BL/6 mice fed a standard diet. In addition, female (but not male) NMUR2-null mice had increased body weight and body fat mass when fed a high-fat diet but lacked a clear body weight phenotype when fed a standard diet compared with wild-type littermates. Furthermore, female (but not male) NMUR2-null mice fed a high-fat diet were protected from central NMU-induced body weight loss compared with littermate wild-type mice. Thus, we provide the first evidence that long-term central NMU treatment reduces body weight, food intake, and adiposity and that central NMUR2 signaling is required for these effects in female but not male mice.
Collapse
Affiliation(s)
- Emil Egecioglu
- Dept. of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Univ. of Gothenburg, Medicinaregatan, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Neuromedin U (NMU) is known to have potent actions on appetite and energy expenditure. Deletion of the NMU gene in mice leads to an obese phenotype, characterized by hyperphagia and decreased energy expenditure. Conversely, transgenic mice that overexpress proNMU exhibit reduced body weight and fat storage. Here, we show that central administration of NMU or the related peptide neuromedin S (NMS) dose-dependently decreases food intake, increases metabolic rate, and leads to significant weight loss in mice. The effects of NMU and NMS on both feeding and metabolism are almost completely lost in mice lacking the putative CNS receptor for NMU and NMS, NMUr2. However, NMUr2 knockout mice do not exhibit overt differences in body weight or energy expenditure compared with wild-type mice, suggesting that the dramatic phenotype of the NMU gene knockout mouse is not due simply to the loss of NMU/NMUr2 signaling. Putative proteolytic cleavage sites indicate that an additional peptide is produced from the NMU precursor protein, which is extremely well conserved between human, mouse, and rat. Here, we demonstrate that this peptide, proNMU(104-136), has a pronounced effect on energy balance in mice. Specifically, central administration of proNMU(104-136) causes a significant but transient ( approximately 4 h) increase in feeding, yet both food intake and body weight are decreased over the following 24 h. proNMU(104-136) administration also significantly increased metabolic rate. These results suggest that proNMU(104-136) is a novel modulator of energy balance and may contribute to the phenotype exhibited by NMU knockout mice.
Collapse
Affiliation(s)
- David A Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Colleen M Novak
- Mayo Clinic, Endocrine Research Unit, 200 1st Street Southwest, Saint Marys Hospital, Joseph 5-194, Rochester, Minnesota 55901, USA.
| |
Collapse
|
49
|
Peier A, Kosinski J, Cox-York K, Qian Y, Desai K, Feng Y, Trivedi P, Hastings N, Marsh DJ. The antiobesity effects of centrally administered neuromedin U and neuromedin S are mediated predominantly by the neuromedin U receptor 2 (NMUR2). Endocrinology 2009; 150:3101-9. [PMID: 19324999 PMCID: PMC2703546 DOI: 10.1210/en.2008-1772] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2(-/-)) mice. Nmur2(-/-) mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2(-/-) mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2(-/-) mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2(-/-) mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.
Collapse
Affiliation(s)
- Andrea Peier
- Merck Research Laboratories, Department of Metabolic Disorders, 126 East Lincoln Avenue, RY80L-126, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Semjonous NM, Smith KL, Parkinson JRC, Gunner DJL, Liu YL, Murphy KG, Ghatei MA, Bloom SR, Small CJ. Coordinated changes in energy intake and expenditure following hypothalamic administration of neuropeptides involved in energy balance. Int J Obes (Lond) 2009; 33:775-85. [PMID: 19488048 PMCID: PMC2711051 DOI: 10.1038/ijo.2009.96] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The hypothalamic control of energy balance is regulated by a complex network of neuropeptide-releasing neurons. Although the effect of these neuropeptides on individual aspects of energy homoeostasis has been studied, the coordinated response of these effects has not been comprehensively investigated. We have simultaneously monitored a number of metabolic parameters following intracerebroventricular (ICV) administration of 1 and 3 nmol of neuropeptides with established roles in the regulation of feeding, activity and metabolism. Ad libitum- fed rats received the orexigenic neuropeptides neuropeptide Y (NPY), agouti-related protein (AgRP), melanin-concentrating hormone (MCH) or orexin-A. Overnight-food-deprived rats received an ICV injection of the anorectic peptides alpha-melanocyte-stimulating hormone (MSH), corticotrophin-releasing factor (CRF) or neuromedin U (NMU). RESULTS Our results reveal the temporal sequence of the effects of these neuropeptides on both energy intake and expenditure, highlighting key differences in their function as mediators of energy balance. NPY and AgRP increased feeding and decreased oxygen consumption, with the effects of AgRP being more prolonged. In contrast, orexin-A increased both feeding and oxygen consumption, consistent with an observed increase in activity. The potent anorexigenic effects of CRF were accompanied by a prolonged increase in activity, whereas NMU injection resulted in significant but short-lasting inhibition of food intake, ambulatory activity and oxygen consumption. alpha-MSH injection resulted in significant increases in both ambulatory activity and oxygen consumption, and reduced food intake following administration of 3 nmol of the peptide. CONCLUSION We have for the first time, simultaneously measured several metabolic parameters following hypothalamic administration of a number of neuropeptides within the same experimental system. This work has shown the interrelated effects of these neuropeotides on activity, energy expenditure and food intake, thus facilitating comparison between the different hypothalamic systems.
Collapse
Affiliation(s)
- N M Semjonous
- Department of Investigative Medicine, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|