1
|
Yang X, Mao Q, Wang B. On the Question of CO's Ability to Induce HO-1 Expression in Cell Culture: A Comparative Study Using Different CO Sources. ACS Chem Biol 2024; 19:725-735. [PMID: 38340055 PMCID: PMC10949199 DOI: 10.1021/acschembio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qiyue Mao
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Hemmersbach L, Schreiner Y, Zhang X, Dicke F, Hünemeyer L, Neudörfl J, Fleming T, Yard B, Schmalz H. Synthesis and Biological Evaluation of Water‐Soluble Esterase‐Activated CO‐Releasing Molecules Targeting Mitochondria. Chemistry 2022; 28:e202201670. [PMID: 35771078 PMCID: PMC9543658 DOI: 10.1002/chem.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Lars Hemmersbach
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Yannick Schreiner
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Xinmiao Zhang
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Finn Dicke
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Leon Hünemeyer
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry University Hospital of Heidelberg 69120 Heidelberg Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| | - Benito Yard
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | | |
Collapse
|
3
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
4
|
Beck KF, Pfeilschifter J. The Pathophysiology of H2S in Renal Glomerular Diseases. Biomolecules 2022; 12:biom12020207. [PMID: 35204708 PMCID: PMC8961591 DOI: 10.3390/biom12020207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Renal glomerular diseases such as glomerulosclerosis and diabetic nephropathy often result in the loss of glomerular function and consequently end-stage renal disease. The glomerulus consists of endothelial cells, mesangial cells and glomerular epithelial cells also referred to as podocytes. A fine-tuned crosstalk between glomerular cells warrants control of growth factor synthesis and of matrix production and degradation, preserving glomerular structure and function. Hydrogen sulfide (H2S) belongs together with nitric oxide (NO) and carbon monoxide (CO) to the group of gasotransmitters. During the last three decades, these higher concentration toxic gases have been found to be produced in mammalian cells in a well-coordinated manner. Recently, it became evident that H2S and the other gasotransmitters share common targets as signalling devices that trigger mainly protective pathways. In several animal models, H2S has been demonstrated as a protective factor in the context of kidney disorders, in particular of diabetic nephropathy. Here, we focus on the synthesis and action of H2S in glomerular cells, its beneficial effects in the glomerulus and its action in the context of the other gaseous signalling molecules NO and CO.
Collapse
|
5
|
Li Y, Hemmersbach L, Krause B, Sitnikov N, Schlundt Née Göderz A, Pastene Maldonado DO, Schmalz HG, Yard B. Head-to-Head Comparison of Selected Extra- and Intracellular CO-Releasing Molecules on Their CO-Releasing and Anti-Inflammatory Properties. Chembiochem 2021; 23:e202100452. [PMID: 34643986 PMCID: PMC9298253 DOI: 10.1002/cbic.202100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Over the past decade, a variety of carbon monoxide releasing molecules (CORMs) have been developed and tested. Some CORMs spontaneously release CO once in solution, while others require a trigger mechanism to release the bound CO from its molecular complex. The modulation of biological systems by CORMs depends largely on the spatiotemporal release of CO, which likely differs among the different types of CORMs. In spontaneously releasing CORMs, CO is released extracellularly and crosses the cell membrane to interact with intracellular targets. Other CORMs can directly release CO intracellularly, which may be a more efficient method to modulate biological systems. In the present study, we compared the efficacy of extracellular and intracellular CO-releasing CORMs that either release CO spontaneously or require an enzymatic trigger. The efficacy of such CORMs to modulate HO-1 and VCAM-1 expression in TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) was evaluated.
Collapse
Affiliation(s)
- Yingchun Li
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | - Diego O Pastene Maldonado
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Benito Yard
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
6
|
Park J, Lee M, Kim M, Moon S, Kim S, Kim S, Koh SH, Kim YM, Choi YK. Prophylactic role of Korean red ginseng in astrocytic mitochondrial biogenesis through HIF-1α. J Ginseng Res 2021; 46:408-417. [PMID: 35600778 PMCID: PMC9120627 DOI: 10.1016/j.jgr.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
|
7
|
Ko W, Lee H, Kim N, Jo HG, Woo ER, Lee K, Han YS, Park SR, Ahn G, Cheong SH, Lee DS. The Anti-Oxidative and Anti-Neuroinflammatory Effects of Sargassum horneri by Heme Oxygenase-1 Induction in BV2 and HT22 Cells. Antioxidants (Basel) 2021; 10:antiox10060859. [PMID: 34071911 PMCID: PMC8229279 DOI: 10.3390/antiox10060859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022] Open
Abstract
Sargassum horneri is used as a traditional medicinal agent and exhibits various pharmacological effects. In this study, we found that the 70% EtOH extract contained 34.37 ± 0.75 μg/mg fucosterol. We tested the antioxidant activities of the 70% EtOH extracts and their fractions. The CH2Cl2-soluble fraction showed the strongest DPPH and ABTS radical scavenging activities. Next, we evaluated the anti-neuroinflammatory effects of S. horneri on lipopolysaccharide (LPS)-stimulated BV2 cells. Pretreatment with the extract and fractions suppressed LPS-induced production of nitric oxide (NO) in BV2 cells. The 70% EtOH, CH2Cl2-soluble fraction, and water-soluble fraction inhibited the production of prostaglandin E2, interleukin-6, and tumor necrosis factor-α, as well as markedly blocking LPS-induced expression of inducible NO synthase and cyclooxygenase-2 via inactivation of the nuclear factor-kappa B pathway. In addition, the CH2Cl2-soluble fraction showed the most remarkable heme oxygenase (HO)-1 expression effects and increased nuclear erythroid 2-related factor translocation in the nucleus. In HT22 cells, the CH2Cl2-soluble fraction inhibited cell damage and ROS production caused by glutamate via the regulation of HO-1. Therefore, CH2Cl2-soluble fractions of S. horneri can attenuate oxidative action and neuroinflammatory responses via HO-1 induction, demonstrating their potential in the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea; (W.K.); (H.G.J.); (G.A.)
