1
|
Lee J, Matuschewski K, van Dooren G, Maier AG, Rug M. Lipid droplet dynamics are essential for the development of the malaria parasite Plasmodium falciparum. J Cell Sci 2024; 137:jcs262162. [PMID: 38962997 DOI: 10.1242/jcs.262162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Lipid droplets (LDs) are organelles that are central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM), we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or breakdown revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.
Collapse
Affiliation(s)
- Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10099 Berlin, Germany
| | - Giel van Dooren
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra ACT, 2601, Australia
| | - Melanie Rug
- Centre for Advanced Microscopy, The Australian National University, Canberra ACT, 2601, Australia
| |
Collapse
|
2
|
He TY, Li YT, Liu ZD, Cheng H, Bao YF, Zhang JL. Lipid metabolism: the potential targets for toxoplasmosis treatment. Parasit Vectors 2024; 17:111. [PMID: 38448975 PMCID: PMC10916224 DOI: 10.1186/s13071-024-06213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii). The current treatment for toxoplasmosis remains constrained due to the absence of pharmaceutical interventions. Thus, the pursuit of more efficient targets is of great importance. Lipid metabolism in T. gondii, including fatty acid metabolism, phospholipid metabolism, and neutral lipid metabolism, assumes a crucial function in T. gondii because those pathways are largely involved in the formation of the membranous structure and cellular processes such as division, invasion, egress, replication, and apoptosis. The inhibitors of T. gondii's lipid metabolism can directly lead to the disturbance of various lipid component levels and serious destruction of membrane structure, ultimately leading to the death of the parasites. In this review, the specific lipid metabolism pathways, correlative enzymes, and inhibitors of lipid metabolism of T. gondii are elaborated in detail to generate novel ideas for the development of anti-T. gondii drugs that target the parasites' lipid metabolism.
Collapse
Affiliation(s)
- Tian-Yi He
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye-Tian Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Hao Cheng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yi-Feng Bao
- Health Science Center, Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Dembele L, Dara A, Maiga M, Maiga FO, Cissoko D, Djimde AA. Imidazolopiperazine (IPZ)-Induced Differential Transcriptomic Responses on Plasmodium falciparum Wild-Type and IPZ-Resistant Mutant Parasites. Genes (Basel) 2023; 14:2124. [PMID: 38136946 PMCID: PMC10743112 DOI: 10.3390/genes14122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Imidazolopiperazine (IPZ), KAF156, a close analogue of GNF179, is a promising antimalarial candidate. IPZ is effective against Plasmodium falciparum and Plasmodium vivax clinical malaria in human with transmission blocking property in animal models and effective against liver stage parasites. Despite these excellent drug efficacy properties, in vitro parasites have shown resistance to IPZ. However, the mechanism of action and resistance of IPZ remained not fully understood. Here, we used transcriptomic analysis to elucidate mode of action of IPZs. We report, in wild-type parasites GNF179 treatment down regulated lipase enzymes, two metabolic pathways: the hydrolysis of Phosphoinositol 4,5-bipohosphate (PIP2) that produce diacyglycerol (DAG) and the cytosolic calcium Ca2+ homeostasis which are known to be essential for P. falciparum survival and proliferation, as well for membrane permeability and protein trafficking. Furthermore, in wild-type parasites, GNF179 repressed expression of Acyl CoA Synthetase, export lipase 1 and esterase enzymes. Thus, in wild-type parasites only, GNF179 treatment affected enzymes leading lipid metabolism, transport, and synthesis. Lastly, our data revealed that IPZs did not perturb known IPZ resistance genes markers pfcarl, pfact, and pfugt regulations, which are all instead possibly involved in the drug resistance that disturb membrane transport targeted by IPZ.
