1
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
3
|
Aydemir E, Yılmaz NZ, Bayrak ÖF, Sahin F. Investigating the Effects of Chordoma Cell-Derived Exosomes on the Tumorigenicity of Nucleus Pulposus Cells. J Neurol Surg B Skull Base 2024; 85:161-167. [PMID: 38449582 PMCID: PMC10914466 DOI: 10.1055/a-2018-4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Objective Interaction of tumor cells with the surrounding environment is essential for tumor growth and progression that eventually leads to metastasis. Growing evidence shows that extracellular vesicles also known as exosomes play a crucial role in signaling between the tumor and its microenvironment. Tumor-derived exosomes have generally protumorigenic effects such as metastasis, hypoxia, angiogenesis, and epithelial-mesenchymal transition. Methods In this study, exosomes were isolated from a chordoma cell line, MUG-Chor1, and characterized subsequently. The number of exosomes was determined and introduced into the healthy nucleus pulposus (NP) cells for 140 days. The protumorigenic effects of a chordoma cell line-derived exosomes that initiate the tumorigenesis on NP cells were investigated. The impact of tumor-derived exosomes on various cellular events including cell cycle, migration, proliferation, apoptosis, and viability has been studied by treating NP cells with chordoma cell-line-derived exosomes cells. Results Upon treatment with exosomes, the NP cells not only gained a chordoma-like morphology but also molecular characteristics such as alterations in the levels of certain gene expressions. The migratory and angiogenic capabilities of NP cells increased after treatment with chordoma-derived exosomes. Conclusion Based on our findings, we can conclude that exosomes carry information from tumor cells and may exert tumorigenic effects on nontumorous cells.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Türkiye
| | - Nur Zübeyda Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Türkiye
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
4
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
5
|
Günay B, Matthews E, Morgan J, Tryfonidou MA, Saldova R, Pandit A. An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation. FASEB Bioadv 2023; 5:321-335. [PMID: 37554546 PMCID: PMC10405234 DOI: 10.1096/fba.2023-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 08/10/2023] Open
Abstract
Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging.
Collapse
Affiliation(s)
- Büşra Günay
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Elizabeth Matthews
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Jack Morgan
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Radka Saldova
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
- School of Medicine, College of Health and Agricultural ScienceUniversity College DublinDublinIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
6
|
Taniguchi Y, Akune T, Nishida N, Omori G, Ha K, Ueno K, Saito T, Oichi T, Koike A, Mabuchi A, Oka H, Muraki S, Oshima Y, Kawaguchi H, Nakamura K, Tokunaga K, Tanaka S, Yoshimura N. A common variant rs2054564 in ADAMST17 is associated with susceptibility to lumbar spondylosis. Sci Rep 2023; 13:4900. [PMID: 36966180 PMCID: PMC10039864 DOI: 10.1038/s41598-023-32155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/23/2023] [Indexed: 03/27/2023] Open
Abstract
The molecular pathophysiology underlying lumbar spondylosis development remains unclear. To identify genetic factors associated with lumbar spondylosis, we conducted a genome-wide association study using 83 severe lumbar spondylosis cases and 182 healthy controls and identified 65 candidate disease-associated single nucleotide polymorphisms (SNPs). Replication analysis in 510 case and 911 control subjects from five independent Japanese cohorts identified rs2054564, located in intron 7 of ADAMTS17, as a disease-associated SNP with a genome-wide significance threshold (P = 1.17 × 10-11, odds ratio = 1.92). This association was significant even after adjustment of age, sex, and body mass index (P = 7.52 × 10-11). A replication study in a Korean cohort, including 123 case and 319 control subjects, also verified the significant association of this SNP with severe lumbar spondylosis. Immunohistochemistry revealed that fibrillin-1 (FBN1) and ADAMTS17 were co-expressed in the annulus fibrosus of intervertebral discs (IVDs). ADAMTS17 overexpression in MG63 cells promoted extracellular microfibrils biogenesis, suggesting the potential role of ADAMTS17 in IVD function through interaction with fibrillin fibers. Finally, we provided evidence of FBN1 involvement in IVD function by showing that lumbar IVDs in patients with Marfan syndrome, caused by heterozygous FBN1 gene mutation, were significantly more degenerated. We identified a common SNP variant, located in ADAMTS17, associated with susceptibility to lumbar spondylosis and demonstrated the potential role of the ADAMTS17-fibrillin network in IVDs in lumbar spondylosis development.
Collapse
Affiliation(s)
- Yuki Taniguchi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Surgical Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| | - Toru Akune
- Hospital, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-0042, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Go Omori
- Department of Health and Sports, Faculty of Health and Science, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Kim Ha
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 18450, Korea
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Taku Saito
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Takeshi Oichi
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Asako Koike
- Healthcare Business Division, Hitachi, Ltd., Tokyo, 105-6412, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hiroyuki Oka
- Department of Medical Research and Management for Musculoskeletal Pain, 22nd Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Shigeyuki Muraki
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yasushi Oshima
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroshi Kawaguchi
- Orthopaedics and Spine Department, Tokyo Neurological Center, Tokyo, 105-0001, Japan
| | - Kozo Nakamura
- Department of Orthopedics, Towa Hospital, Tokyo, 120-0003, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Sakae Tanaka
- Department of Orthopedics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, 113-8654, Japan
| |
Collapse
|
7
|
Huang X, Chen D, Liang C, Shi K, Zhou X, Zhang Y, Li Y, Chen J, Xia K, Shu J, Yang B, Wang J, Xu H, Yu C, Cheng F, Wang S, Zhang Y, Wang C, Ying L, Li H, Han M, Li F, Tao Y, Zhao Q, Chen Q. Swelling-Mediated Mechanical Stimulation Regulates Differentiation of Adipose-Derived Mesenchymal Stem Cells for Intervertebral Disc Repair Using Injectable UCST Microgels. Adv Healthc Mater 2023; 12:e2201925. [PMID: 36250343 DOI: 10.1002/adhm.202201925] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 01/26/2023]
Abstract
Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.
Collapse
Affiliation(s)
- Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Di Chen
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kesi Shi
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiangjie Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jiawei Shu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Biao Yang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Haibin Xu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chao Yu
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Feng Cheng
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shaoke Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yongxiang Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Hao Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meiling Han
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, 310009, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
8
|
He S, Zhang Y, Zhou Z, Shao X, Chen K, Dai S, Liang T, Qian Z, Luo Z. Similarity and difference between aging and puncture-induced intervertebral disc degeneration. J Orthop Res 2022; 40:2565-2575. [PMID: 35072275 DOI: 10.1002/jor.25281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
The purpose of our study was to investigate the changes in micromorphology and mechanical properties of intervertebral discs degeneration induced by aging and puncture. Normal group (NG), 2 weeks post-puncture degeneration group (PDG) and aging degeneration group (ADG) each included 10 rats. Plain film, magnetic resonance imaging, and histological testing were utilized to assess intervertebral disc degeneration. Atomic force microscope was utilized to analyze the microstructure and elastic modulus of the intervertebral disc, while immunohistochemistry was employed to assess alterations in the cell matrix using collagen I, collagen II, matrix metalloproteinase-3 (MMP-3), and tumour necrosis factor-α (TNF-α). The results showed that the disc height ratio between PDG and ADG decreased. In the PDG and ADG group, histological scores both increased, the gray value of the T2 signal decreased, the proportion of MMP-3 and TNF-positive cells in intervertebral disc tissues was higher (p < 0.05) and the IOD values of COL-2 lower in intervertebral disc tissues (p < 0.05). The elastic modulus of PDG and ADG annulus fibers (AF) increased compared to the NG (p < 0.05); when compared to PDG, the elastic modulus of ADG AF decreased (p < 0.05). The elastic modulus of PDG and ADG collagen increased in the nucleus pulposus (NP, p < 0.05); ADG had a greater AF diameter than NG and PDG (p < 0.05). The results indicated that ADG fiber diameter thickens, and chronic inflammation indicators rise; PDG suffers from severe extracellular matrix loss. The degeneration of the ADG and PDG intervertebral discs is different. The results provide foundation for clinical research.