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (N.K.); (E.-R.W.)
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (N.K.); (E.-R.W.)
| | - Hee Geun Jo
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea; (W.K.); (H.G.J.); (G.A.)
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (N.K.); (E.-R.W.)
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu 59626, Korea;
| | - Young Seok Han
- Neo Environmental Business Co., Daewoo Technopark, Doyak-ro, Bucheon 14523, Korea;
| | - Sang Rul Park
- Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea; (W.K.); (H.G.J.); (G.A.)
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea; (W.K.); (H.G.J.); (G.A.)
- Correspondence: (S.H.C.); (D.-S.L.); Tel.: +82-62-230-6386 (D.-S.L.); Fax: +82-62-222-5414 (S.H.C.)
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea; (H.L.); (N.K.); (E.-R.W.)
- Correspondence: (S.H.C.); (D.-S.L.); Tel.: +82-62-230-6386 (D.-S.L.); Fax: +82-62-222-5414 (S.H.C.)
| |
Collapse
|
8
|
Choi YK, Kim YM. Regulation of Endothelial and Vascular Functions by Carbon Monoxide via Crosstalk With Nitric Oxide. Front Cardiovasc Med 2021; 8:649630. [PMID: 33912601 PMCID: PMC8071856 DOI: 10.3389/fcvm.2021.649630] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Carbon monoxide (CO), generated by heme oxygenase (HO), has been considered a signaling molecule in both the cardiovascular and central nervous systems. The biological function of the HO/CO axis is mostly related to other gaseous molecules, including nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS). Healthy blood vessels are essential for the maintenance of tissue homeostasis and whole-body metabolism; however, decreased or impaired vascular function is a high-risk factor of cardiovascular and neuronal diseases. Accumulating evidence supports that the interplay between CO and NO plays a crucial role in vascular homeostasis and regeneration by improving endothelial function. Moreover, endothelial cells communicate with neighboring cells, such as, smooth muscle cells, immune cells, pericytes, and astrocytes in the periphery and neuronal vascular systems. Endogenous CO could mediate the cell-cell communication and improve the physiological functions of the cardiovascular and neurovascular systems via crosstalk with NO. Thus, a forward, positive feedback circuit between HO/CO and NOS/NO pathways can maintain cardiovascular and neurovascular homeostasis and prevent various human diseases. We discussed the crucial role of CO-NO crosstalk in the cardiovascular and neurovascular systems.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
Skeletal muscle heme oxygenase-1 activity regulates aerobic capacity. Cell Rep 2021; 35:109018. [PMID: 33882313 PMCID: PMC8196422 DOI: 10.1016/j.celrep.2021.109018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Physical exercise has profound effects on quality of life and susceptibility to chronic disease; however, the regulation of skeletal muscle function at the molecular level after exercise remains unclear. We tested the hypothesis that the benefits of exercise on muscle function are linked partly to microtraumatic events that result in accumulation of circulating heme. Effective metabolism of heme is controlled by Heme Oxygenase-1 (HO-1, Hmox1), and we find that mouse skeletal muscle-specific HO-1 deletion (Tam-Cre-HSA-Hmox1fl/fl) shifts the proportion of muscle fibers from type IIA to type IIB concomitant with a disruption in mitochondrial content and function. In addition to a significant impairment in running performance and response to exercise training, Tam-Cre-HSA-Hmox1fl/fl mice show remarkable muscle atrophy compared to Hmox1fl/fl controls. Collectively, these data define a role for heme and HO-1 as central regulators in the physiologic response of skeletal muscle to exercise.
Collapse
|
10
|
Peoc'h K, Puy V, Fournier T. Haem oxygenases play a pivotal role in placental physiology and pathology. Hum Reprod Update 2020; 26:634-649. [PMID: 32347305 DOI: 10.1093/humupd/dmaa014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Haem oxygenases (HO) catabolise haem, which is the prosthetic group of numerous haemoproteins. Thus, multiple primary cellular pathways and functions rely on haem availability. HO exists in two isoforms, both expressed in the placenta, namely HO-1 and HO-2, the first being inducible. Haem oxygenases, particularly HO-1, have garnered specific interest in the field of physiological and pathological placental function. These enzymes mediate haem degradation by cleaving the alpha methene bridge to produce biliverdin, which is subsequently converted to bilirubin, carbon monoxide and iron. HO-1 has anti-inflammatory and antioxidant activities. SEARCH METHODS An initial literature analysis was performed using PubMed on 3 October 2018 using key terms such as 'haem oxygenase and pregnancy', 'haem oxygenase and placenta', 'HO-1 and pregnancy', 'HO-1 and placenta', 'HO and placenta', 'HO and pregnancy', 'genetic variant and HO', 'CO and pregnancy', 'CO and placenta', 'Bilirubin and pregnancy', 'Iron and pregnancy' and 'PPAR and Haem', selecting consensus conferences, recommendations, meta-analyses, practical recommendations and reviews. A second literature analysis was performed, including notable miscarriages, foetal loss and diabetes mellitus, on 20 December 2019. The three authors studied the publications independently to decipher whether they should be included in the manuscript. OBJECTIVE AND RATIONALE This review aimed to summarise current pieces of knowledge of haem oxygenase location, function and regulation in the placenta, either in healthy pregnancies or those associated with miscarriages and foetal loss, pre-eclampsia, foetal growth restriction and diabetes mellitus. OUTCOMES HO-1 exerts some protective effects on the placentation, probably by a combination of factors, including its interrelation with the PGC-1α/PPAR pathway and the sFlt1/PlGF balance, and through its primary metabolites, notably carbon monoxide and bilirubin. Its protective role has been highlighted in numerous pregnancy conditions, including pre-eclampsia, foetal growth restriction, gestational diabetes mellitus and miscarriages. WIDER IMPLICATIONS HO-1 is a crucial enzyme in physiological and pathological placentation. This protective enzyme is currently considered a potential therapeutic target in various pregnancy diseases.