Collapse
Affiliation(s)
- Laurent Dembele
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore 138670, Singapore
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
| | - Mohamed Maiga
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Djeneba Cissoko
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
- African Center of Excellence in Bioinformatics (ACE), Bamako P.O. Box 1805, Mali
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), DEAP Point G, Bamako P.O. Box 1805, Mali; (A.D.); (M.M.); (F.O.M.); (D.C.); (A.A.D.)
| |
Collapse
|
4
|
Leveraging a Fluorescent Fatty Acid Probe to Discover Cell-Permeable Inhibitors of Plasmodium falciparum Glycerolipid Biosynthesis. Microbiol Spectr 2022; 10:e0245622. [PMID: 36314974 PMCID: PMC9769509 DOI: 10.1128/spectrum.02456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A sensitive and quantitative fluorescence-based approach is presented for characterizing fatty acid acquisition and lipid biosynthesis by asexually replicating, intraerythrocytic Plasmodium falciparum. We show that a BODIPY-containing, green-fluorescent fatty acid analog is efficiently and rapidly incorporated into parasite neutral lipids and phospholipids. Prelabeling with a red-fluorescent ceramide analog permits normalization and enables reliable quantitation of glycerolipid labeling. Inhibition of lipid labeling by competition with natural fatty acids and by acyl-coenzyme A synthetase and diacylglycerol acyltransferase inhibitors demonstrates that the fluorescent fatty acid probe is acquired, activated, and transferred to lipids through physiologically-relevant pathways. To assess its utility in discovering small molecules that block parasite lipid biosynthesis, the lipid labeling assay was used to screen a panel of mammalian lipase inhibitors and a selection of compounds from the "Malaria Box" anti-malarial collection. Several compounds were identified that inhibited the incorporation of the fluorescent fatty acid probe into lipids in cultured parasites at low micromolar concentrations. Two contrasting profiles of suppression of neutral lipid and phospholipid synthesis were observed, which implies the inhibition of distinct pathways. IMPORTANCE The human malaria parasite Plasmodium falciparum relies on fatty acid scavenging to supply this essential precursor of lipid synthesis during its asexual replication cycle in human erythrocytes. This dependence on host fatty acids represents a potential vulnerability that can be exploited to develop new anti-malarial therapies. The quantitative experimental approach described here provides a platform for simultaneously interrogating multiple facets of lipid metabolism- fatty acid uptake, fatty acyl-CoA synthesis, and neutral lipid and phospholipid biosynthesis- and of identifying cell-permeable inhibitors that are active in situ.
Collapse
|
5
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
6
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
7
|
Abdrabou W, Dieng MM, Diawara A, Sermé SS, Almojil D, Sombié S, Henry NB, Kargougou D, Manikandan V, Soulama I, Idaghdour Y. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab 2021; 3:1001-1016. [PMID: 34113019 DOI: 10.1038/s42255-021-00404-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Host responses to infection with the malaria parasite Plasmodium falciparum vary among individuals for reasons that are poorly understood. Here we reveal metabolic perturbations as a consequence of malaria infection in children and identify an immunosuppressive role of endogenous steroid production in the context of P. falciparum infection. We perform metabolomics on matched samples from children from two ethnic groups in West Africa, before and after infection with seasonal malaria. Analysing 306 global metabolomes, we identify 92 parasitaemia-associated metabolites with impact on the host adaptive immune response. Integrative metabolomic and transcriptomic analyses, and causal mediation and moderation analyses, reveal an infection-driven immunosuppressive role of parasitaemia-associated pregnenolone steroids on lymphocyte function and the expression of key immunoregulatory lymphocyte genes in the Gouin ethnic group. In children from the less malaria-susceptible Fulani ethnic group, we observe opposing responses following infection, consistent with the immunosuppressive role of endogenous steroids in malaria. These findings advance our understanding of P. falciparum pathogenesis in humans and identify potential new targets for antimalarial therapeutic interventions.
Collapse
Affiliation(s)
- Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology, New York University, New York, NY, USA
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Dareen Almojil
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Bere Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Creative interior design by Plasmodium falciparum: Lipid metabolism and the parasite's secret chamber. Parasitol Int 2021; 83:102369. [PMID: 33905815 DOI: 10.1016/j.parint.2021.102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Malaria parasites conceal themselves within host erythrocytes and establish a necessary logistics system through the three-membrane layered structures of these cells. To establish this system, lipid metabolism is needed for the de novo synthesis of lipids and the recycling of extracellular lipids and erythrocyte lipid components. Cholesterol supply depends on its uptake from the extracellular environment and erythrocyte cytoplasm, but phospholipids can be synthesized on their own. This differential production of lipid species creates unique modifications in the lipid profile of parasitized erythrocytes, which in turn may influence the biophysical and/or mechanical properties of organelles and vesicles and communication among them. Variations in local membrane properties possibly influence the transportation of various molecules such as parasite-derived proteins, because efficiencies in secretion, vesicle fusion and budding are partly determined by the lipid profiles. Comprehensive understanding of the parasite's lipid metabolism and the biophysics of lipid membranes provides fundamental knowledge about these pathogenic organisms and could lead to new anti-malarials.