Collapse
Affiliation(s)
- Shuangjun He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Danyang, Jiangsu, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Shao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kangwu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shouqian Dai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Liang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zongping Luo
- Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
10
|
Rohanifar M, Clayton SW, Easson GW, Patil DS, Lee F, Jing L, Barcellona MN, Speer JE, Stivers JJ, Tang SY, Setton LA. Single Cell RNA-Sequence Analyses Reveal Uniquely Expressed Genes and Heterogeneous Immune Cell Involvement in the Rat Model of Intervertebral Disc Degeneration. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:8244. [PMID: 36451894 PMCID: PMC9706593 DOI: 10.3390/app12168244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points. The cells from these IVDs were extracted and transcriptionally profiled at the single-cell resolution. Unsupervised cluster analysis revealed the presence of four known cell types in both non-degenerative and degenerated IVDs based on previously established gene markers: IVD cells, endothelial cells, myeloid cells, and lymphoid cells. As a majority of cells were associated with the IVD cell cluster, sub-clustering was used to further identify the cell populations of the nucleus pulposus, inner and outer annulus fibrosus. The most notable difference between control and degenerated IVDs was the increase of myeloid and lymphoid cells in degenerated samples at two- and eight-weeks post-surgery. Differential gene expression analysis revealed multiple distinct cell types from the myeloid and lymphoid lineages, most notably macrophages and B lymphocytes, and demonstrated a high degree of immune specificity during degeneration. In addition to the heterogenous infiltrating immune cell populations in the degenerating IVD, the increased number of cells in the AF sub-cluster expressing Ngf and Ngfr, encoding for p75NTR, suggest that NGF signaling may be one of the key mediators of the IVD crosstalk between immune and neuronal cell populations. These findings provide the basis for future work to understand the involvement of select subsets of non-resident cells in IVD degeneration.
Collapse
Affiliation(s)
- Milad Rohanifar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sade W. Clayton
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garrett W.D. Easson
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepanjali S. Patil
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Frank Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marcos N. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Julie E. Speer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jordan J. Stivers
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon Y. Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lori A. Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Direct Reprogramming and Induction of Human Dermal Fibroblasts to Differentiate into iPS-Derived Nucleus Pulposus-like Cells in 3D Culture. Int J Mol Sci 2022; 23:ijms23074059. [PMID: 35409417 PMCID: PMC8999916 DOI: 10.3390/ijms23074059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
Collapse
|
12
|
Tu J, Li W, Yang S, Yang P, Yan Q, Wang S, Lai K, Bai X, Wu C, Ding W, Cooper‐White J, Diwan A, Yang C, Yang H, Zou J. Single-Cell Transcriptome Profiling Reveals Multicellular Ecosystem of Nucleus Pulposus during Degeneration Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103631. [PMID: 34825784 PMCID: PMC8787427 DOI: 10.1002/advs.202103631] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Although degeneration of the nucleus pulposus (NP) is a major contributor to intervertebral disc degeneration (IVDD) and low back pain, the underlying molecular complexity and cellular heterogeneity remain poorly understood. Here, a comprehensive single-cell resolution transcript landscape of human NP is reported. Six novel human NP cells (NPCs) populations are identified by their distinct molecular signatures. The potential functional differences among NPC subpopulations are analyzed. Predictive transcripts, transcriptional factors, and signal pathways with respect to degeneration grades are explored. It is reported that fibroNPCs is the subpopulation for end-stage degeneration. CD90+NPCs are observed to be progenitor cells in degenerative NP tissues. NP-infiltrating immune cells comprise a previously unrecognized diversity of cell types, including granulocytic myeloid-derived suppressor cells (G-MDSCs). Integrin αM (CD11b) and oxidized low density lipoprotein receptor 1 (OLR1) as surface markers of NP-derived G-MDSCs are uncovered. The G-MDSCs are found to be enriched in mildly degenerated (grade II and III) NP tissues compared to severely degenerated (grade IV and V) NP tissues. Their immunosuppressive function and alleviation effects on NPCs' matrix degradation are revealed in vitro. Collectively, this study reveals the NPC-type complexity and phenotypic characteristics in NP, thereby providing new insights and clues for IVDD treatment.
Collapse
Affiliation(s)
- Ji Tu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Wentian Li
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
| | - Sidong Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Pengyi Yang
- Charles Perkins CentreThe University of SydneySydneyNSW2006Australia
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
- Computational Systems Biology GroupChildren's Medical Research InstituteFaculty of Medicine and HealthThe University of SydneyWestmeadNSW2145Australia
| | - Qi Yan
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Shenyu Wang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Kaitao Lai
- The ANZAC Research InstituteConcord Repatriation General HospitalSydneyNSW2139Australia
- Concord Clinical SchoolFaculty of Medicine and HealthThe University of SydneySydneyNSW2139Australia
| | - Xupeng Bai
- Cancer Care CentreSt. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Cenhao Wu
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Wenyuan Ding
- Department of Spine SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuang05000China
| | - Justin Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaBrisbaneQueensland4072Australia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueensland4072Australia
| | - Ashish Diwan
- Spine Labs, St. George and Sutherland Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNew South Wales2217Australia
- Spine ServiceDepartment of Orthopaedic SurgerySt. George HospitalKogarahNew South Wales2217Australia
| | - Cao Yang
- Department of Orthopaedic SurgeryWuhan Union HospitalTongji Medical SchoolHuazhong University of Science and TechnologyWuhanHubei430022China
| | - Huilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| | - Jun Zou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhou215006China
| |
Collapse
|
13
|
Yue L, Hu Y, Fu H, Qi L, Sun H. Hydrogen sulfide regulates autophagy in nucleus pulposus cells under hypoxia. JOR Spine 2021; 4:e1181. [PMID: 35005447 PMCID: PMC8717115 DOI: 10.1002/jsp2.1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Hydrogen sulfide (H2S) has been found to act as an important gasotransmitter to regulate cell activities. This study aimed to investigate the effect of H2S on autophagy of nucleus pulposus (NP) cells under hypoxia and possible mechanism. MATERIALS AND METHODS NP cells were isolated from rat caudal discs. Cobalt chloride was used to mimic hypoxia, sodium hydrosulfide was used to emulate exogenous H2S and 3-methyladenine was used to block cell autophagy. Cell viability was assessed by phase contrast microscope and Cell Counting Kit-8 method. Moreover, expression of key autophagic proteins was analyzed via western blotting, and transmission electron microscopy was performed to detect autophagosomes. RESULTS Hypoxia markedly impaired NP cell proliferation compared with control. Whereas H2S provided pro-proliferation and pro-autophagy effects on hypoxic NP cells. However, these beneficial impact of H2S on hypoxic NP cells were reversed by autophagy inhibitor. CONCLUSIONS Our results showed that H2S played a cytoprotective role in NP cells exposed to hypoxia in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Lei Yue
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Yongkai Hu
- Department of OrthopedicsGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Haoyong Fu
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Longtao Qi
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| | - Haolin Sun
- Department of OrthopaedicsPeking University First Hospital, Peking UniversityBeijingChina
| |
Collapse
|
14
|
Kudelko M, Chen P, Tam V, Zhang Y, Kong OY, Sharma R, Au TY, To MKT, Cheah KS, Chan WC, Chan D. PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biol Plus 2021; 12:100082. [PMID: 34409283 PMCID: PMC8361275 DOI: 10.1016/j.mbplus.2021.100082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Proteomics of healthy mouse IVDs differentiating compartments and spine levels. NP cells feature vacuoles with lysosomal, transport and cell–cell communication functions. Collagen XII, decorin and other ECM proteins contribute to function of the AF. Distinct proteomics between lumbar and tail discs. Mouse is a relevant model for human disc biology but care is needed in its use.
