1
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
2
|
Orduña-Castillo LB, Del-Río-Robles JE, García-Jiménez I, Zavala-Barrera C, Beltrán-Navarro YM, Hidalgo-Moyle JJ, Ramírez-Rangel I, Hernández-Bedolla MA, Reyes-Ibarra AP, Valadez-Sánchez M, Vázquez-Prado J, Reyes-Cruz G. Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway. J Cell Commun Signal 2021; 16:239-252. [PMID: 34854057 DOI: 10.1007/s12079-021-00662-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Calcium sensing receptor, a pleiotropic G protein coupled receptor, activates secretory pathways in cancer cells and putatively exacerbates their metastatic behavior. Here, we show that various CaSR mutants, identified in breast cancer patients, differ in their ability to stimulate Rac, a small Rho GTPase linked to cytoskeletal reorganization and cell protrusion, but are similarly active on the mitogenic ERK pathway. To investigate how CaSR activates Rac and drives cell migration, we used invasive MDA-MB-231 breast cancer cells. We revealed, by pharmacological and knockdown strategies, that CaSR activates Rac and cell migration via the Gβγ-PI3K-mTORC2 pathway. These findings further support current efforts to validate CaSR as a relevant therapeutic target in metastatic cancer.
Collapse
Affiliation(s)
- Lennis Beatriz Orduña-Castillo
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | - Jorge Eduardo Del-Río-Robles
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | - Irving García-Jiménez
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | - César Zavala-Barrera
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | | | - Joseline Janai Hidalgo-Moyle
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | | | - Marco A Hernández-Bedolla
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico.,Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Alma P Reyes-Ibarra
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | - Margarita Valadez-Sánchez
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | | | - Guadalupe Reyes-Cruz
- Department of Cell Biology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Huang A, Binmahfouz L, Hancock DP, Anderson PH, Ward DT, Conigrave AD. Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms. J Endocr Soc 2021; 5:bvab057. [PMID: 34337274 PMCID: PMC8317635 DOI: 10.1210/jendso/bvab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
25-hydroxyvitamin D 1α-hydroxylase (encoded by CYP27B1), which catalyzes the synthesis of 1,25-dihydroxyvitamin D3, is subject to negative or positive modulation by extracellular Ca2+ (Ca2+o) depending on the tissue. However, the Ca2+ sensors and underlying mechanisms are unidentified. We tested whether calcium-sensing receptors (CaSRs) mediate Ca2+o-dependent control of 1α-hydroxylase using HEK-293 cells stably expressing the CaSR (HEK-CaSR cells). In HEK-CaSR cells, but not control HEK-293 cells, cotransfected with reporter genes for CYP27B1-Photinus pyralis (firefly) luciferase and control Renilla luciferase, an increase in Ca2+o from 0.5mM to 3.0mM induced a 2- to 3-fold increase in firefly luciferase activity as well as mRNA and protein levels. Surprisingly, firefly luciferase was specifically suppressed at Ca2+o ≥ 5.0mM, demonstrating biphasic Ca2+o control. Both phases were mediated by CaSRs as revealed by positive and negative modulators. However, Ca2+o induced simple monotonic increases in firefly luciferase and endogenous CYP27B1 mRNA levels, indicating that the inhibitory effect of high Ca2+o was posttranscriptional. Studies with inhibitors and the CaSR C-terminal mutant T888A identified roles for protein kinase C (PKC), phosphorylation of T888, and extracellular regulated protein kinase (ERK)1/2 in high Ca2+o-dependent suppression of firefly luciferase. Blockade of both PKC and ERK1/2 abolished Ca2+o-stimulated firefly luciferase, demonstrating that either PKC or ERK1/2 is sufficient to stimulate the CYP27B1 promoter. A key CCAAT box (−74 bp to −68 bp), which is regulated downstream of PKC and ERK1/2, was required for both basal transcription and Ca2+o-mediated transcriptional upregulation. The CaSR mediates Ca2+o-dependent transcriptional upregulation of 1α-hydroxylase and an additional CaSR-mediated mechanism is identified by which Ca2+o can promote luciferase and possibly 1α-hydroxylase breakdown.