Collapse
|
9
|
Tewari SG, Swift RP, Reifman J, Prigge ST, Wallqvist A. Metabolic alterations in the erythrocyte during blood-stage development of the malaria parasite. Malar J 2020; 19:94. [PMID: 32103749 PMCID: PMC7045481 DOI: 10.1186/s12936-020-03174-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human blood cells (erythrocytes) serve as hosts for the malaria parasite Plasmodium falciparum during its 48-h intraerythrocytic developmental cycle (IDC). Established in vitro protocols allow for the study of host–parasite interactions during this phase and, in particular, high-resolution metabolomics can provide a window into host–parasite interactions that support parasite development. Methods Uninfected and parasite-infected erythrocyte cultures were maintained at 2% haematocrit for the duration of the IDC, while parasitaemia was maintained at 7% in the infected cultures. The parasite-infected cultures were synchronized to obtain stage-dependent information of parasite development during the IDC. Samples were collected in quadruplicate at six time points from the uninfected and parasite-infected cultures and global metabolomics was used to analyse cell fractions of these cultures. Results In uninfected and parasite-infected cultures during the IDC, 501 intracellular metabolites, including 223 lipid metabolites, were successfully quantified. Of these, 19 distinct metabolites were present only in the parasite-infected culture, 10 of which increased to twofold in abundance during the IDC. This work quantified approximately five times the metabolites measured in previous studies of similar research scope, which allowed for more detailed analyses. Enrichment in lipid metabolism pathways exhibited a time-dependent association with different classes of lipids during the IDC. Specifically, enrichment occurred in sphingolipids at the earlier stages, and subsequently in lysophospholipid and phospholipid metabolites at the intermediate and end stages of the IDC, respectively. In addition, there was an accumulation of 18-, 20-, and 22-carbon polyunsaturated fatty acids, which produce eicosanoids and promote gametocytogenesis in infected erythrocyte cultures. Conclusions The current study revealed a number of heretofore unidentified metabolic components of the host–parasite system, which the parasite may exploit in a time-dependent manner to grow over the course of its development in the blood stage. Notably, the analyses identified components, such as precursors of immunomodulatory molecules, stage-dependent lipid dynamics, and metabolites, unique to parasite-infected cultures. These conclusions are reinforced by the metabolic alterations that were characterized during the IDC, which were in close agreement with those known from previous studies of blood-stage infection.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, USA.
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA.
| |
Collapse
|
10
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
11
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
12
|
Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host Microbe 2016; 18:371-81. [PMID: 26355219 DOI: 10.1016/j.chom.2015.08.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022]
Abstract
During its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%-75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts.
Collapse
|
13
|
Helms JB, Kaloyanova DV, Strating JRP, van Hellemond JJ, van der Schaar HM, Tielens AGM, van Kuppeveld FJM, Brouwers JF. Targeting of the hydrophobic metabolome by pathogens. Traffic 2016; 16:439-60. [PMID: 25754025 PMCID: PMC7169838 DOI: 10.1111/tra.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
The hydrophobic molecules of the metabolome – also named the lipidome – constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host–pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs.
Collapse
Affiliation(s)
- J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 2015; 49:304-26. [PMID: 25039762 DOI: 10.3109/10409238.2014.931337] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid droplet (LD) is a phylogenetically conserved organelle. In eukaryotes, it is born from the endoplasmic reticulum, but unlike its parent organelle, LDs are the only known cytosolic organelles that are micellar in structure. LDs are implicated in numerous physiological and pathophysiological functions. Many aspects of the LD has captured the attention of diverse scientists alike and has recently led to an explosion in information on the LD biogenesis, expansion and fusion, identification of LD proteomes and diseases associated with LD biology. This review will provide a brief history of this fascinating organelle and provide some contemporary views of unanswered questions in LD biogenesis.