Mice are commonly used to study intervertebral disc (IVD) biology and related diseases such as IVD degeneration. Discs from both the lumbar and tail regions are used. However, little is known about compartmental characteristics in the different regions, nor their relevance to the human setting, where a functional IVD unit depends on a homeostatic proteome. Here, we address these major gaps through comprehensive proteomic profiling and in-depth analyses of 8-week-old healthy murine discs, followed by comparisons with human. Leveraging on a dataset of over 2,700 proteins from 31 proteomic profiles, we identified key molecular and cellular differences between disc compartments and spine levels, but not gender. The nucleus pulposus (NP) and annulus fibrosus (AF) compartments differ the most, both in matrisome and cellularity contents. Differences in the matrisome are consistent with the fibrous nature required for tensile strength in the AF and hydration property in the NP. Novel findings for the NP cells included an enrichment in cell junction proteins for cell–cell communication (Cdh2, Dsp and Gja1) and osmoregulation (Slc12a2 and Wnk1). In NP cells, we detected heterogeneity of vacuolar organelles; where about half have potential lysosomal function (Vamp3, Copb2, Lamp1/2, Lamtor1), some contain lipid droplets and others with undefined contents. The AF is enriched in proteins for the oxidative stress responses (Sod3 and Clu). Interestingly, mitochondrial proteins are elevated in the lumbar than tail IVDs that may reflect differences in metabolic requirement. Relative to the human, cellular and structural information are conserved for the AF. Even though the NP is more divergent between mouse and human, there are similarities at the level of cell biology. Further, common cross-species markers were identified for both NP (KRT8/19, CD109) and AF (COL12A1). Overall, mouse is a relevant model to study IVD biology, and an understanding of the limitation will facilitate research planning and data interpretation, maximizing the translation of research findings to human IVDs.
Collapse
Affiliation(s)
- Mateusz Kudelko
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Oi-Yin Kong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rakesh Sharma
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tiffany Y.K. Au
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Kathryn S.E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Corresponding author at: School of Biomedical Sciences, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
15
|
Involvement of Autophagy in Rat Tail Static Compression-Induced Intervertebral Disc Degeneration and Notochordal Cell Disappearance. Int J Mol Sci 2021; 22:ijms22115648. [PMID: 34073333 PMCID: PMC8199019 DOI: 10.3390/ijms22115648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
The intervertebral disc is the largest avascular low-nutrient organ in the body. Thus, resident cells may utilize autophagy, a stress-response survival mechanism, by self-digesting and recycling damaged components. Our objective was to elucidate the involvement of autophagy in rat experimental disc degeneration. In vitro, the comparison between human and rat disc nucleus pulposus (NP) and annulus fibrosus (AF) cells found increased autophagic flux under serum deprivation rather in humans than in rats and in NP cells than in AF cells of rats (n = 6). In vivo, time-course Western blotting showed more distinct basal autophagy in rat tail disc NP tissues than in AF tissues; however, both decreased under sustained static compression (n = 24). Then, immunohistochemistry displayed abundant autophagy-related protein expression in large vacuolated disc NP notochordal cells of sham rats. Under temporary static compression (n = 18), multi-color immunofluorescence further identified rapidly decreased brachyury-positive notochordal cells with robust expression of autophagic microtubule-associated protein 1 light chain 3 (LC3) and transiently increased brachyury-negative non-notochordal cells with weaker LC3 expression. Notably, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic death was predominant in brachyury-negative non-notochordal cells. Based on the observed notochordal cell autophagy impairment and non-notochordal cell apoptosis induction under unphysiological mechanical loading, further investigation is warranted to clarify possible autophagy-induced protection against notochordal cell disappearance, the earliest sign of disc degeneration, through limiting apoptosis.
Collapse
|
16
|
Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater 2021; 6:3541-3556. [PMID: 33842740 PMCID: PMC8022111 DOI: 10.1016/j.bioactmat.2021.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate-e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AF, annulus fibrosus
- Col I–S, collagen type I solution
- DAF, decellularized annulus fibrosus
- DAF-G, decellularized annulus fibrosus hydrogel
- DAF-S, decellularized annulus fibrosus solution
- DNP, decellularized nucleus pulposus
- DNP-G, decellularized nucleus pulposus hydrogel
- DNP-S, decellularized nucleus pulposus solution
- DTM, decellularized tissue matrix
- Decellularized tissue matrix
- Differentiation
- ECM, extracellular matrix
- FAF, fresh annulus fibrosus
- FNP, fresh nucleus pulposus
- IDD, intervertebral disc degeneration
- Intervertebral disc
- MSC, mesenchymal stem cell
- NP, nucleus pulposus
- Tissue specificity
- YAP1
- YAP1, yes-associated protein 1
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Zilong Rao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Daping Quan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China,Corresponding author. School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|
17
|
Zhang Y, Zhang Z, Chen P, Ma CY, Li C, Au TYK, Tam V, Peng Y, Wu R, Cheung KMC, Sham PC, Tse HF, Chan D, Leung VY, Cheah KSE, Lian Q. Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Rep 2021; 30:2791-2806.e5. [PMID: 32101752 DOI: 10.1016/j.celrep.2020.01.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-β pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Zhao Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Peikai Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chui Yan Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Tiffany Y K Au
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Yan Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ron Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Pak C Sham
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China; The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Tam V, Chen P, Yee A, Solis N, Klein T, Kudelko M, Sharma R, Chan WC, Overall CM, Haglund L, Sham PC, Cheah KSE, Chan D. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 2020; 9:64940. [PMID: 33382035 PMCID: PMC7857729 DOI: 10.7554/elife.64940] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key directional trends spanning the lateral and anteroposterior axes were derived from high-resolution spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific profiles of regulatory activities and displayed potential paths of deconstruction in the level- and location-matched aged cadaveric discs. Machine learning methods predicted a ‘hydration matrisome’ that connects extracellular matrix with MRI intensity. Importantly, the static proteome used as point-references can be integrated with dynamic proteome (SILAC/degradome) and transcriptome data from multiple clinical samples, enhancing robustness and clinical relevance. The data, findings, and methodology, available on a web interface (http://www.sbms.hku.hk/dclab/DIPPER/), will be valuable references in the field of IVD biology and proteomic analytics. The backbone of vertebrate animals consists of a series of bones called vertebrae that are joined together by disc-like structures that allow the back to move and distribute forces to protect it during daily activities. It is common for these intervertebral discs to degenerate with age, resulting in back pain and severely reducing quality of life. The mechanical features of intervertebral discs are the result of their proteins. These include extracellular matrix proteins, which form the external scaffolding that binds cells together in a tissue, and signaling proteins, which allow cells to communicate. However, how the levels of different proteins in each region of the disc vary with time has not been fully examined. To establish how protein composition changes with age, Tam, Chen et al. quantified the protein levels and gene activity (which leads to protein production) of intervertebral discs from young and old deceased individuals. They found that the position of different mixtures of proteins in the intervertebral disc changes with age, and that young people have high levels of extracellular matrix proteins and signaling proteins. Levels of these proteins decreased as people got older, as did the amount of proteins produced. To determine which region of the intervertebral disc different proteins were in, Tam, Chen et al. also performed magnetic resonance imaging (MRI) of the samples to correlate image intensity (which represents water content) with the corresponding protein signature. The data obtained provides a high-quality map of how the location of different proteins changes with age, and is available online under the name DIPPER. This database is an informative resource for research into skeletal biology, and it will likely advance the understanding of intervertebral disc degeneration in humans and animals, potentially leading to the development of new treatment strategies for this condition.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| | - Peikai Chen