Collapse
Affiliation(s)
- Alice Huang
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Lenah Binmahfouz
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dale P Hancock
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Paul H Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA, 5001, Australia
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| |
Collapse
|
4
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
6
|
Hernández-Bedolla MA, González-Domínguez E, Zavala-Barrera C, Gutiérrez-López TY, Hidalgo-Moyle JJ, Vázquez-Prado J, Sánchez-Torres C, Reyes-Cruz G. Calcium-sensing-receptor (CaSR) controls IL-6 secretion in metastatic breast cancer MDA-MB-231 cells by a dual mechanism revealed by agonist and inverse-agonist modulators. Mol Cell Endocrinol 2016; 436:159-68. [PMID: 27477783 DOI: 10.1016/j.mce.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 01/25/2023]
Abstract
IL-6 is a tightly controlled pleiotropic cytokine with hormone-like properties whose levels are frequently altered in cancer and inflammatory diseases. In highly invasive MDA-MB-231 breast cancer cells, basal activity of endogenously expressed calcium sensing receptor (CaSR) promotes IL-6 secretion. Interestingly, upon agonist stimulation, CaSR reduces IL-6 levels whereas it promotes secretion of various other cytokines and growth factors, raising intriguing questions about how CaSR signaling modulates IL-6 secretion. Here, using NPS-2143, which acted as an inverse agonist, we show that IL-6 secretion promoted by constitutive activity of CaSR is mechanistically linked to Gαs/PKC, MEK1/2 and mTORC1 signaling pathways, integrated by transactivated EGFR. On the other hand, agonist-stimulated CaSR engages in a Rab11a-dependent trafficking pathway critical to inhibit constitutive IL-6 secretion via the PI3K/AKT and PKC signaling pathways. These results support the emerging potential of CaSR as a therapeutic target in metastatic breast cancer whose pharmacological modulation would reduce IL-6.
Collapse
Affiliation(s)
- Marco Antonio Hernández-Bedolla
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Erika González-Domínguez
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Cesar Zavala-Barrera
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Joseline Janai Hidalgo-Moyle
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN, Apartado postal 14-740, México, D.F., 07360, Mexico.
| |
Collapse
|
7
|
Rocha G, Villalobos E, Fuentes C, Villarroel P, Reyes M, Díaz X, Mattar P, Cifuentes M. Preadipocyte proliferation is elevated by calcium sensing receptor activation. Mol Cell Endocrinol 2015; 412:251-6. [PMID: 25986659 DOI: 10.1016/j.mce.2015.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/13/2023]
Abstract
Obesity is a major worldwide problem, despite considerable efforts against it. While excess body fat defines obesity, adipose tissue quality and functionality are key to whether cardiovascular and metabolic comorbidities develop. Adipose tissue cellular composition can vary considerably, and excess adipocyte progenitors (preadipocytes) is associated with obesity. We have proposed that calcium sensing receptor (CaSR) activation in adipose tissue leads to dysfunction. This study evaluated whether CaSR activation elevates preadipocyte proliferation. Human LS14 preadipocytes were exposed to CaSR activators cinacalcet (2 µM), GdCl3 (5 µM) and spermine (1 µM), and cell viability was evaluated after 72h. CaSR activators elevated proliferation by 19-24%, and CaSR silencing (siRNA) abolished the effect. Cinacalcet elevated phospho-ERK1/2 content, and upstream inhibition of ERK1/2 phosphorylation reverted cinacalcet-induced proliferation. Cinacalcet also elevated expression of the proinflammatory factors IL1β, IL6 and CCL2. The results suggest that CaSR induces preadipocyte proliferation, partly through ERK1/2 activation. Considering reported proinflammatory and adipogenic CaSR effects, excess preadipocyte proliferation further supports the dysfunctional effect of CaSR in obesity.
Collapse
Affiliation(s)
- Gladys Rocha
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Elisa Villalobos
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Cecilia Fuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Pia Villarroel
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Marcela Reyes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Ximena Díaz
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Pamela Mattar
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Casilla 138-11, Santiago, Chile.
| |
Collapse
|
8
|
Winczura P, Sosińska-Mielcarek K, Duchnowska R, Badzio A, Lakomy J, Majewska H, Pęksa R, Pieczyńska B, Radecka B, Dębska-Szmich S, Adamowicz K, Biernat W, Jassem J. Immunohistochemical Predictors of Bone Metastases in Breast Cancer Patients. Pathol Oncol Res 2015; 21:1229-36. [PMID: 26062800 PMCID: PMC4550640 DOI: 10.1007/s12253-015-9957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022]
Abstract
Bones are the most common metastatic site of relapse in breast cancer patients and the prediction of bone metastases (BM) risk might prompt developing preventive and therapeutic strategies. The aim of the study was to correlate imumohistochemical (IHC) expression of selected proteins in primary breast cancer with the occurrence of BM. We analyzed expression of proteins potentially associated with BM in primary tumors of 184 patients with metastatic breast cancer (113 with- and 71 without BM). Expression of estrogen receptor (ER) in primary tumor was more common in patients with- compared to those without BM (74 vs. 45 % respectively, p = 0.0001), whereas in this subset less common was expression of parathyroid hormone related protein receptor type 1 (16 vs. 34 %, respectively, p = 0.007) and cytoplasmic expression of osteopontin (OPNcyt; 1.9 vs. 14 %, respectively, p = 0.002). The relationship between expression of ER and OPNcyt and the occurrence of BM was confirmed in the multivariate analysis. The ER-positive/OPNcyt negative phenotype was significantly more common in patients with- compared to those without BM (75 and 25 %, p < 0.0001, respectively; HR 1.79, p = 0.013). Luminal A (43 vs. 23 % respectively, p = 0.009) and luminal B/HER2-positive (16 vs. 4.9 % respectively, p = 0.032) subtypes were more common in patients with- compared to those without BM, whereas triple negative breast cancer subtype was less common (16 vs. 38 %, p = 0.002).