Collapse
Affiliation(s)
- David A Gross
- Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore , Singapore , and
| | | |
Collapse
|
15
|
Liu J, He XF, Wang GH, Merino EF, Yang SP, Zhu RX, Gan LS, Zhang H, Cassera MB, Wang HY, Kingston DGI, Yue JM. Aphadilactones A-D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant. J Org Chem 2013; 79:599-607. [PMID: 24344740 DOI: 10.1021/jo402340h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aphadilactones A-D (1-4), four diastereoisomers possessing an unprecedented carbon skeleton, were isolated from the Meliaceae plant Aphanamixis grandifolia. Their challenging structures and absolute configurations were determined by a combination of spectroscopic data, chemical degradation, fragment synthesis, experimental CD spectra, and ECD calculations. Aphadilactone C (3) with the 5S,11S,5'S,11'S configuration showed potent and selective inhibition against the diacylglycerol O-acyltransferase-1 (DGAT-1) enzyme (IC50 = 0.46 ± 0.09 μM, selectivity index > 217) and is the strongest natural DGAT-1 inhibitor discovered to date. In addition, compounds 1-4 showed significant antimalarial activities with IC50 values of 190 ± 60, 1350 ± 150, 170 ± 10, and 120 ± 50 nM, respectively.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lige B, Sampels V, Coppens I. Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol Microbiol 2013; 87:951-67. [PMID: 23374239 DOI: 10.1111/mmi.12142] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
Abstract
Lipid bodies are eukaryotic structures for temporary storage of neutral lipids such as acylglycerols and steryl esters. Fatty acyl-CoA and cholesterol are two substrates for cholesteryl ester (CE) synthesis via the ACAT reaction. The intracellular parasite Toxoplasma gondii is incapable of sterol synthesis and unremittingly scavenges cholesterol from mammalian host cells. We previously demonstrated that the parasite expresses a cholesteryl ester-synthesizing enzyme, TgACAT1. In this article, we identified and characterized a second ACAT-like enzyme, TgACAT2, which shares 56% identity with TgACAT1. Both enzymes are endoplasmic reticulum-associated and contribute to CE formation for storage in lipid bodies. While TgACAT1 preferentially utilizes palmitoyl-CoA, TgACAT2 has broader fatty acid specificity and produces more CE. Genetic ablation of each individual ACAT results in parasite growth impairment whereas dual ablation of ACAT1 and ACAT2 is not tolerated by Toxoplasma. ΔACAT1 and ΔACAT2 parasites have reduced CE levels, fewer lipid bodies, and accumulate free cholesterol, which causes injurious membrane effects. Mutant parasites are particularly vulnerable to ACAT inhibitors. This study underlines the important physiological role of ACAT enzymes to store cholesterol in a sterol-auxotrophic organism such as Toxoplasma, and furthermore opens up possibilities of exploiting TgACAT as targets for the development of antitoxoplasmosis drugs.
Collapse
Affiliation(s)
- Bao Lige
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
17
|
Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 2013; 12:246-58. [PMID: 22901544 PMCID: PMC3501726 DOI: 10.1016/j.chom.2012.06.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/02/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022]
Abstract
Asexual stage Plasmodium falciparum replicates and undergoes a tightly regulated developmental process in human erythrocytes. One mechanism involved in the regulation of this process is posttranslational modification (PTM) of parasite proteins. Palmitoylation is a PTM in which cysteine residues undergo a reversible lipid modification, which can regulate target proteins in diverse ways. Using complementary palmitoyl protein purification approaches and quantitative mass spectrometry, we examined protein palmitoylation in asexual-stage P. falciparum parasites and identified over 400 palmitoylated proteins, including those involved in cytoadherence, drug resistance, signaling, development, and invasion. Consistent with the prevalence of palmitoylated proteins, palmitoylation is essential for P. falciparum asexual development and influences erythrocyte invasion by directly regulating the stability of components of the actin-myosin invasion motor. Furthermore, P. falciparum uses palmitoylation in diverse ways, stably modifying some proteins while dynamically palmitoylating others. Palmitoylation therefore plays a central role in regulating P. falciparum blood stage development.