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Anita Yee
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Nestor Solis
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Theo Klein
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Mateusz Kudelko
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong
| | - Wilson Cw Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China.,Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China
| | - Christopher M Overall
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Canada
| | - Pak C Sham
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong
| | | | - Danny Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
19
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
20
|
Silverman LI, Heaton W, Farhang N, Saxon LH, Dulatova G, Rodriguez-Granrose D, Flanagan F, Foley KT. Perspectives on the Treatment of Lumbar Disc Degeneration: The Value Proposition for a Cell-Based Therapy, Immunomodulatory Properties of Discogenic Cells and the Associated Clinical Evaluation Strategy. Front Surg 2020; 7:554382. [PMID: 33392242 PMCID: PMC7772215 DOI: 10.3389/fsurg.2020.554382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is a serious medical condition that affects a large percentage of the population worldwide. One cause of LBP is disc degeneration (DD), which is characterized by progressive breakdown of the disc and an inflamed disc environment. Current treatment options for patients with symptomatic DD are limited and are often unsuccessful, so many patients turn to prescription opioids for pain management in a time when opioid usage, addiction, and drug-related deaths are at an all-time high. In this paper, we discuss the etiology of lumbar DD and currently available treatments, as well as the potential for cell therapy to offer a biologic, non-opioid alternative to patients suffering from the condition. Finally, we present an overview of an investigational cell therapy called IDCT (Injectable Discogenic Cell Therapy), which is currently under evaluation in multiple double-blind clinical trials overseen by major regulatory agencies. The active ingredient in IDCT is a novel allogeneic cell population known as Discogenic Cells. These cells, which are derived from intervertebral disc tissue, have been shown to possess both regenerative and immunomodulatory properties. Cell therapies have unique properties that may ultimately lead to decreased pain and improved function, as well as curb the numbers of patients pursuing opioids. Their efficacy is best assessed in rigorous double-blinded and placebo-controlled clinical studies.
Collapse
Affiliation(s)
- Lara Ionescu Silverman
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Will Heaton
- DiscGenics Inc., Salt Lake City, UT, United States
| | | | | | | | | | | | - Kevin T Foley
- DiscGenics Inc., Salt Lake City, UT, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States.,Semmes-Murphey Clinic, Memphis, TN, United States
| |
Collapse
|
21
|
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, Presciutti SM, Gibson G, Drissi H. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep 2020; 10:15263. [PMID: 32943704 PMCID: PMC7499307 DOI: 10.1038/s41598-020-72261-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Camila M Trochez
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meixue Duan
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
22
|
Veras MA, Lim YJ, Kuljanin M, Lajoie GA, Urquhart BL, Séguin CA. Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues. JOR Spine 2020; 3:e1099. [PMID: 33015574 PMCID: PMC7524214 DOI: 10.1002/jsp2.1099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
The comprehensiveness of data collected by "omics" modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for "omics" applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| | - Yong J Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Miljan Kuljanin
- Department of Cell Biology Harvard Medical School Boston Massachusetts USA
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry The University of Western Ontario London Ontario Canada
- Bone and Joint Institute The University of Western Ontario London Ontario Canada
| |
Collapse
|
23
|
The small compound, TD-198946, protects against intervertebral degeneration by enhancing glycosaminoglycan synthesis in nucleus pulposus cells. Sci Rep 2020; 10:14190. [PMID: 32843678 PMCID: PMC7447806 DOI: 10.1038/s41598-020-71193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration of the nucleus pulposus (NP) might serve as a trigger for intervertebral disc degeneration (IDD). A recent drug screening study revealed that the thienoindazole derivative, TD-198946, is a novel drug for the treatment of osteoarthritis. Because of the environmental and functional similarities between articular cartilage and intervertebral disc, TD-198946 is expected to prevent IDD. Herein, we sought to evaluate the effects of TD-198946 on IDD. TD-198946 enhanced glycosaminoglycan (GAG) production and the related genes in mouse NP cells and human NP cells (hNPCs). Further, Kyoto Encyclopedia of Genes and Genomes pathway analysis using the mRNA sequence of hNPCs suggested that the mechanism of action of TD-198946 primarily occurred via the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The Akt inhibitor suppressed the enhancement of GAG production induced by TD-198946. The effects of TD-198946 on IDD at two different time points (immediate treatment model, immediately after the puncture; latent treatment model, 2 weeks after the puncture) were investigated using a mouse tail-disc puncture model. At both time points, TD-198946 prevented a loss in disc height. Histological analysis also demonstrated the preservation of the NP structures. TD-198946 exhibited therapeutic effects on IDD by enhancing GAG production via PI3K/Akt signaling.
Collapse
|
24
|
Rajasekaran S, Tangavel C, Soundararajan DCR, Nayagam SM, Matchado MS, Muthurajan R, Anand KSSV, Rajendran S, Shetty AP, Kanna RM, Kuppamuthu D. Proteomic Signatures of Healthy Intervertebral Discs From Organ Donors: A Comparison With Previous Studies on Discs From Scoliosis, Animals, and Trauma. Neurospine 2020; 17:426-442. [PMID: 32615701 PMCID: PMC7338947 DOI: 10.14245/ns.2040056.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To catalog and characterize the proteome of normal human intervertebral disc (IVD). METHODS Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. RESULTS A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. CONCLUSION The proteome of "healthy" human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | | | | |
Collapse
|
25
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
26
|
Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR Spine 2020; 3:e1076. [PMID: 32211588 PMCID: PMC7084053 DOI: 10.1002/jsp2.1076] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the main contributor to low back pain, which is a leading cause of disability worldwide. Although substantial progress has been made in elucidating the molecular mechanisms of IDD, fundamental and long-lasting treatments for IDD are still lacking. With increased understanding of the complex pathomechanism of IDD, alternative strategies for treating IDD can be discovered. A brief overview of the prevalence and epidemiologic risk factors of IDD is provided in this review, followed by the descriptions of anatomic, cellular, and molecular structure of the intervertebral disc as well as the molecular pathophysiology of IDD. Finally, the recent findings of intervertebral disc progenitors are reviewed and the future perspectives are discussed.