Collapse
Affiliation(s)
- Katell Peoc'h
- Université de Paris, Laboratory of Excellence GR-Ex, Centre de Recherche sur l'Inflammation, INSERM U1149, UFR de Médecine Bichat, 75018 Paris, France
- Assistance Publique des Hôpitaux de Paris, APHP Nord, Paris, France
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP, Clamart 92140, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S 1139, 3PHM, F-75006, Paris, France
- Fondation PremUp, F-75014, Paris, France
| |
Collapse
|
11
|
Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 2020; 77:109823. [PMID: 33152441 DOI: 10.1016/j.cellsig.2020.109823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023]
Abstract
Glomerular injury is a hallmark of kidney diseases such as diabetic nephropathy, IgA nephropathy or other forms of glomerulonephritis. Glomerular endothelial cells, mesangial cells, glomerular epithelial cells (podocytes) and, in an inflammatory context, infiltrating immune cells crosstalk to mediate signalling processes in the glomerulus. Under physiological conditions, mesangial cells act by the control of extracellular matrix production and degradation, by the synthesis of growth factors and by preserving a well-defined crosstalk with glomerular podocytes and endothelial cells to regulate glomerular structure and function. It is well known that mesangial cells are able to amplify an inflammatory process by the formation of cytokines, reactive oxygen species (ROS) and nitric oxide (NO). This exaggerated reaction may result in a vicious cycle with subsequent damage of neighboured podocytes and endothelial cells, loss of the filtration barrier and, finally destruction of the whole glomerulus. Unfortunately, all efforts to develop new therapies for the treatment of glomerular diseases by controlling unbridled ROS or NO production directly had so far no success. However, on-going research on ROS and NO defined these autacoids more as important signalling molecules than as endogenously produced cytotoxic compounds. New findings on signalling activities of ROS, NO but also hydrogen sulfide (H2S) and carbon monoxide (CO) supported this paradigm shift. Because of their similar chemical properties and their similar signal transduction capacities, NO, H2S and CO are meanwhile designated as the group of gasotransmitters. In this review, we describe the current knowledge of the signalling properties of gasotransmitters with a focus on glomerular cells and their role in glomerular diseases.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Carbon Monoxide Being Hydrogen Sulfide and Nitric Oxide Molecular Sibling, as Endogenous and Exogenous Modulator of Oxidative Stress and Antioxidative Mechanisms in the Digestive System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5083876. [PMID: 32377300 PMCID: PMC7180415 DOI: 10.1155/2020/5083876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress reflects an imbalance between oxidants and antioxidants in favor of the oxidants capable of evoking tissue damage. Like hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) is an endogenous gaseous mediator recently implicated in the physiology of the gastrointestinal (GI) tract. CO is produced in mammalian tissues as a byproduct of heme degradation catalyzed by the heme oxygenase (HO) enzymes. Among the three enzymatic isoforms, heme oxygenase-1 (HO-1) is induced under conditions of oxidative stress or tissue injury and plays a beneficial role in the mechanism of protection against inflammation, ischemia/reperfusion (I/R), and many other injuries. According to recently published data, increased endogenous CO production by inducible HO-1, its delivery by novel pharmacological CO-releasing agents, or even the direct inhalation of CO has been considered a promising alternative in future experimental and clinical therapies against various GI disorders. However, the exact mechanisms underlying behind these CO-mediated beneficial actions are not fully explained and experimental as well as clinical studies on the mechanism of CO-induced protection are awaited. For instance, in a variety of experimental models related to gastric mucosal damage, HO-1/CO pathway and CO-releasing agents seem to prevent gastric damage mainly by reduction of lipid peroxidation and/or increased level of enzymatic antioxidants, such as superoxide dismutase (SOD) or glutathione peroxidase (GPx). Many studies have also revealed that HO-1/CO can serve as a potential defensive pathway against oxidative stress observed in the liver and pancreas. Moreover, increased CO levels after treatment with CO donors have been reported to protect the gut against formation of acute GI lesions mainly by the regulation of reactive oxygen species (ROS) production and the antioxidative activity. In this review, we focused on the role of H2S and NO molecular sibling, CO/HO pathway, and therapeutic potential of CO-releasing pharmacological tools in the regulation of oxidative stress-induced damage within the GI tract with a special emphasis on the esophagus, stomach, and intestines and also two solid and important metabolic abdominal organs, the liver and pancreas.