Collapse
Affiliation(s)
- Matthew L Jones
- Malaria Programme, The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | |
Collapse
|
18
|
Gibberellin biosynthetic inhibitors make human malaria parasite Plasmodium falciparum cells swell and rupture to death. PLoS One 2012; 7:e32246. [PMID: 22412858 PMCID: PMC3296703 DOI: 10.1371/journal.pone.0032246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/24/2012] [Indexed: 01/25/2023] Open
Abstract
Malaria remains as one of the most devastating infectious disease, and continues to exact an enormous toll in medical cost and days of labor lost especially in the tropics. Effective malaria control and eventual eradication remain a huge challenge, with efficacious antimalarials as important intervention/management tool. Clearly new alternative drugs that are more affordable and with fewer side effects are desirable. After preliminary in vitro assays with plant growth regulators and inhibitors, here, we focus on biosynthetic inhibitors of gibberellin, a plant hormone with many important roles in plant growth, and show their inhibitory effect on the growth of both apicomplexa, Plasmodium falciparum and Toxoplasma gondii. Treatment of P. falciparum cultures with the gibberellin biosynthetic inhibitors resulted in marked morphological changes that can be reversed to a certain degree under hyperosmotic environment. These unique observations suggest that changes in the parasite membrane permeability may explain the pleiotropic effects observed within the intracellular parasites.
Collapse
|
19
|
Abstract
Lipid droplets (LDs) are highly dynamic cell organelles involved in energy homeostasis and membrane trafficking. Here, we review how select pathogens interact with LDs. Several RNA viruses use host LDs at different steps of their life cycle. Some intracellular bacteria and parasites usurp host LDs or encode their own lipid biosynthesis machinery, thus allowing production of LDs independently of their host. Although many mechanistic details of host/pathogen LD interactions are unknown, a picture emerges in which the unique cellular architecture and energy stored in LDs are important in the replication of diverse pathogens.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | |
Collapse
|
20
|
Youssef DA, Miller CW, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB, Peiris AN. Antimicrobial implications of vitamin D. DERMATO-ENDOCRINOLOGY 2011; 3:220-9. [PMID: 22259647 DOI: 10.4161/derm.3.4.15027] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 12/14/2022]
Abstract
Evidence exists that vitamin D has a potential antimicrobial activity and its deficiency has deleterious effects on general well-being and longevity. Vitamin D may reduce the risk of infection through multiple mechanisms. Vitamin D boosts innate immunity by modulating production of anti-microbial peptides (AMPs) and cytokine response. Vitamin D and its analogues via these mechanisms are playing an increasing role in the management of atopic dermatitis, psoriasis, vitiligo, acne and rosacea. Vitamin D may reduce susceptibility to infection in patients with atopic dermatitis and the ability to regulate local immune and inflammatory responses offers exciting potential for understanding and treating chronic inflammatory dermatitides. Moreover, B and T cell activation as well as boosting the activity of monocytes and macrophages also contribute to a potent systemic anti-microbial effect. The direct invasion by pathogenic organisms may be minimized at sites such as the respiratory tract by enhancing clearance of invading organisms. A vitamin D replete state appears to benefit most infections, with the possible noteworthy exception of Leishmaniasis. Antibiotics remain an expensive option and misuse of these agents results in significant antibiotic resistance and contributes to escalating health care costs. Vitamin D constitutes an inexpensive prophylactic option and possibly therapeutic product either by itself or as a synergistic agent to traditional antimicrobial agents. This review outlines the specific antimicrobial properties of vitamin D in combating a wide range of organisms. We discuss the possible mechanisms by which vitamin D may have a therapeutic role in managing a variety of infections.
Collapse
Affiliation(s)
- Dima A Youssef
- Mountain Home VAMC Medicine Service; Mountain Home; TN USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hoang AN, Sandlin RD, Omar A, Egan TJ, Wright DW. The neutral lipid composition present in the digestive vacuole of Plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy. Biochemistry 2010; 49:10107-16. [PMID: 20979358 DOI: 10.1021/bi101397u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of β-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.
Collapse
Affiliation(s)
- Anh N Hoang
- Department of Chemistry, Vanderbilt University, Station B351822, Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
22
|
Egan TJ. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem 2008; 102:1288-99. [DOI: 10.1016/j.jinorgbio.2007.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/19/2007] [Accepted: 10/31/2007] [Indexed: 11/15/2022]
|
23
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Hemozoin: oil versus water. Parasitol Int 2007; 57:89-96. [PMID: 18373972 DOI: 10.1016/j.parint.2007.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Because the quinolines inhibit heme crystallization within the malaria parasite much work has focused on mechanism of formation and inhibition of hemozoin. Here we review the recent evidence for heme crystallization within lipids in diverse parasites and the new implications of a lipid site of crystallization for drug targeting. Within leukocytes hemozoin can generate toxic radical lipid metabolites, which may alter immune function or reduce deformability of uninfected erythrocytes.