Collapse
|
9
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
10
|
Conigrave AD, Ward DT. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 2013; 27:315-31. [PMID: 23856262 DOI: 10.1016/j.beem.2013.05.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism.
Collapse
Affiliation(s)
- Arthur D Conigrave
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
11
|
Abstract
Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. In contrast, in breast cancer cells the CaSR upregulates PTHrP production. A switch in G-protein usage underlies the opposing effects of the CaSR on PTHrP expression in normal and malignant breast cells. During lactation, the CaSR in normal breast cells coordinates a feedback loop that matches the transport of calcium into milk and maternal calcium metabolism to the supply of calcium. A switch in CaSR G-protein usage during malignant transformation converts this feedback loop into a feed-forward cycle in breast cancer cells that may promote the growth of osteolytic skeletal metastases.
Collapse
Affiliation(s)
- Joshua N Vanhouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, TAC S131, Box 208020, New Haven, CT, USA.
| | | |
Collapse
|
12
|
Calcium sensing receptor signalling in physiology and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1732-44. [PMID: 23267858 DOI: 10.1016/j.bbamcr.2012.12.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/13/2022]
Abstract
The calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor that is crucial for the feedback regulation of extracellular free ionised calcium homeostasis. While extracellular calcium (Ca(2+)o) is considered the primary physiological ligand, the CaSR is activated physiologically by a plethora of molecules including polyamines and l-amino acids. Activation of the CaSR by different ligands has the ability to stabilise unique conformations of the receptor, which may lead to preferential coupling of different G proteins; a phenomenon termed 'ligand-biased signalling'. While mutations of the CaSR are currently not linked with any malignancies, altered CaSR expression and function are associated with cancer progression. Interestingly, the CaSR appears to act both as a tumour suppressor and an oncogene, depending on the pathophysiology involved. Reduced expression of the CaSR occurs in both parathyroid and colon cancers, leading to loss of the growth suppressing effect of high Ca(2+)o. On the other hand, activation of the CaSR might facilitate metastasis to bone in breast and prostate cancer. A deeper understanding of the mechanisms driving CaSR signalling in different tissues, aided by a systems biology approach, will be instrumental in developing novel drugs that target the CaSR or its ligands in cancer. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
13
|
Thomsen ARB, Hvidtfeldt M, Bräuner-Osborne H. Biased agonism of the calcium-sensing receptor. Cell Calcium 2012; 51:107-16. [PMID: 22192592 DOI: 10.1016/j.ceca.2011.11.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/05/2011] [Accepted: 11/24/2011] [Indexed: 02/01/2023]
Abstract
After the discovery of molecules modulating G protein-coupled receptors (GPCRs) that are able to selectively affect one signaling pathway over others for a specific GPCR, thereby "biasing" the signaling, it has become obvious that the original model of GPCRs existing in either an "on" or "off" conformation is too simple. The current explanation for this biased agonism is that GPCRs can adopt multiple active conformations stabilized by different molecules, and that each conformation affects intracellular signaling in a different way. In the present study we sought to investigate biased agonism of the calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated through recruitment of β-arrestins. Next, by measuring activity of all three signaling pathways we found that barium, spermine, neomycin, and tobramycin act as biased agonist in terms of efficacy and/or potency. Finally, polyamines and aminoglycosides in general were biased in their potencies toward ERK1/2 signaling. In conclusion, the results of this study indicate that several active conformations of CaSR, stabilized by different molecules, exist, which affect intracellular signaling distinctly.
Collapse
Affiliation(s)
- Alex Rojas Bie Thomsen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Fruebjergvej 3, Copenhagen, Denmark
| | | | | |
Collapse
|
14
|
Huang Y, Cavanaugh A, Breitwieser GE. Regulation of stability and trafficking of calcium-sensing receptors by pharmacologic chaperones. ADVANCES IN PHARMACOLOGY 2012; 62:143-73. [PMID: 21907909 DOI: 10.1016/b978-0-12-385952-5.00007-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gain- or loss-of-function mutations and polymorphisms of the calcium-sensing receptor (CaSR) cause Ca(2+) handling diseases. Altered expression and/or signaling of wild-type CaSR can also contribute to pathology. Recent studies have demonstrated that a significant proportion of mutations cause altered targeting and/or trafficking of CaSR to the plasma membrane. Pharmacological approaches to rescue of CaSR function include treatment with allosteric modulators, which potentiate the effects of the orthosteric agonist Ca(2+). Dissection of the mechanism(s) contributing to allosteric agonist-mediated rescue of loss-of-function CaSR mutants has demonstrated pharmacologic chaperone actions coincident with CaSR biosynthesis. The distinctive responses to the allosteric agonist (NPS R-568), which promotes CaSR stability, and the allosteric antagonist (NPS 2143), which promotes CaSR degradation, have led to a model for a conformational checkpoint during CaSR biosynthesis. The conformational checkpoint would "tune" CaSR biosynthesis to cellular signaling state. Navigation of a distinct checkpoint for endoplasmic release can also be augmented by pharmacologic chaperones. The diverse, post-endoplasmic reticulum quality control site(s) for pharmacologic chaperone modulation of CaSR stability and trafficking redefines the role(s) of allosteric modulators in regulation of overall GPCR function.