Collapse
|
13
|
Liu C, Fujino M, Zhu S, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Li X. 5-ALA/SFC enhances HO-1 expression through the MAPK/Nrf2 antioxidant pathway and attenuates murine tubular epithelial cell apoptosis. FEBS Open Bio 2019; 9:1928-1938. [PMID: 31495071 PMCID: PMC6823284 DOI: 10.1002/2211-5463.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclosporin A (CsA) is a common immunosuppressant, but its use is limited as it can cause chronic kidney injury. Oxidative stress and apoptosis play a key role in CsA-induced nephrotoxicity. This study investigated the protective effect of 5-aminolevulinic acid and iron (5-ALA/SFC) on CsA-induced injury in murine proximal tubular epithelial cells (mProx24). 5-ALA/SFC significantly inhibited apoptosis in CsA-treated mProx24 cells with increases in heme oxygenase (HO)-1, nuclear factor E2-related factor 2 (Nrf2), and p38, and Erk-1/2 phosphorylation. Moreover, 5-ALA/SFC suppressed production of reactive oxygen species in CsA-exposed cells and inhibition of HO-1 suppressed the protective effects of 5-ALA/SFC. In summary, 5-ALA/SFC may have potential for development into a treatment for the anti-nephrotoxic/apoptotic effects of CsA.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Masayuki Fujino
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- AIDS Research CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Shuoji Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Yoshitaka Isaka
- Department of NephrologyOsaka University Graduate School of MedicineJapan
| | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Xiao‐Kang Li
- Division of Transplantation ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
14
|
Lee H, Choi YK. Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases. Int J Mol Sci 2018; 20:ijms20010078. [PMID: 30585210 PMCID: PMC6337166 DOI: 10.3390/ijms20010078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.
Collapse
Affiliation(s)
- Huiju Lee
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
15
|
Upadhyay KK, Jadeja RN, Thadani JM, Joshi A, Vohra A, Mevada V, Patel R, Khurana S, Devkar RV. Carbon monoxide releasing molecule A-1 attenuates acetaminophen-mediated hepatotoxicity and improves survival of mice by induction of Nrf2 and related genes. Toxicol Appl Pharmacol 2018; 360:99-108. [PMID: 30273691 DOI: 10.1016/j.taap.2018.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022]
Abstract
Acute liver injury is frequently associated with oxidative stress. Here, we investigated the therapeutic potential of carbon monoxide releasing molecule A-1 (CORM A-1) in oxidative stress-mediated liver injury. Overnight-fasted mice were injected with acetaminophen (APAP; 300 mg/kg; intraperitoneally) and were sacrificed at 4 and 12 h. They showed elevated levels of serum transaminases, depleted hepatic glutathione (GSH) and hepatocyte necrosis. Mice injected with CORM A-1 (20 mg/kg) 1 h after APAP administration, had reduced serum transaminases, preserved hepatic GSH and reduced hepatocyte necrosis. Mice that received a lethal dose of APAP (600 mg/kg), died by 10 h; but those co-treated with CORM A-1 showed a 50% survival. Compared to APAP-treated mice, livers from those co-treated with CORM A-1, had upregulation of Nrf2 and ARE genes (HO-1, GCLM and NQO-1). APAP-treated mice had elevated hepatic mRNA levels of inflammatory genes (Nf-κB, TNF-α, IL1-β and IL-6), an effect blunted in those co-treated with CORM A-1. In tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells, CORM A-1 augmented cell viability, reduced oxidative stress, activated the nuclear factor erythroid 2-related factor 2 (Nrf2) and anti-oxidant response element (ARE) genes. The molecular docking profile of CO in the kelch domain of Keap1 protein suggested that CO released from CORM A-1 mediated Nrf2 activation. Collectively, these data indicate that CORM A-1 reduces oxidative stress by upregulating Nrf2 and related genes, and restoring hepatic GSH, to reduce hepatocyte necrosis and thus minimize liver injury that contributes to an overall improved survival rate.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912,USA
| | - Jaymesh M Thadani
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Apeksha Joshi
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Aliasgar Vohra
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Vishal Mevada
- Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Rajesh Patel
- Bioinformatics and Supercomputer lab, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India
| | - Sandeep Khurana
- Division of Gastroenterology, Hepatology and Nutrition and Weight Management, Geisinger Medical Center, Danville, PA 17822, USA
| | - Ranjitsinh V Devkar
- Phytotherapeutics and Metabolic Endocrinology Division, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
16
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
17
|
High-pressure carbon monoxide preserves rat kidney grafts from apoptosis and inflammation. J Transl Med 2017; 97:468-477. [PMID: 28194034 DOI: 10.1038/labinvest.2016.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is unavoidable in kidney transplantation (KTx) and frequently influences both short- and long-term allograft survival. Carbon monoxide (CO) has attracted attention as a medical gas with anti-inflammatory and anti-apoptotic effects. We investigated a new strategy for organ preservation using ex vivo application of high-pressure CO in an experimental rat KTx model. We preserved kidney grafts using a high-pressure chamber filled with mixed gases composed of CO and O2. We found that cold I/R injury resulted in progressive deterioration of renal graft function in University of Wisconsin solution, whereas CO significantly improved renal function. We confirmed that CO decreased oxidative stress and mRNA expression of proinflammatory cytokines and inhibited tubular apoptosis in the early phases. Western blot analysis demonstrated that CO increased phosphatidylinositol-3 kinase and phosphorylation of Akt and p38 mitogen-activated protein kinase. Furthermore, CO significantly alleviated tubular injury scores and suppressed the development of interstitial fibrosis at 100 days after KTx. Thus, high-pressure mixed CO and O2 gases successfully preserved rat kidney grafts for 24 h by protecting tubular epithelial cells from apoptosis and inhibiting inflammation.