Collapse
Affiliation(s)
- Takeshi Oichi
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
- Department of Orthopedic SurgeryUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Yuki Taniguchi
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Yasushi Oshima
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of MedicineThe University of TokyoBunkyo‐kuTokyoJapan
| |
Collapse
|
27
|
Veras MA, McCann MR, Tenn NA, Séguin CA. Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 2020; 61:63-81. [PMID: 31597481 DOI: 10.1080/03008207.2019.1665034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The intervertebral disc (IVD) is composed of cell types whose subtle phenotypic differences allow for the formation of distinct tissues. The role of the nucleus pulposus (NP) in the initiation and progression of IVD degeneration is well established; however, the genes and pathways associated with NP degeneration are poorly characterized.Materials and Methods: Using a genetic strategy for IVD lineage-specific fluorescent reporter expression to isolate cells, gene expression and bioinformatic analysis was conducted on the murine NP at 2.5, 6, and 21 months-of-age and the annulus fibrosus (AF) at 2.5 and 6 months-of-age. A subset of differentially regulated genes was validated by qRT-PCR.Results: Transcriptome analysis identified distinct profiles of NP and AF gene expression that were remarkably consistent at 2.5 and 6 months-of-age. Prg4, Cilp, Ibsp and Comp were increased >50-fold in the AF relative to NP. The most highly enriched NP genes included Dsc3 and Cdh6, members of the cadherin superfamily, and microRNAs mir218-1 and mir490. Changes in the NP between 2.5 and 6 months-of-age were associated with up-regulation of molecular functions linked to laminin and Bmp receptor binding (including up-regulation of Bmp5 & 7), with the most up-regulated genes being Mir703, Shh, and Sfrp5. NP degeneration was associated with molecular functions linked to alpha-actinin binding (including up-regulation of Ttn & Myot) and cytoskeletal protein binding, with the overall most up-regulated genes being Rnu3a, Snora2b and Mir669h.Conclusions: This study provided insight into the phenotypes of NP and AF cells, and identified candidate pathways that may regulate degeneration.
Collapse
Affiliation(s)
- Matthew A Veras
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Neil A Tenn
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| |
Collapse
|
28
|
Yang SH, Hu MH, Wu CC, Chen CW, Sun YH, Yang KC. CD24 expression indicates healthier phenotype and less tendency of cellular senescence in human nucleus pulposus cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3021-3028. [PMID: 31334674 DOI: 10.1080/21691401.2019.1642205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of specific cell markers is crucial for recognizing functionally healthy nucleus pulposus (NP) cells. The objective of this study was to investigate the role of CD24 expression in adult human NP cells. Cells were retrieved from NP tissues of 20 patients (aged 17-44) operated on for lumbar disc herniation. Based on CD24 expression, NP cells were separated by sorting and then used to examine phenotypic behavior, the effects of culture conditions and cellular senescence pathway related proteins. CD24 expression was positive in 35.5 ± 3.7% (range 9.1-65.2%) of NP cells. Consistently, normoxic expansion and serial passages in monolayers decreased percentage positivity for CD24 in NP cells. CD24- NP cells showed a markedly decreased GSK-3β activity and increased mitogen-activated protein kinase phosphorylation accompanying by an increased β-catenin expression. Higher levels of matrix metalloproteinases, as well as lower levels of ACAN and COL2 in CD24- cells, indicated the breakdown and reduced the formation of key extracellular matrix components. CD24+ NP cells presented a more favorable phenotype while CD24- cells showed a more prominent cellular senescence fate. CD24 in NP cells may be a surrogate marker of healthy cells, in the cell-based therapeutic treatment of degenerative disc disorders.
Collapse
Affiliation(s)
- Shu-Hua Yang
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Ming-Hsiao Hu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chang-Chin Wu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Wei Chen
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Yuan-Hui Sun
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Kai-Chiang Yang
- b Department of Dental Technology, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
29
|
Bratsman A, Couasnay G, Elefteriou F. A step-by-step protocol for isolation of murine nucleus pulposus cells. JOR Spine 2019; 2:e1073. [PMID: 31891122 PMCID: PMC6920701 DOI: 10.1002/jsp2.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The intervertebral disc (IVD) is composed of three separate tissues with distinct origins and properties. Elucidating changes occurring in these tissues in response to injury or age is paramount to identify new therapies to better manage disc and spine degenerative conditions, including low back pain. Despite their small size and different mechanical load pattern compared to higher species, the use of mouse models represents a cost-effective and powerful approach to better understand the formation, maintenance, and degeneration of the IVD. However, the isolation of the different compartments of the IVD is complicated by their diminutive size. Here, we describe a simple, step-by-step protocol for the isolation of the nucleus pulposus (NP) tissues that can then be processed for further analyses. Analysis from mouse NP tissues shows sufficient quantities of RNAs, purity of the NP fraction, and overall RNA quality for gene expression studies, and reveals no increase in expression of disc degeneration markers, including TNFa, IL1b, and Mmp1 up to 15 months of age in C57BL6 wildtype mice.
Collapse
Affiliation(s)
- Andrew Bratsman
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
| | - Greig Couasnay
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
| | - Florent Elefteriou
- Department of Orthopedic SurgeryBaylor College of MedicineHoustonTexas
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas
| |
Collapse
|
30
|
Nukaga T, Sakai D, Schol J, Suyama K, Nakai T, Hiyama A, Watanabe M. Minimal Sustainability of Dedifferentiation by ROCK Inhibitor on Rat Nucleus Pulposus Cells In Vitro. Spine Surg Relat Res 2019; 3:385-391. [PMID: 31768460 PMCID: PMC6834460 DOI: 10.22603/ssrr.2019-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction Intervertebral disc degeneration is strongly associated with low back pain. Cell transplantation has been extensively studied as a treatment option for intervertebral disc degeneration. It is often necessary to perform cell culture prior to cell transplantation; however, during cell expansion, the cells tend to dedifferentiate and lose their potency. Although the ability to suppress dedifferentiation by ROCK inhibitor (ROCKi) has recently been reported for chondrocytes, its effects on nucleus pulposus cells are still largely unknown. Methods Rat nucleus pulposus cells were cultured with or without the addition of ROCKi (Y-27632), and cell proliferation; CD24 positivity; expression of SOX9, COL2A1, Aggrecan, and COL1A1; and cell redifferentiation ability in pellet culture were evaluated. Results Although the addition of ROCKi tended to slightly increase the cell proliferative capacity, no significant differences were observed between treated and untreated conditions. The addition of ROCKi showed a trend of minimally increased COL2A1, ACAN, and SOX9 expression. Increases in COL1A1 expression was slightly suppressed by ROCKi. In pellet culture, strong increase in type II collagen deposition was observed by the addition of ROCKi. The addition of ROCKi did not significantly change the levels of CD24 positivity. The supplementation of ROCKi did not significantly enhance nucleus pulposus cell marker expression during monolayer expansion. However, ROCKi addition did result in an increased type II collagen deposition in 3D pellet culture. Conclusions Taken together, the results suggest a minimal effect by ROCKi on nucleus pulposus cell phenotype maintenance.
Collapse
Affiliation(s)
- Tadashi Nukaga
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Kaori Suyama
- Department of Anatomy and Cellular Biology, Tokai University School of Medicine, Isehara, Japan
| | - Tomoko Nakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiko Hiyama
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
31
|
Identification of Aberrantly Expressed Genes during Aging in Rat Nucleus Pulposus Cells. Stem Cells Int 2019; 2019:2785207. [PMID: 31379949 PMCID: PMC6652086 DOI: 10.1155/2019/2785207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleus pulposus cells (NPCs) play a vital role in maintaining the homeostasis of the intervertebral disc (IVD). Previous studies have discovered that NPCs exhibited malfunction due to cellular senescence during disc aging and degeneration; this might be one of the key factors of IVD degeneration. Thus, we conducted this study in order to investigate the altered biofunction and the underlying genes and pathways of senescent NPCs. We isolated and identified NPCs from the tail discs of young (2 months) and old (24 months) SD rats and confirmed the senescent phenotype through SA-β-gal staining. CCK-8 assay, transwell assay, and cell scratch assay were adopted to detect the proliferous and migratory ability of two groups. Then, a rat Gene Chip Clariom™ S array was used to detect differentially expressed genes (DEGs). After rigorous bioinformatics analysis of the raw data, totally, 1038 differentially expressed genes with a fold change > 1.5 were identified out of 23189 probes. Among them, 617 were upregulated and 421 were downregulated. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted and revealed numerous number of enriched GO terms and signaling pathways associated with senescence of NPCs. A protein-protein interaction (PPI) network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape software. Module analysis was conducted for the PPI network using the MCODE plugin in Cytoscape. Hub genes were identified by the CytoHubba plugin in Cytoscape. Derived 5 hub genes and most significantly up- or downregulated genes were further verified by real-time PCR. The present study investigated underlying mechanisms in the senescence of NPCs on a genome-wide scale. The illumination of molecular mechanisms of NPCs senescence may assist the development of novel biological methods to treat degenerative disc diseases.