Collapse
Affiliation(s)
- Ying Huang
- Cancer Drug Research Laboratory, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
15
|
Abstract
The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca(2+)(o)) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca(2+) reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretion and are being investigated as possible bone anabolic treatments against age-related osteoporosis. Here we address the current state of development and clinical use of a series of positive and negative CaR modulators. In addition, clinical CaR mutations and transgenic mice carrying tissue-specific CaR deletions have provided a novel understanding of the relative functional importance of CaR in both calciotropic tissues and those elsewhere in the body. The development of CaR-selective modulators and signalling reagents have provided us with a more detailed appreciation of how the CaR signals in vivo. Thus, both of these areas of CaR research will be reviewed.
Collapse
Affiliation(s)
- Donald T Ward
- Faculty of Life Sciences, The University of ManchesterManchester, UK
| | | |
Collapse
|
16
|
Signaling through the extracellular calcium-sensing receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:103-42. [PMID: 22453940 DOI: 10.1007/978-94-007-2888-2_5] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular calcium ([Formula: see text])-sensing receptor (CaSR) was the first GPCR identified whose principal physiological ligand is an ion, namely extracellular Ca(2+). It maintains the near constancy of [Formula: see text] that complex organisms require to ensure normal cellular function. A wealth of information has accumulated over the past two decades about the CaSR's structure and function, its role in diseases and CaSR-based therapeutics. This review briefly describes the CaSR and key features of its structure and function, then discusses the extracellular signals modulating its activity, provides an overview of the intracellular signaling pathways that it controls, and, finally, briefly describes CaSR signaling both in tissues participating in [Formula: see text] homeostasis as well as those that do not. Factors controlling CaSR signaling include various factors affecting the expression of the CaSR gene as well as modulation of its trafficking to and from the cell surface. The dimeric cell surface CaSR, in turn, links to various heterotrimeric and small molecular weight G proteins to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. CaSR signaling is impacted by its interactions with several binding partners in addition to signaling elements per se (i.e., G proteins), including filamin-A and caveolin-1. These latter two proteins act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton). Thus CaSR signaling likely does not take place randomly throughout the cell, but is compartmentalized and organized so as to facilitate the interaction of the receptor with its various signaling pathways.
Collapse
|
17
|
Abstract
Compelling evidence of a cell surface receptor sensitive to extracellular calcium was observed as early as the 1980s and was finally realized in 1993 when the calcium-sensing receptor (CaR) was cloned from bovine parathyroid tissue. Initial studies relating to the CaR focused on its key role in extracellular calcium homeostasis, but as the amount of information about the receptor grew it became evident that it was involved in many biological processes unrelated to calcium homeostasis. The CaR responds to a diverse array of stimuli extending well beyond that merely of calcium, and these stimuli can lead to the initiation of a wide variety of intracellular signaling pathways that in turn are able to regulate a diverse range of biological processes. It has been through the examination of the molecular characteristics of the CaR that we now have an understanding of how this single receptor is able to convert extracellular messages into specific cellular responses. Recent CaR-related reviews have focused on specific aspects of the receptor, generally in the context of the CaR's role in physiology and pathophysiology. This review will provide a comprehensive exploration of the different aspects of the receptor, including its structure, stimuli, signalling, interacting protein partners, and tissue expression patterns, and will relate their impact on the functionality of the CaR from a molecular perspective.