Collapse
|
18
|
Liu XM, Peyton KJ, Durante W. Ammonia promotes endothelial cell survival via the heme oxygenase-1-mediated release of carbon monoxide. Free Radic Biol Med 2017; 102:37-46. [PMID: 27867098 PMCID: PMC5209302 DOI: 10.1016/j.freeradbiomed.2016.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Although endothelial cells produce substantial quantities of ammonia during cell metabolism, the physiologic role of this gas in these cells is not known. In this study, we investigated if ammonia regulates the expression of heme oxygenase-1 (HO-1), and if this enzyme influences the biological actions of ammonia on endothelial cells. Exogenously administered ammonia, given as ammonium chloride or ammonium hydroxide, or endogenously generated ammonia stimulated HO-1 protein expression in cultured human and murine endothelial cells. Dietary supplementation of ammonia also induced HO-1 protein expression in murine arteries. The increase in HO-1 protein by ammonia in endothelial cells was first detected 4h after ammonia exposure and was associated with the induction of HO-1 mRNA, enhanced production of reactive oxygen species (ROS), and increased expression and activity of NF-E2-related factor-2 (Nrf2). Ammonia also activated the HO-1 promoter and this was blocked by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. The induction of HO-1 expression by ammonia was dependent on ROS formation and prevented by N-acetylcysteine or rotenone. Finally, prior treatment of endothelial cells with ammonia inhibited tumor necrosis factor-α-stimulated cell death. However, silencing HO-1 expression abrogated the protective action of ammonia and this was reversed by the administration of carbon monoxide but not bilirubin or iron. In conclusion, this study demonstrates that ammonia stimulates the expression of HO-1 in endothelial cells via the ROS-Nrf2 pathway, and that the induction of HO-1 contributes to the cytoprotective action of ammonia by generating carbon monoxide. Moreover, it identifies ammonia as a potentially important signaling gas in the vasculature that promotes endothelial cell survival.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
19
|
Lee DS, Jeong GS. Butein provides neuroprotective and anti-neuroinflammatory effects through Nrf2/ARE-dependent haem oxygenase 1 expression by activating the PI3K/Akt pathway. Br J Pharmacol 2016; 173:2894-909. [PMID: 27465039 PMCID: PMC5055139 DOI: 10.1111/bph.13569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Butein, 3,4,2',4'-tetrahydroxychalcone, has various pharmacological effects. However, no study has demonstrated the specific neurobiological mechanisms of the effects of butein in neuronal cells. The present study examined the role of butein as an antioxidative and anti-inflammatory inducer of haem oxygenase 1 (HO1) in mouse hippocampal HT22, BV2 microglial and primary mouse hippocampus neurons. EXPERIMENTAL APPROACH We investigated the neuroprotective effects of butein on glutamate-induced HT22 cell and primary mouse hippocampal neuron death and its anti-neuroinflammatory effects on LPS-induced activation of BV2 cells. We elucidated the underlying mechanisms by assessing the involvement of NF-κB, HO1, nuclear factor-E2-related factor 2 (Nrf2) and Akt signalling. KEY RESULTS Butein decreased cellular oxidative injury and the production of ROS in glutamate-treated HT22 cells and primary mouse hippocampal neurons. Furthermore, butein suppressed LPS-induced pro-inflammatory enzymes and mediators in BV2 microglia. Butein inhibited IL-6, IL-1β and TNF-α production and mRNA expression. In addition, butein decreased NO and PGE2 production and inducible NOS and COX-2 expression through the NF-κB signalling pathway. Butein up-regulated Nrf2/ARE-mediated HO1 expression through the PI3K/Akt pathway and this was positively associated with its cytoprotective effects and anti-neuroinflammatory actions. CONCLUSION AND IMPLICATIONS Our results indicate that butein effectively prevents glutamate-induced oxidative damage and LPS-induced activation and that the induction of HO1 by butein through the PI3K/Akt pathway and Nrf2 activation appears to play a pivotal role in its effects on neuronal cells. Our results provide evidence for the neuroprotective properties of butein.
Collapse
Affiliation(s)
- Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Korea
| | | |
Collapse
|
20
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
21
|
Liu XM, Durante ZE, Peyton KJ, Durante W. Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction. Free Radic Biol Med 2016; 94:218-29. [PMID: 26968795 PMCID: PMC4844824 DOI: 10.1016/j.freeradbiomed.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
The use of HIV protease inhibitors (PIs) has extended the duration and quality of life for HIV-positive individuals. However there is increasing concern that this antiviral therapy may promote premature cardiovascular disease by impairing endothelial cell (EC) function. In the present study, we investigated the effect of HIV PIs on EC function and determined if the enzyme heme oxygenase (HO-1) influences the biological action of these drugs. We found that three distinct PIs, including ritonavir, atazanavir, and lopinavir, stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). PIs also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the PI-mediated induction of HO-1 was abolished by N-acetyl-l-cysteine and rotenone. Furthermore, PIs blocked EC proliferation and migration and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition of HO-1 activity or expression potentiated the anti-proliferative and inflammatory actions of PIs which was reversed by bilirubin but not carbon monoxide. Alternatively, adenovirus-mediated overexpression of HO-1 attenuated the growth-inhibitory and inflammatory effect of PIs. In contrast, blocking HO-1 activity failed to modify the anti-migratory effect of the PIs. Thus, induction of HO-1 via the ROS-Nrf2 pathway in human ECs counteracts the anti-proliferative and inflammatory actions of PIs by generating bilirubin. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing EC dysfunction and vascular disease in HIV-infected patients undergoing antiretroviral therapy.