Collapse
|
32
|
Bhunia BK, Mandal BB. Exploring Gelation and Physicochemical Behavior of in Situ Bioresponsive Silk Hydrogels for Disc Degeneration Therapy. ACS Biomater Sci Eng 2018; 5:870-886. [DOI: 10.1021/acsbiomaterials.8b01099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bibhas K. Bhunia
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| |
Collapse
|
33
|
Du J, Xu L, Cui Y, Liu Z, Su Y, Li G. Benign notochordal cell tumour: clinicopathology and molecular profiling of 13 cases. J Clin Pathol 2018; 72:66-74. [DOI: 10.1136/jclinpath-2018-205441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
AimsTo study the clinicopathological and molecular features of benign notochordal cell tumours (BNCTs) and their differential diagnosis from chordoma.Methods13 cases of BNCT were investigated. The genome-wide copy number imbalances were performed using Oncoscan CNV array in three cases and fluorescence in situ hybridisation (FISH) detection of epidermal growth factor receptor (EGFR)/chromosome 7 enumeration probe (CEP7), LSI1p36/1q21, LSI19p13/19q13, CEP3/CEP12 and Telvysion 6 P was performed in 13 cases.ResultsAll 13 BNCTs were symptomatic and eight cases showed a close relationship with the bones of the skull base. The important histological character for differential diagnosis with chordoma was the absence of extracellular matrix and eosinophil cells and the presence of vacuoles in most tumour cells. Immunohistochemical staining of AE1/AE3, vimentin, epithelial membrane antigen, S-100 and brachyury (100% each) were positive in BNCTs. Gain of chromosome 7 occurred in 10 cases (76.9%), gain of 1p in four (30.8%), gain of 1q in five (38.5%), gain of 19p and 19q in five (38.5%), gain of chromosome 12 in 11 cases (84.6%), gain of 6p in eight (61.5%) and gain of chromosome 3 in four cases (30.8%).ConclusionsIn contrast to chordoma, chromosome gain or normal copy number was more common while chromosome loss was infrequent in BNCTs. This may be a differential diagnosis clue for chordoma and may be an important characteristic in the progression of notochordal cell tumours.
Collapse
|
34
|
Liao L, Jiang H, Fan Y, Lu RS, Wei C, Takarada T, He S, Chen D. Runx2 is required for postnatal intervertebral disc tissue growth and development. J Cell Physiol 2018; 234:6679-6687. [PMID: 30341902 DOI: 10.1002/jcp.27410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Runx2 plays an essential role in embryonic disc tissue development in mice. However, the role of runt-related transcription factor 2 (Runx2) in postnatal disc tissue growth and development has not been defined. In the present studies, we generated Runx2 conditional knockout (KO) mice (Runx2Agc1ER ), in which Runx2 was deleted in Aggrecan-expressing cells in disc tissue at postnatal 2-weeks of age. We then analyzed changes in disc tissue growth and development using histology and immunohistochemical methods in 3-month-old mice. We found that large vacuolated notochordal cells were accumulated in the nucleus pulposus (NP) in Runx2 KO mice. The growth plate cartilage tissue in the disc was thicker in Runx2 KO mice. We also found a significant upregulation of Indian hedgehog (Ihh) expression in the cells in NP cells and in annulus fibrosus cells of Runx2 KO mice. These results demonstrated that Runx2 may play an important role in postnatal disc tissue development through interacting with Ihh signaling.
Collapse
Affiliation(s)
- Lifan Liao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois.,Department of Implant Dentistry, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an Jiaotong University College of Stomatlogy, Xi'an, Shaanxi, China
| | - Hua Jiang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Yunshan Fan
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois.,Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ronald S Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shisheng He
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
35
|
Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci Rep 2018; 8:12866. [PMID: 30150762 PMCID: PMC6110784 DOI: 10.1038/s41598-018-31172-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022] Open
Abstract
The adult nucleus pulposus originates from the embryonic notochord, but loss of notochordal cells with skeletal maturity in humans is thought to contribute to the onset of intervertebral disc degeneration. Thus, defining the phenotype of human embryonic/fetal notochordal cells is essential for understanding their roles and for development of novel therapies. However, a detailed transcriptomic profiling of human notochordal cells has never been achieved. In this study, the notochord-specific marker CD24 was used to specifically label and isolate (using FACS) notochordal cells from human embryonic and fetal spines (7.5–14 weeks post-conception). Microarray analysis and qPCR validation identified CD24, STMN2, RTN1, PRPH, CXCL12, IGF1, MAP1B, ISL1, CLDN1 and THBS2 as notochord-specific markers. Expression of these markers was confirmed in nucleus pulposus cells from aged and degenerate discs. Ingenuity pathway analysis revealed molecules involved in inhibition of vascularisation (WISP2, Noggin and EDN2) and inflammation (IL1-RN) to be master regulators of notochordal genes. Importantly, this study has, for the first time, defined the human notochordal cell transcriptome and suggests inhibition of inflammation and vascularisation may be key roles for notochordal cells during intervertebral disc development. The molecules and pathways identified in this study have potential for use in developing strategies to retard/prevent disc degeneration, or regenerate tissue.