Collapse
Affiliation(s)
- Aaron L Magno
- Department of Endocrinology and Diabetes, First Floor, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands 6009, Western Australia, Australia
| | | | | |
Collapse
|
18
|
EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010; 21:951-60. [PMID: 20813200 DOI: 10.1016/j.semcdb.2010.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/23/2010] [Indexed: 01/16/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
|
19
|
Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010. [PMID: 20813200 DOI: 10.1016/j.semcdb.2010.08.009s1084-9521(10)00146-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
Affiliation(s)
- John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Milara J, Mata M, Serrano A, Peiró T, Morcillo EJ, Cortijo J. Extracellular calcium-sensing receptor mediates human bronchial epithelial wound repair. Biochem Pharmacol 2010; 80:236-46. [DOI: 10.1016/j.bcp.2010.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 11/27/2022]
|
21
|
PARKASH JAI, ASOTRA KAMLESH. Combinatorial intervention of prostaglandin E2 receptor and calcium sensing receptor to attenuate breast cancer cell proliferation, migration and bone metastasis. Exp Ther Med 2010. [DOI: 10.3892/etm_00000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Chakravarti B, Dwivedi SKD, Mithal A, Chattopadhyay N. Calcium-sensing receptor in cancer: good cop or bad cop? Endocrine 2009; 35:271-84. [PMID: 19011996 DOI: 10.1007/s12020-008-9131-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/30/2008] [Accepted: 10/21/2008] [Indexed: 12/28/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) is a versatile 'sensor' for di- and polycationic molecules in the body. CaR plays a key role in the defense against hypercalcemia by "sensing" extracellular calcium levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. Although mutation of CaR gene has so far not been associated with any malignancy, aberrant functions of CaR have implications in malignant progression. One situation is loss of CaR expression, resulting in loss of growth suppressing effects of elevated extracellular Ca(2+) by CaR, reported in parathyroid adenoma and in colon carcinoma. Another situation is activation of CaR, resulting in increased production of parathyroid hormone-related peptide (PTHrP), a primary causal factor in hypercalcemia of malignancy and a contributor to metastatic processes involving bone. CaR signaling and effects have been studied in several cancers including ovarian cancers, gastrinomas, and gliomas in addition to comparatively detailed studies in breast, prostate, and colon cancers. Studies on H-500 rat Leydig cells, a xenotransplantable model of humoral hypercalcemia of malignancy has shed much light on the mechanisms of CaR-induced cancer cell growth and survival. Pharmacological agonists and antagonists of CaR hold therapeutic promise depending on whether activation of CaR is required such as in case of colon cancer or inactivating the receptor is required as in the case of breast- and prostate tumors.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Chattar Manzil, Lucknow, India.
| | | | | | | |
Collapse
|
23
|
Activation of the calcium-sensing receptor by high calcium induced breast cancer cell proliferation and TRPC1 cation channel over-expression potentially through EGFR pathways. Arch Biochem Biophys 2009; 486:58-63. [PMID: 19332022 DOI: 10.1016/j.abb.2009.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 12/22/2022]
Abstract
The calcium sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium ([Ca(2+)](o)). In MCF-7 human breast cancer cells, we previously reported that treatment with [Ca(2+)](o) for 24h leads to an over-expression of the Transient Receptor Potential Canonical 1 (TRPC1) cation channel and cell proliferation. Both involve the extracellular signal-regulated Kinases 1 & 2 (ERK1/2). MCF-7 also expressed epidermal growth factor receptor (EGFR) which is involved in cell proliferation through ERK1/2. Therefore, we investigated the cross-talk between CaR and EGFR in mediating ERK1/2 phosphorylation, TRPC1 over-expression and cell proliferation. Our data show that both high [Ca(2+)](o) and EGF phosphorylate ERK1/2. Furthermore, inhibition of EGFR kinase and matrix metalloproteinases (MMPs) reduced the overall effects mediated by [Ca(2+)](o) such as activation of ERK1/2, expression of TRPC1 and cell proliferation. They indicate the important role of the CaR-EGFR-ERK axis in transmitting mitogenic signals generated by high [Ca(2+)](o) in MCF-7 cells.
Collapse
|
24
|
Smajilovic S, Tfelt-Hansen J. Novel Role of the Calcium-Sensing Receptor in Blood Pressure Modulation. Hypertension 2008; 52:994-1000. [DOI: 10.1161/hypertensionaha.108.117689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sanela Smajilovic
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| |
Collapse
|
25
|
Mihai R. The calcium sensing receptor: from understanding parathyroid calcium homeostasis to bone metastases. Ann R Coll Surg Engl 2008; 90:271-7. [PMID: 18492387 DOI: 10.1308/003588408x286044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cloning of the calcium sensing receptor (CaR) confirmed that parathyroid cells monitor extracellular calcium concentration ([Ca2+]ext) via a receptor-type mechanism. This lead to the hypothesis that abnormalities in the expression and/or function of the CaR could explain the biochemical abnormalities in primary hyperparathyroidism (PHPT). Cultured cells from parathyroid adenomas of patients operated for PHPT were used to monitor real-time changes in intracellular calcium concentration ([Ca2+]i) as measured by fluorescent microscopy using the Fura-2/AM dye. We found that CaR agonists trigger release of intracellular calcium pools and such responses are amplified by increasing the affinity of IP3 receptors. Using confocal microscopy to monitor membrane trafficking in living parathyroid cells labelled with the fluorescent dye FM1-43, we found that a decrease in [Ca2+]i rather than an absolute change in [Ca2+]ext is the main stimulus for exocytosis from human parathyroid cells. These data suggest that, in PHPT, a defective signalling mechanism from the CaR allows cells from parathyroid adenomas to maintain low [Ca2+]i with uninhibited PTH secretion in the face of hypercalcaemia. Over longer periods of time, CaR controls parathyroid proliferation via changes in tyrosine phosphorylation. We found that multiple proteins of molecular weight 20-65 kDa are phosphorylated within 10-60 min in response to CaR agonists. Further work demonstrated that high [Ca2+]i stimulates the expression of bcl-2 oncoprotein in cultured human parathyroid cells and that, in parathyroid adenomas, predominant expression of bcl-2 rather than bax oncoprotein might prevent apoptosis and explain the slow growth rate of these tumours. More recently, it became apparent that CaR stimulates cell proliferation in several cell types not involved in calcium homeostasis. Using archived histological material from 65 patients who died with metastatic breast cancer, we identified CaR expression predominantly in tumours from patients who developed bone rather than visceral metastases (35 of 49 versus 7 of 16; P < 0.01, chi-squared test). These data suggest that CaR expression has the potential to become a new biological marker predicting the risk of bone metastases in patients with breast cancer. A prospective study should investigate if patients with CaR-positive tumours are more likely to develop bone metastases and whether they could benefit more from prophylactic treatment with bisphosphonates or the newly developed CaR antagonists.