Collapse
Affiliation(s)
- Xiao-Ming Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Zane E Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Kelly J Peyton
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
22
|
Lee DS, Ko W, Song BK, Son I, Kim DW, Kang DG, Lee HS, Oh H, Jang JH, Kim YC, Kim S. The herbal extract KCHO-1 exerts a neuroprotective effect by ameliorating oxidative stress via heme oxygenase-1 upregulation. Mol Med Rep 2016; 13:4911-9. [PMID: 27082826 DOI: 10.3892/mmr.2016.5129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/18/2016] [Indexed: 11/06/2022] Open
Abstract
KCHO-1 is a novel product comprised of 30% ethanol extracts obtained from nine medical herbs, which are commonly used in traditional Korean and Chinese medicine. The nine herbs include Curcuma longa, Salvia miltiorrhiza, Gastrodia elata, Chaenomeles sinensis, Polygala tenuifolia, Paeonia japonica, Glycyrrhiza uralensis, Atractylodes japonica and processed Aconitum carmichaeli. Recent studies have reported the beneficial effects of these herbs. The present study aimed to investigate the direct neuroprotective effects of KCHO‑1 on HT22 mouse hippocampal cells, and to determine the possible underlying mechanisms. KCHO‑1 significantly suppressed glutamate‑ and hydrogen peroxide (H2O2)‑induced cell damage, and reactive oxygen species generation. In addition, KCHO‑1 increased the mRNA and protein expression levels of heme oxygenase (HO)‑1. Tin protoporphyrin, which is an inhibitor of HO activity, partially suppressed the effects of KCHO‑1. Furthermore, KCHO‑1 significantly upregulated nuclear factor erythroid‑derived 2‑related factor‑2 (Nrf2) nuclear translocation. Extracellular signal‑regulated kinase (ERK) activation also appeared to be associated with KCHO‑1‑induced HO‑1 expression, since the ERK inhibitor PD98059 suppressed HO‑1 expression and prevented KCHO‑1‑induced cytoprotection. The results of the present study suggested that KCHO‑1 may effectively prevent glutamate‑ or H2O2‑induced oxidative damage via Nrf2/ERK mitogen‑activated protein kinase‑dependent HO‑1 expression. These data suggest that KCHO‑1 may be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong-Sung Lee
- Department of Pharmacy, Chosun University, Dong‑gu, Gwangju 61452, Republic of Korea
| | - Wonmin Ko
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Bong-Keun Song
- Department of Internal Medicine, School of Oriental Medicine, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Ilhong Son
- Department of Neurology, Inam Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Dong-Woung Kim
- Center of Integrative Medicine, Department of Internal Medicine, Wonkwang University Gwangju Hospital, Gwangju 61729, Republic of Korea
| | - Dae-Gil Kang
- Hanbang Body‑Fluid Research Center, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Body‑Fluid Research Center, Wonkwang University, Iksan, Jeollabuk‑do 54538, Republic of Korea
| | - Hyuncheol Oh
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Youn-Chul Kim
- Department of Pharmacy, Wonkwang University, Jeollabuk‑do 54538, Republic of Korea
| | - Sungchul Kim
- ALS/MND Center of Wonkwang University Korean Medical Hospital, Gwangju 61729, Republic of Korea
| |
Collapse
|
23
|
Shuster-Meiseles T, Shafer MM, Heo J, Pardo M, Antkiewicz DS, Schauer JJ, Rudich A, Rudich Y. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. ENVIRONMENTAL RESEARCH 2016; 146:252-62. [PMID: 26775006 DOI: 10.1016/j.envres.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 05/25/2023]
Abstract
In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.
Collapse
Affiliation(s)
- Timor Shuster-Meiseles
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin M Shafer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Jongbae Heo
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - James J Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, WI, USA
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes. Toxicol Appl Pharmacol 2015; 289:349-59. [DOI: 10.1016/j.taap.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022]
|
25
|
Cheng HT, Yen CJ, Chang CC, Huang KT, Chen KH, Zhang RY, Lee PY, Miaw SC, Huang JW, Chiang CK, Wu KD, Hung KY. Ferritin heavy chain mediates the protective effect of heme oxygenase-1 against oxidative stress. Biochim Biophys Acta Gen Subj 2015; 1850:2506-17. [PMID: 26423448 DOI: 10.1016/j.bbagen.2015.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/30/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
The phenomenon that heme oxygenase-1 (HO-1) protects cell from injury yet its enzymatic product, iron, may facilitate generation of free radical has been long puzzling. Here we establish a functional connection between ferritin heavy chain (FHC) and HO-1. In human lupus nephritis HO-1 and FHC are colocalized within the glomeruli. In rodent anti-Thy1 (thymocyte antigen 1) induced glomerulonephritis, heme oxygenase blockade lowers the expression of FHC and accelerates mesangial cell death. Stimulation of heme oxygenase in cultured rat mesangial cell enhances its resistance to hydrogen peroxide, whereas FHC knockdown by RNA interference compromises this salutary effect. RNA interference of HO-1 makes the cell more susceptible to hydrogen peroxide, which can be rescued by forced expression of wild-type FHC but not mutants that lose the capacity of iron storage and ferroxidase activity. Phosphorylation of JunD was not sustained in these cells. Microarray analysis identifies four candidate transcriptional factors that may regulate the HO-1-induced transcription of FHC. Our results support the role of FHC in neutralizing the iron toxicity as well as mediating the protective effect of HO-1 in response to oxidative stress.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu City 30059, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chung-Jen Yen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chen-Chih Chang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Kuo-Tong Huang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Kuo-Hsuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Rui-Yang Zhang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu City 30059, Taiwan
| | - Ping-Yi Lee
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Chih-Kang Chiang
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| | - Kwan-Dun Wu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
26
|
Fetoni AR, Paciello F, Rolesi R, Eramo SLM, Mancuso C, Troiani D, Paludetti G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic Biol Med 2015; 85:269-81. [PMID: 25936352 DOI: 10.1016/j.freeradbiomed.2015.04.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Abstract
Noise-induced hearing loss depends on progressive increase of reactive oxygen species and lipoperoxidative damage in conjunction with the imbalance of antioxidant defenses. The redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the regulation of cellular defenses against oxidative stress, including heme oxygenase-1 (HO-1) activation. In this work we describe a link between cochlear oxidative stress damage, induced by noise exposure, and the activation of the Nrf2/HO-1 pathway. In our model, noise induces superoxide production and overexpression of the lipid peroxidation marker 4-hydroxy-nonenals (4-HNE). To face the oxidative stress, the endogenous defense system is activated as well, as shown by the slight activation of superoxide dismutases (SODs). In addition, we observed the activation of the Nrf2/HO-1 pathway after noise exposure. Nrf2 appears to promote the maintenance of cellular homeostasis under stress conditions. However, in this model the endogenous antioxidant system fails to counteract noise-induced cell damage and its activation is not effective enough in preventing cochlear damage. The herb-derived phenol rosmarinic acid (RA) attenuates noise-induced hearing loss, reducing threshold shift, and promotes hair cell survival. In fact, RA enhances the endogenous antioxidant defenses, as shown by decreased superoxide production, reduced expression of 4-HNE, and up-regulation of SODs. Interestingly, RA potentiates the Nrf2/HO-1 signaling pathway, as shown by immunohistochemical and Western blot analyses. Thus, protective effects of RA are associated with the induction/activation of the Nrf2-ARE signaling pathway in addition to RA direct scavenging capability.