Collapse
|
36
|
Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells. Arthritis Res Ther 2018; 20:182. [PMID: 30115120 PMCID: PMC6097446 DOI: 10.1186/s13075-018-1677-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background Stem cell therapy is considered as a promising alternative to treat intervertebral disc degeneration (IDD). Extensive work had been done on identifying and comparing different types of candidate stem cells, both in vivo and in vitro. However, few studies have shed light on degenerative nucleus pulposus cells (NPCs), especially their biological behavior under the influence of exogenous stem cells, specifically the gene expression and regulation pattern. In the present study, we aimed to determine messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), which are differentially expressed during the co-culturing process with adipose-derived mesenchymal stem cells (ASCs) and to explore the involved signaling pathways and the regulatory networks. Methods We compared degenerative NPCs co-cultured with ASCs with those cultured solely using lncRNA-mRNA microarray analysis. Based on these data, we investigated the significantly regulated signaling pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Moreover, 23 micro RNAs (miRNAs), which were demonstrated to be involved in IDD were chosen; we investigated their theoretic regulatory importance associated with our microarray data. Results We found 632 lncRNAs and 1682 mRNAs were differentially expressed out of a total of 40,716 probes. We then confirmed the microarray data by real-time PCR. Furthermore, we demonstrated 197 upregulated, and 373 downregulated Gene Ontology terms and 176 significantly enriched pathways, such as the mitogen-activated protein kinase (MAPK) pathway. Also, a signal-net was constructed to reveal the interplay among differentially expressed genes. Meanwhile, a mRNA-lncRNA co-expression network was constructed for the significantly changed mRNAs and lncRNAs. Also, the competing endogenous RNA (ceRNA) network was built. Conclusion Our results present the first comprehensive identification of differentially expressed lncRNAs and mRNAs of degenerative NPCs, altered by co-culturing with ASCs, and outline the gene expression regulation pattern. These may provide valuable information for better understanding of stem cell therapy and potential candidate biomarkers for IDD treatment. Electronic supplementary material The online version of this article (10.1186/s13075-018-1677-x) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Regenerative potential of human nucleus pulposus resident stem/progenitor cells declines with ageing and intervertebral disc degeneration. Int J Mol Med 2018; 42:2193-2202. [PMID: 30015833 DOI: 10.3892/ijmm.2018.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated the presence of resident nucleus pulposus stem/progenitor cells (NPSCs) in the tissue of the intervertebral disc (IVD). However, the cellular identity of NPSCs during IVD degeneration and ageing are poorly defined at present, despite significant progress in the understanding of NPSC biology. In the present study, NPSCs were isolated from human degenerated IVD and were characterized by flow cytometry, gene expression assays and proliferation and multipotency analysis. The results of the present study demonstrated that NPSCs isolated from human degenerated IVD may be divided into two groups according to the expression of mesenchymal stem cell (MSC) surface markers: The high expression of MSC surface markers group (H‑NPSCs) was highly positive for CD29, CD44, CD73, CD90 and CD105 at rates >95%, and the low expression of MSC markers surface markers group (L‑NPSCs), with the expression of CD29 and CD105 exhibiting individual variability, however, all at rates <95%. The donors for H‑NPSCs were aged <20 years, while the majority of donors for L‑NPSCs were aged >25 years, with one exception aged <20 years. The results highlighted that the low expression of MSC surface markers in NPSCs from aged and degenerated NP tissues were associated with a low rate of proliferation and reduced differentiation potential, as well as downregulation of the NP progenitor marker Tie2 and higher expression of NP cell‑specific markers. These findings demonstrated that the regenerative potential of human NPSCs declines with ageing and degeneration of the IVD.
Collapse
|
38
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
39
|
Fujii T, Fujita N, Suzuki S, Tsuji T, Takaki T, Umezawa K, Watanabe K, Miyamoto T, Horiuchi K, Matsumoto M, Nakamura M. The unfolded protein response mediated by PERK is casually related to the pathogenesis of intervertebral disc degeneration. J Orthop Res 2018; 36:1334-1345. [PMID: 29080374 DOI: 10.1002/jor.23787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/26/2017] [Indexed: 02/04/2023]
Abstract
Although the number of patients with intervertebral disc (IVD) degeneration is increasing in aging societies, its etiology and pathogenesis remain elusive and there is currently no effective treatment to prevent this undesirable condition. The unfolded protein response (UPR) is a cellular machinery that plays critical roles in handling endoplasmic reticulum (ER) stress, a condition caused by the accumulation of unfolded proteins in the ER lumen. This study aimed to elucidate the potential role of the UPR mediated by pancreatic endoplasmic reticulum kinase (PERK), one of the major ER stress sensors in mammalian cells, in the development of IVD degeneration. IVD degeneration was artificially induced in Wister rats by percutaneously puncturing the coccyx IVDs and human IVDs were collected from patients who underwent spinal surgery. Expression of the UPR target genes was elevated in degenerative IVDs in both humans and rats. The induction of ER stress in annulus fibrosus cells significantly increased the transcripts for tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in a nuclear factor (NF)-κB pathway-dependent manner. The expression of TNF-α and IL-6 was significantly reduced by treatment with a selective PERK inhibitor, GSK2606414, and by gene silencing against PERK and activating transcription factor 4 (ATF4) transcripts. Our findings indicate that the UPR mediated by the PERK pathway is causally related to the development of IVD degeneration, suggesting that PERK may be a potential molecular target for suppressing the degenerative changes in IVDs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1334-1345, 2018.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, Fujita Health University, Aichi, Japan
| | - Takashi Takaki
- Section of Electron Microscopy, Showa University, Tokyo, Japan.,Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, National Defence Medical College, Saitama, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
40
|
Nakayama E, Matsumoto T, Kazama T, Kano K, Tokuhashi Y. Transplantation of dedifferentiation fat cells promotes intervertebral disc regeneration in a rat intervertebral disc degeneration model. Biochem Biophys Res Commun 2017; 493:1004-1009. [DOI: 10.1016/j.bbrc.2017.09.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
|
41
|
Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Exp Cell Res 2017; 361:324-332. [PMID: 29097182 DOI: 10.1016/j.yexcr.2017.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the origin, biological properties of nucleus pulposus (NP) derived stem/progenitor cells and their effects on the IVD degeneration. The goal of this study is to explore the biological properties of NP stem/progenitor cells isolated from degenerated IVD (D-NPMSCs) regarding immunotype, proliferative capacity, multi-lineage differentiation abilities, and the expression of NP specific cell surface markers compared to human umbilical cord mesenchymal stem cells (UCMSCs). Our results indicate that although D-NPMSCs shared the mesenchymal stromal cells (MSCs) characteristics with UCMSCs, significant differences exist in phenotype signatures and biological capacities between D-NPMSCs and UCMSCs. D-NPMSCs expressed lower expression levels of CD29 and CD105, the phenotype markers of MSCs, and exhibited reduced proliferation capability and differentiation potentials, which might account for the distinct NP microenvironment and the poor capacity for disc regeneration. This study will lay a foundation for further understanding the mechanism of stem cell-based therapy for IVD degeneration.
Collapse
|
42
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Ehlicke F, Köster N, Salzig D, Czermak P. Non-invasive Raman Spectroscopy and Quantitative Real-Time PCR Distinguish Among Undifferentiated Human Mesenchymal Stem Cells and Redifferentiated Nucleus Pulposus Cells and Chondrocytes In Vitro. Open Biomed Eng J 2017; 11:72-84. [PMID: 28868091 PMCID: PMC5564017 DOI: 10.2174/1874120701711010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The most common cause of lower back pain is the pathological degeneration of the nucleus pulposus (NP). Promising NP regeneration strategies involving human mesenchymal stem cells (hMSCs) would require specific markers to confirm successful differentiation into the NP lineage and to distinguish the articular cartilage (AC). Objective: We sought specific NP mRNA markers that are upregulated in native NP cells but not in dedifferentiated NP cells, undifferentiated hMSCs or chondrocytes. We also considered the suitability of non-invasive Raman spectroscopy to distinguish among these classes of cells. Method: We used quantitative real-time PCR and Raman spectroscopy to analyse undifferentiated hMSCs in monolayers and embedded in hydrogels, and compared the results with dedifferentiated and redifferentiated human NP and AC cells. Results: The redifferentiation of NP cells induced the expression of annexin A3 (ANXA3), collagen type II (COL2) and proteoglycan mRNAs, whereas the redifferentiation of AC cells only induced proteoglycan expression. Redifferentiated NP cells expressed higher levels of ANXA3, COL2, paired box 1 (PAX1) and OCT4 mRNA than redifferentiated AC cells. Redifferentiated NP cells and undifferentiated hMSC-TERT cells expressed similar amount of OCT4 mRNA, indicating that only ANXA3, COL2 and PAX1 are promising markers for redifferentiated NP cells. Raman spectra clearly differed among the three cell types and highlighted their differentiation status. Conclusion: We recommend ANXA3, COL2 and PAX1 as markers to determine the success of hMSC-based differentiation to regenerate NP cells. Raman spectroscopy can be used to determine cell type and differentiation status especially in the context of clinical trials.