Collapse
Affiliation(s)
- Radu Mihai
- Department of Surgery, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
26
|
Justinich CJ, Mak N, Pacheco I, Mulder D, Wells RW, Blennerhassett MG, MacLeod RJ. The extracellular calcium-sensing receptor (CaSR) on human esophagus and evidence of expression of the CaSR on the esophageal epithelial cell line (HET-1A). Am J Physiol Gastrointest Liver Physiol 2008; 294:G120-9. [PMID: 17962359 DOI: 10.1152/ajpgi.00226.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal reflux disease and eosinophilic esophagitis are characterized by basal cell hyperplasia. The extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor, which may be activated by divalent agonists, is expressed throughout the gastrointestinal system. The CaSR may regulate proliferation or differentiation, depending on cell type and tissue. The current experiments demonstrate the expression of the CaSR on a human esophageal epithelial cell line (HET-1A) and the location and expression of the CaSR in the human esophagus. CaSR immunoreactivity was seen in the basal layer of normal human esophagus. CaSR expression was confirmed in HET-1A cells by RT-PCR, immunocytochemistry, and Western blot analysis. CaSR stimulation by extracellular calcium or agonists, such as spermine or Mg(2+), caused ERK1 and 2 activation, intracellular calcium concentration ([Ca(2+)](i)) mobilization (as assessed by microspecfluorometry using Fluo-4), and secretion of the multifunctional cytokine IL-8 (CX-CL8). HET-1A cells transiently transfected with small interfering (si)RNA duplex against the CaSR manifested attenuated responses to Ca(2+) stimulation of phospho- (p)ERK1 and 2, [Ca(2+)](i) mobilization, and IL-8 secretion, whereas responses to acetylcholine (ACh) remained sustained. An inhibitor of phosphatidylinositol-specific phospholipase C (PI-PLC) (U73122) blocked CaSR-stimulated [Ca(2+)](i) release. We conclude that the CaSR is present on basal cells of the human esophagus and is present in a functional manner on the esophageal epithelial cell line, HET-1A.
Collapse
|
27
|
Peiris D, Pacheco I, Spencer C, MacLeod RJ. The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2007; 292:G753-66. [PMID: 17138967 DOI: 10.1152/ajpgi.00225.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To understand whether postprandial extracellular Ca(2+) (Ca(o)(2+)) changes were related to intestinal epithelial homeostasis, we performed array analysis on extracellular calcium-sensing receptor (CaSR)-expressing colonic myofibroblasts (18Co cells) and observed increases in bone morphogenetic protein (BMP)-2 transcripts. The present experiments demonstrated that regulated secretion of BMP-2 occurs in response to CaSR activation of these cells and revealed a new property of BMP-2 on the intestinal barrier. Activation by Ca(o)(2+), spermine, GdCl(3), or neomycin sulfate of 18Co cells or primary isolates of myofibroblasts from the normal human colon stimulated both the synthesis (RT-PCR) and secretion (ELISA) of BMP-2. Transient transfection with short interfering RNA against CaSR completely inhibited BMP-2 secretion. Transient transfection with dominant negative CaSR (R185Q) increased the EC(50) of Ca(o)(2+) (5.7 vs. 2.3 mM). Upregulation of BMP-2 transcript and secretion occurring within 3 h of CaSR activation was prevented by actinomycin D. CaSR-mediated BMP-2 synthesis and secretion required phosphatidylinositol 3-kinase activation (as assessed by phospho-Akt generation). Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells accelerated restitution in wounded postconfluent Caco-2 cells. Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells increased the transepithelial resistance of low- and high-resistance T-84 epithelial monolayers. CaSR stimulation of T-84 epithelia and colonic myofibroblasts downregulated the BMP family antagonist Noggin, as assessed by RT-PCR and Western blot analysis. Together, our data suggest that the CaSR mediates the effective concentration of BMP-2 in the intestine, which leads to enhanced repair and barrier development.