Collapse
Affiliation(s)
- A R Fetoni
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - F Paciello
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - R Rolesi
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| | - S L M Eramo
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - C Mancuso
- Institute of Pharmacology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - D Troiani
- Institute of Human Physiology, Medical School, Università Cattolica, Largo F. Vito 1, 00168, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, Medical School, Università Cattolica, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
27
|
Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT. Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G21-9. [PMID: 25951827 DOI: 10.1152/ajpgi.00307.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) can cause hepatocellular injury associated with the inflammatory response and mitochondrial dysfunction. We studied the protective effects of the phosphodiesterase inhibitor cilostazol in hepatic I/R and the roles of mitochondria and the Nrf2/heme oxygenase-1 (HO-1) system. Wild-type, Hmox1(-/-), or Nrf2(-/-) mice were subjected to hepatic I/R in the absence or presence of cilostazol followed by measurements of liver injury. Primary hepatocytes were subjected to cilostazol with the HO-1 inhibitor ZnPP, or Nrf2-specific siRNA, followed by assessment of mitochondrial biogenesis. Preconditioning with cilostazol prior to hepatic I/R protected against hepatocellular injury and mitochondrial dysfunction. Cilostazol reduced the serum levels of alanine aminotransferase, TNF-α, and liver myeloperoxidase content relative to control I/R-treated mice. In primary hepatocytes, cilostazol increased the expression of HO-1, and markers of mitochondrial biogenesis, PGC-1α, NRF-1, and TFAM, induced the mitochondrial proteins COX III and COX IV and increased mtDNA and mitochondria content. Pretreatment of primary hepatocytes with ZnPP inhibited cilostazol-induced PGC-1α, NRF-1, and TFAM mRNA expression and reduced mtDNA and mitochondria content. Genetic silencing of Nrf2 prevented the induction of HO-1 and mitochondrial biogenesis by cilostazol in HepG2 cells. Cilostazol induced hepatic HO-1 production and mitochondrial biogenesis in wild-type mice, but not in Hmox1(-/-) or Nrf2(-/-) mice, and failed to protect against liver injury in Nrf2(-/-) mice. These results suggest that I/R injury can impair hepatic mitochondrial function, which can be reversed by cilostazol treatment. These results also suggest that cilostazol-induced mitochondrial biogenesis was mediated by an Nrf-2- and HO-1-dependent pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Zheng
- School of Biological Sciences, University of Ulsan, Ulsan, Korea; Department of Neurology, Affiliated Hospital of YanBian University, YanJi, China
| | - Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Md Jamal Uddin
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Seul-Ki Kim
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Yingqing Chen
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine, and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; and
| | - Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, and Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, Korea;
| |
Collapse
|
28
|
Cremers NAJ, Lundvig DMS, van Dalen SCM, Schelbergen RF, van Lent PLEM, Szarek WA, Regan RF, Carels CE, Wagener FADTG. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells. Int J Mol Sci 2014; 15:17974-99. [PMID: 25299695 PMCID: PMC4227200 DOI: 10.3390/ijms151017974] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Stephanie C M van Dalen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Rik F Schelbergen
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter L E M van Lent
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Walter A Szarek
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Carine E Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Oral drug delivery of therapeutic gases — Carbon monoxide release for gastrointestinal diseases. J Control Release 2014; 189:46-53. [DOI: 10.1016/j.jconrel.2014.06.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/27/2023]
|
30
|
Chi PL, Lin CC, Chen YW, Hsiao LD, Yang CM. CO Induces Nrf2-Dependent Heme Oxygenase-1 Transcription by Cooperating with Sp1 and c-Jun in Rat Brain Astrocytes. Mol Neurobiol 2014; 52:277-92. [PMID: 25148934 DOI: 10.1007/s12035-014-8869-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
Upregulation of heme oxygenase 1 (HO-1) by carbon monoxide (CO) delivered by CO-releasing molecules (CORMs) may be utilized as a therapeutic intervention for neurodegenerative diseases. This study was to delineate the two putative anti-oxidant response elements (AREs) in modulating HO-1 gene by participating with its promoter elements in rat brain astrocytes (RBA-1). CORM-2-induced HO-1 expression was mediated through superoxide, p38 mitogen-activated protein kinase(MAPK), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), protein tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), and phosphatidylinositol 3'-kinase (PI3K/Akt), revealed by the pharmacological inhibitors or knockdown of these signaling molecules. CORM-2-enhanced HO-1 promoter activity was inhibited by co-transfection with small interfering RNA (siRNA) of c-Jun, specificity protein 1 (Sp1), or nuclear factor-erythroid 2-related factor 2 (Nrf2). Immunoprecipitation assay showed that CORM-2 increased the association of nuclear Nrf2 with Sp1 and c-Jun. Furthermore, chromatin immunoprecipitation (ChIP) assay confirmed that Nrf2, Sp1, and c-Jun are associated with the proximal ARE binding site on HO-1 promoter, suggesting that Nrf2/Sp1/c-Jun cooperations are key transcription factors modulating HO-1 expression. Mechanistically, CORM-2-induced ARE promoter activity was reduced by the inhibitors of reactive oxygen species (ROS), p38 MAPK, Pyk2, MAPK/ERK kinases 1 and 2 (MEK1/2), PDGFR, and PI3K/Akt or the siRNAs of c-Jun, SP1, and Nrf2. These findings suggested that CORM-2 increases formation of c-Jun, Sp1, and Nrf2 complex and binding with ARE1 binding site, which is mediated through both ROS/p38 MAPK and Pyk2-dependent PDGFR/PI3K/Akt/Erk1/2 pathways, resulting in HO-1 expression in RBA-1 cells.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, 33302, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Stamellou E, Storz D, Botov S, Ntasis E, Wedel J, Sollazzo S, Krämer BK, van Son W, Seelen M, Schmalz HG, Schmidt A, Hafner M, Yard BA. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation. Redox Biol 2014; 2:739-48. [PMID: 25009775 PMCID: PMC4085349 DOI: 10.1016/j.redox.2014.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022] Open
Abstract
Acyloxydiene–Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-α mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NFκB was inhibited by both rac-1 and rac-8 independent of IκBα degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene–Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms.