Collapse
Affiliation(s)
- Franziska Ehlicke
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Natascha Köster
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr 14, 35390 Giessen, Germany.,Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.,Faculty of Biology and Chemistry, Justus-Liebig-University of Giessen, Ludwigstr. 23, 35390 Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Bioresources, Winchesterstr. 3, 35394 Giessen, Germany
| |
Collapse
|
44
|
Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7:1501. [PMID: 28473691 PMCID: PMC5431421 DOI: 10.1038/s41598-017-01567-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc (IVD) demonstrates substantial changes in cell and matrix composition with both ageing and degeneration. While recent transcriptomic profiling studies have helped define human NP cell phenotype, it remains unclear how expression of these markers is influenced by ageing or degeneration. Furthermore, cells of the NP are thought to derive from the notochord, although adult NP lacks identifiable notochordal (NC) cells. This study aimed to confirm expression of previously identified NP and NC marker genes in adult human NP cells from a range of ages and degenerate states. Importantly, using gene expression analysis (N = 60) and immunohistochemistry (N = 56) the study demonstrates expression of NP markers FoxF1, Pax-1, keratin-8/18, carbonic anhydrase-12, and NC markers brachyury, galectin-3 and CD24 in cells of the NP irrespective of age or degeneration. Our immunohistochemical data, combined with flow cytometry (N = 5) which identified a small number of CA12+Gal3+T+CD24+ cells, suggests the possible presence of a sub-population of cells with an NC-like phenotype in adult NP tissue. These findings suggest that the NP contains a heterogeneous population of cells, which may possess varied phenotypic and functional profiles and thus warrant further investigation to improve our understanding of IVD homeostasis and repair.
Collapse
|
45
|
Owen JH, Komarck CM, Wang AC, Abuzeid WM, Keep RF, McKean EL, Sullivan S, Fan X, Prince MEP. UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg 2017; 128:701-709. [PMID: 28430034 DOI: 10.3171/2016.10.jns16877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Chordomas are rare malignant tumors thought to arise from remnants of the notochord. They can be located anywhere along the axial skeleton but are most commonly found in the clival and sacrococcygeal regions, where the notochord regresses during fetal development. Chordomas are resistant to many current therapies, leaving surgery as the primary method of treatment. Cancer cell lines have been useful for developing new cancer treatments in a laboratory setting that can then be transferred to the clinic, but there are only 4 validated chordoma cell lines available. The objective of this work was to establish chordoma cell lines from surgical tissue in order to expand the library of lines available for laboratory research. METHODS Chordoma tissue from the clivus was processed and sorted by flow cytometry to obtain an isolated population of chordoma cells. These cells were grown in culture and expanded until enough doublings to consider the line established. Identification of a chordoma cell line was made with known markers for chordoma, and the line was observed for ALDH (aldehyde dehydrogenase) subpopulations and tested in serum-free growth conditions as well as in vivo. RESULTS A fifth chordoma cell line, UM-Chor1, was successfully established. This is the first chordoma cell line originating from the clivus. Validation was confirmed by phenotype and positivity for the chordoma markers CD24 and brachyury. The authors also attempted to identify an ALDHhigh cell population in UM-Chor1, UCH1, and UCH2 but did not detect a distinct population. UM-Chor1 cells were able to form spheroids in serum-free culture, were successfully transduced with luciferase, and could be injected parasacrally and grown in NOD/SCID mice. CONCLUSIONS The availability of this novel clival chordoma cell line for in vitro and in vivo research provides an opportunity for developments in treatment against the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Fan
- 2Neurosurgery, and.,3Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
46
|
Chen S, Fu P, Wu H, Pei M. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res 2017; 370:53-70. [PMID: 28413859 DOI: 10.1007/s00441-017-2613-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
The degradation of cartilage in the human body is impacted by aging, disease, genetic predisposition and continued insults resulting from daily activity. The burden of cartilage defects (osteoarthritis, rheumatoid arthritis, intervertebral disc damage, knee replacement surgeries, etc.) is daunting in light of substantial economic and social stresses. This review strives to broaden the scope of regenerative medicine and tissue engineering approaches used for cartilage repair by comparing and contrasting the anatomical and functional nature of the meniscus, articular cartilage (AC) and nucleus pulposus (NP). Many review papers have provided detailed evaluations of these cartilages and cartilage-like tissues individually but none have comprehensively examined the parallels and inconsistencies in signaling, genetic expression and extracellular matrix composition between tissues. For the first time, this review outlines the importance of understanding these three tissues as unique entities, providing a comparative analysis of anatomy, ultrastructure, biochemistry and function for each tissue. This novel approach highlights the similarities and differences between tissues, progressing research toward an understanding of what defines each tissue as distinctive. The goal of this paper is to provide researchers with the fundamental knowledge to correctly engineer the meniscus, AC and NP without inadvertently developing the wrong tissue function or biochemistry.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Peiliang Fu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Haishan Wu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, One Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
| |
Collapse
|
47
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
48
|
Rodrigues‐Pinto R, Berry A, Piper‐Hanley K, Hanley N, Richardson SM, Hoyland JA. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res 2016; 34:1327-40. [PMID: 26910849 PMCID: PMC5021113 DOI: 10.1002/jor.23205] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte-like cells. Although animal studies indicate that notochord-derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5-18 weeks post-conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E-cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co-expressed by sclerotomal cells. CD90, Tie2, and E-cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord-specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327-1340, 2016.
Collapse
Affiliation(s)
- Ricardo Rodrigues‐Pinto
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- Department of OrthopaedicsCentro Hospitalar do Porto—Hospital de Santo AntónioLargo Prof. Abel SalazarPorto4099‐001Portugal
| | - Andrew Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Karen Piper‐Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Neil Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building—3rd Floor, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Stephen M. Richardson
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
| | - Judith A. Hoyland
- Centre For Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human SciencesUniversity of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUnited Kingdom
- NIHR Manchester Musculoskeletal Biomedical Research UnitManchester Academic Health Science CentreManchesterUnited Kingdom
| |
Collapse
|
49
|
Fujita N, Suzuki S, Watanabe K, Ishii K, Watanabe R, Shimoda M, Takubo K, Tsuji T, Toyama Y, Miyamoto T, Horiuchi K, Nakamura M, Matsumoto M. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells. J Orthop Res 2016; 34:1341-50. [PMID: 27248133 PMCID: PMC5108487 DOI: 10.1002/jor.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Satoshi Suzuki
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Kota Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ken Ishii
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ryuichi Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masayuki Shimoda
- Departments of PathologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keiyo Takubo
- Department of Stem Cell BiologyResearch Institute, National Center for Global Health and Medicine1‐21‐1 ToyamaShinjuku‐kuTokyo160‐8582Japan
| | - Takashi Tsuji
- Kitasato Institute Hospital5‐9‐1 ShiroganeMinato‐kuTokyo108‐8642Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Takeshi Miyamoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keisuke Horiuchi
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masaya Nakamura
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Morio Matsumoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| |
Collapse
|
50
|
Tang X, Jing L, Richardson WJ, Isaacs RE, Fitch RD, Brown CR, Erickson MM, Setton LA, Chen J. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 2016; 34:1316-26. [PMID: 27018499 PMCID: PMC5321132 DOI: 10.1002/jor.23244] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016.
Collapse
Affiliation(s)
- Xinyan Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Orthopaedic Surgery Department, University of California, San Francisco, CA, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - William J Richardson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robert E Isaacs
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Robert D Fitch
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Brown
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Melissa M Erickson
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jun Chen
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|