Collapse
Affiliation(s)
- Dinithi Peiris
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, and Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Davies SL, Gibbons CE, Vizard T, Ward DT. Ca2+-sensing receptor induces Rho kinase-mediated actin stress fiber assembly and altered cell morphology, but not in response to aromatic amino acids. Am J Physiol Cell Physiol 2006; 290:C1543-51. [PMID: 16407414 DOI: 10.1152/ajpcell.00482.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca2+-sensing receptor (CaR) is a pleiotropic, type III G protein-coupled receptor (GPCR) that associates functionally with the cytoskeletal protein filamin. To investigate the effect of CaR signaling on the cytoskeleton, human embryonic kidney (HEK)-293 cells stably transfected with CaR (CaR-HEK) were incubated with CaR agonists in serum-free medium for up to 3 h. Addition of the calcimimetic NPS R-467 or exposure to high extracellular Ca2+ or Mg2+ levels elicited actin stress fiber assembly and process retraction in otherwise stellate cells. These responses were ablated by cotreatment with the calcilytic NPS 89636 and were absent in vector-transfected HEK-293 cells. Cotreatment with the Rho kinase inhibitors Y-27632 and H1152 attenuated the CaR-induced morphological change but not intracellular Ca2+ (Cai2+) mobilization or ERK activation, although transfection with a dominant-negative RhoA-binding protein also inhibited calcimimetic-induced actin stress fiber assembly. CaR effects on morphology were unaffected by inhibition of Gq/11 or Gi/o signaling, epidermal growth factor receptor, or the metalloproteinases. In contrast, CaR-induced cytoskeletal changes were not induced by the aromatic amino acids, treatments that also failed to potentiate CaR-induced ERK activation despite inducing Cai2+ mobilization. Together, these data establish that CaR can elicit Rho-mediated changes in stress fiber assembly and cell morphology, which could contribute to the receptor's physiological actions. In addition, this study provides further evidence that aromatic amino acids elicit differential signaling from other CaR agonists.
Collapse
Affiliation(s)
- Sarah L Davies
- The Univ. of Manchester, Faculty of Life Sciences, Core Technology Facility, 46 Grafton St., Manchester, M13 9NT, UK
| | | | | | | |
Collapse
|
29
|
Chattopadhyay N. Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its impact on humoral hypercalcemia of malignancy. Am J Physiol Endocrinol Metab 2006; 290:E761-70. [PMID: 16603723 DOI: 10.1152/ajpendo.00350.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The extracellular calcium-sensing receptor (CaR) plays a key role in the defense against hypercalcemia by "sensing" extracellular calcium (Ca2+(o)) levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. However, CaR function can be aberrant in certain pathophysiological states, e.g., in some types of cancers known to produce humoral hypercalcemia of malignancy (HHM) in humans and animal models in which high Ca2+(o), via the CaR, produces a homeostatically inappropriate stimulation of parathyroid hormone-related peptide (PTHrP) secretion from these tumors. Increased levels of PTHrP set a cycle in motion whereby elevated systemic levels of Ca2+(o) resulting from its increased bone-resorptive and positive renal calcium-reabsorbing effects give rise to hypercalcemia, which in turn begets worsening hypercalcemia by stimulating further release of PTHrP by the cancer cells. I review the relationship between CaR activation and PTHrP release in normal and tumor cells giving rise to HHM and/or malignant osteolysis and the actions of the receptor on key cellular events such as proliferation, angiogenesis, and apoptosis of cancer cells that will favor tumor growth and osseous metastasis. I also illustrate diverse signaling mechanisms underlying CaR-stimulated PTHrP secretion and other cellular events in tumor cells. Finally, I raise several necessary questions to demonstrate the roles of the receptor in promoting tumors and metastases that will enable consideration of the CaR as a potential antagonizing/neutralizing target for the treatment of HHM.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Div. of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
30
|
Barhoumi R, Awooda I, Mouneimne Y, Safe S, Burghardt RC. Effects of benzo-a-pyrene on oxytocin-induced Ca2+ oscillations in myometrial cells. Toxicol Lett 2006; 165:133-41. [PMID: 16567066 DOI: 10.1016/j.toxlet.2006.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Benzo-a-pyrene (BaP) is a polycyclic aromatic hydrocarbon that exists as a major environmental pollutant. The effect of this carcinogen/mutagen upon myometrial Ca(2+) signaling in a human myometrial cell line (PHM1) was examined. Exposure of cells to BaP did not alter basal Ca(2+) levels or the inositol(1,4,5) trisphosphate-releasable Ca(2+) pool. However, BaP significantly decreased the initial oxytocin-induced Ca(2+) transient and the frequency of oxytocin-induced Ca(2+)oscillations as well as delayed their onset. To determine the specific effects of BaP, pharmacologic agents that target intracellular Ca(2+) homeostasis mechanisms were used. Genistein (a non-specific tyrosine kinase inhibitor) and AG1478 (an epidermal growth factor receptor blocker) markedly reduced the oxytocin-induced Ca(2+) oscillations in control, but had no effect in BaP treated cells. Addition of epidermal growth factor or serum before or after oxytocin restored the Ca(2+) oscillations in BaP treated cells to a level similar to control cells, while the K(+) channel blocker tetraethylammonium chloride, partially restored the Ca(2+) response. These data suggest that the tyrosine kinase pathway, which is part of the G-protein coupled receptor pathway response to oxytocin in PHM1 cells, is a target of BaP action and that EGF or serum can restore the oxytocin-induced Ca(2+) oscillations.