Collapse
|
25
|
Kita K, Shiomi K, Omura S. Advances in drug discovery and biochemical studies. Trends Parasitol 2007; 23:223-9. [PMID: 17383234 DOI: 10.1016/j.pt.2007.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/26/2007] [Accepted: 03/12/2007] [Indexed: 11/30/2022]
Abstract
Japanese researchers continue to discover new means to combat parasites and make important contributions toward developing tools for global control of parasitic diseases. Streptomyces avermectinius, the source of ivermectin, was discovered in Japan in the early 1970s and renewed and vigorous screening of microbial metabolites in recent years has led to the discovery of new antiprotozoals and anthelminthics, including antimalarial drugs. Intensive studies of parasite energy metabolism, such as NADH-fumarate reductase systems and the synthetic pathways of nucleic acids and amino acids, also contribute to the identification of novel and unique drug targets.
Collapse
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
26
|
Wenk MR. Lipidomics of host-pathogen interactions. FEBS Lett 2006; 580:5541-51. [PMID: 16859687 DOI: 10.1016/j.febslet.2006.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/02/2006] [Accepted: 07/03/2006] [Indexed: 12/16/2022]
Abstract
The cell biology of intracellular pathogens (viruses, bacteria, eukaryotic parasites) has provided us with molecular information of host-pathogen interactions. As a result it is becoming increasingly evident that lipids play important roles at various stages of host-pathogen interactions. They act in first line recognition and host cell signaling during pathogen docking, invasion and intracellular trafficking. Lipid metabolism is a housekeeping function in energy homeostasis and biomembrane synthesis during pathogen replication and persistence. Lipids of enormous chemical diversity play roles as immunomodulatory factors. Thus, novel biochemical analytics in combination with cell and molecular biology are a promising recipe for dissecting the roles of lipids in host-pathogen interactions.
Collapse
Affiliation(s)
- Markus R Wenk
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, 8 Medical Drive, Block MD7, Singapore 117597, Singapore.
| |
Collapse
|
27
|
Sonda S, Hehl AB. Lipid biology of Apicomplexa: perspectives for new drug targets, particularly for Toxoplasma gondii. Trends Parasitol 2005; 22:41-7. [PMID: 16300997 DOI: 10.1016/j.pt.2005.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/20/2005] [Accepted: 11/07/2005] [Indexed: 11/19/2022]
Abstract
Development of effective therapies for intracellular eukaryotic pathogens is a serious challenge, given the protected location of these pathogens and the similarity of their biology to that of the host. Identifying cellular processes that are unique to the parasite is therefore a crucial step towards defining appropriate drug targets. In the case of the apicomplexan parasite Toxoplasma gondii, the need to find alternative treatments is imperative because of the poor tolerability and frequent side-effects associated with existing therapeutic strategies. The discovery that the parasite uses lipid synthetic pathways which are different from, or absent in, the mammalian host is now driving a renewed interest in T. gondii lipid biology. Recent achievements in this field are promising and suggest that the elucidation of lipid pathways will provide new opportunities for designing potent antiparasitic strategies.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
28
|
Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:597-615. [PMID: 15862574 DOI: 10.1016/j.ijpara.2005.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
The fast intracellular multiplication of apicomplexan parasites including Toxoplasma and Plasmodium, requires large amounts of lipids necessary for the membrane biogenesis of new progenies. Hence, the study of lipids is fundamental in order to understand the biology and pathogenesis of these deadly organisms. Much has been reported on the importance of polar lipids, e.g. phospholipids in Plasmodium. Comparatively, little attention has been paid to the metabolism of neutral lipids, including sterols, steryl esters and acylglycerols. In eukaryotic cells, free sterols are membrane components whereas steryl esters and acylglycerols are stored in cytosolic lipid inclusions. The first part of this review describes the recent advances in neutral lipid synthesis and storage in Toxoplasma and Plasmodium. New potential pharmacological targets in the pathways producing neutral lipids are outlined. In addition to lipid bodies, Apicomplexa contain unique secretory organelles involved in parasite invasion named rhoptries. These compartments appear to sequester most of the cholesterol found in the exocytic pathway. The second part of the review focuses on rhoptry cholesterol and its potential roles in the biogenesis, structural organisation and function of these unique organelles among eukaryotes.
Collapse
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2223, USA.
| | | |
Collapse
|