Collapse
Affiliation(s)
- Rola Barhoumi
- Depatrment of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | | | |
Collapse
|
31
|
Bouschet T, Henley JM. Calcium as an extracellular signalling molecule: perspectives on the Calcium Sensing Receptor in the brain. C R Biol 2005; 328:691-700. [PMID: 16125647 PMCID: PMC3310908 DOI: 10.1016/j.crvi.2004.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
Calcium acts as a universal signal that is responsible for controlling a spectrum of cellular processes ranging from fertilization to apoptosis. For a long time, calcium was regarded solely as an intracellular second messenger. However, the discovery that calcium can also act as an external ligand together with the molecular cloning of its cell surface receptor, the Calcium Sensing Receptor (CaSR), demonstrated that calcium also acts as an important extracellular or first messenger. Here, we give an overview of the main structural, pharmacological and physiological features of the CaSR and provide an assessment of its functions and cellular and molecular mechanisms of action. In addition, we propose possible avenues for future research into the trafficking of CaSR and the role(s) of this receptor in the central nervous system.
Collapse
Affiliation(s)
- Tristan Bouschet
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
32
|
Current World Literature. Curr Opin Nephrol Hypertens 2005. [DOI: 10.1097/01.mnh.0000172731.05865.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Tfelt-Hansen J, Yano S, John Macleod R, Smajilovic S, Chattopadhyay N, Brown EM. High calcium activates the EGF receptor potentially through the calcium-sensing receptor in Leydig cancer cells. Growth Factors 2005; 23:117-23. [PMID: 16019433 DOI: 10.1080/08977190500126272] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor (EGF) plays an important role in the physiology and pathophysiology of the Leydig cell. In H-500 rat Leydig cancer cells, a model for humoral hypercalcemia of malignancy (HHM), we previously showed that the calcium-sensing receptor (CaR) stimulates PTHrP release and proliferation, both involving multiple mitogen-activated protein kinases. An emerging concept of signaling by G-protein coupled receptors (GPCR) is that it occurs via transactivation of receptor tyrosine kinases. Therefore, we investigated whether stimulation with calcium activates the EGFR in H-500 Leydig cancer cells. We show that treatment of H-500 cells with Ca(2+) results in EGFR phosphorylation. The CaR-induced activation of ERK1/2, induction of PTHrP release and stimulation of cellular proliferation in H-500 cells are likewise mediated, in large part, through the EGFR. In conclusion, the calcium activates the EGFR, possibly through the CaR, to regulate downstream signaling events and important biological functions in a model of HHM.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and Membrane Biology Program, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang M, Breitwieser GE. High Affinity Interaction with Filamin A Protects against Calcium-sensing Receptor Degradation. J Biol Chem 2005; 280:11140-6. [PMID: 15657061 DOI: 10.1074/jbc.m412242200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-sensing receptors (CaR) regulate cell proliferation, differentiation, and apoptosis through the MAPK pathway. MAPK pathway activation requires the cytoskeletal scaffold protein filamin A. Here we examine the interactions of CaR with filamin A in HEK-293 and M2 or A7 melanoma cells to determine how interactions with filamin A facilitate signaling. Filamin A interacts with CaR through two predicted beta-strands from residues 962 to 981; interactions between filamin A and CaR are greatly enhanced by exposure to 5 mM Ca2+. Truncations or deletions (from 972 to 997 or 962 to 981) of the CaR carboxyl terminus eliminate high affinity interactions with filamin A, but CaR-mediated MAPK pathway activation still occurs. CaR-mediated ERK phosphorylation can be localized to a predicted alpha-helix proximal to the membrane, which has been shown to be important for G protein-mediated signaling (residues 868-879). In M2 cells (-filamin A), CaR expression levels are very low; cotransfection of CaR with filamin A increases total cellular CaR and increases plasma membrane localization of CaR, facilitating CaR signaling to the MAPK pathway; similar results were obtained in HEK-293 cells. Interaction with filamin A increases cellular CaR by preventing CaR degradation, thereby facilitating CaR signaling. In addition, filamin A facilitates signaling to the MAPK pathway even by CaR truncations or deletion mutants that cannot engage in high affinity interactions with filamin A, suggesting the targeting of critical signaling proteins to CaR.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|
35
|
Abstract
The cloning and characterization of a calcium-sensing receptor from bovine parathyroid cells has opened up the possibility of modulating the activity of this receptor protein by organic small molecules, either increasing the sensitivity for calcium (calcimimetics) or decreasing the sensitivity (calciolytics), thus suppressing or stimulating parathyroid hormone (PTH) secretion and synthesis, respectively. In primary and secondary hyperparathyroidism, calcimimetics have proven to effectively lower the PTH concentration with minimal side effects. In secondary hyperparathyroidism, a specific advantage is the concomitant lowering of serum calcium and phosphate concentrations.
Collapse
|