Collapse
Affiliation(s)
- E Stamellou
- Institute for Molecular and Cellular Biology, Mannheim University of Applied Sciences, Mannheim, Germany ; Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| | - D Storz
- Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| | - S Botov
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - E Ntasis
- Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| | - J Wedel
- Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| | - S Sollazzo
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - B K Krämer
- Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| | - W van Son
- Department of Nephrology, Academic Medical Center, Groningen, The Netherlands
| | - M Seelen
- Department of Nephrology, Academic Medical Center, Groningen, The Netherlands
| | - H G Schmalz
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - A Schmidt
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - M Hafner
- Institute for Molecular and Cellular Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - B A Yard
- Vth. Medical Department, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg Mannheim, Germany
| |
Collapse
|
32
|
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R. New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 2014; 20:1723-42. [PMID: 24180287 PMCID: PMC3961787 DOI: 10.1089/ars.2013.5675] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/01/2013] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HMOX1) plays a critical role in the protection of cells, and the inducible enzyme is implicated in a spectrum of human diseases. The increasing prevalence of cardiovascular and metabolic morbidities, for which current treatment approaches are not optimal, emphasizes the necessity to better understand key players such as HMOX1 that may be therapeutic targets. RECENT ADVANCES HMOX1 is a dynamic protein that can undergo post-translational and structural modifications which modulate HMOX1 function. Moreover, trafficking from the endoplasmic reticulum to other cellular compartments, including the nucleus, highlights that HMOX1 may play roles other than the catabolism of heme. CRITICAL ISSUES The ability of HMOX1 to be induced by a variety of stressors, in an equally wide variety of tissues and cell types, represents an obstacle for the therapeutic exploitation of the enzyme. Any capacity to modulate HMOX1 in cardiovascular and metabolic diseases should be tempered with an appreciation that HMOX1 may have an impact on cancer. Moreover, the potential for heme catabolism end products, such as carbon monoxide, to amplify the HMOX1 stress response should be considered. FUTURE DIRECTIONS A more complete understanding of HMOX1 modifications and the properties that they impart is necessary. Delineating these parameters will provide a clearer picture of the opportunities to modulate HMOX1 in human disease.
Collapse
Affiliation(s)
- Louise L. Dunn
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | | | - Jun Ni
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hafizah A. Hamid
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Christopher R. Parish
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Roland Stocker
- Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
33
|
Hou J, Cai S, Kitajima Y, Fujino M, Ito H, Takahashi K, Abe F, Tanaka T, Ding Q, Li XK. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2013; 305:F1149-57. [PMID: 23904222 DOI: 10.1152/ajprenal.00275.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia reperfusion injury (IRI) is a major factor responsible for acute renal failure. An intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) is fundamental in aerobic energy metabolism. Heme oxygenase (HO)-1 cleaves heme to form biliverdin, carbon monoxide (CO), and iron (Fe(2+)), which is used with 5-ALA. In the present study, we investigated the role of 5-ALA in the attenuation of acute renal IRI using a mouse model. Male Balb/c mice received 30 mg/kg 5-ALA with Fe(2+) 48, 24, and 2 h before IRI and were subsequently subjected to bilateral renal pedicle occlusion for 45 min. The endogenous CO concentration of the kidneys from the mice administered 5-ALA/Fe(2+) increased significantly, and the peak concentrations of serum creatinine and blood urea nitrogen decreased. 5-ALA/Fe(2+) treatments significantly decreased the tubular damage and number of apoptotic cells. IRI-induced renal thiobarbituric acid-reactive substance levels were also significantly decreased in the 5-ALA/Fe(2+) group. Furthermore, mRNA expression of HO-1, TNF-α, and interferon-γ was significantly increased after IRI. Levels of HO-1 were increased and levels of TNF-α and interferon-γ were decreased in the 5-ALA/Fe(2+)-pretreated renal parenchyma after IRI. F4/80 staining showed reduced macrophage infiltration, and TUNEL staining revealed that there were fewer interstitial apoptotic cells. These findings suggest that 5-ALA/Fe(2+) can protect the kidneys against IRI by reducing macrophage infiltration and decreasing renal cell apoptosis via the generation of CO.
Collapse
Affiliation(s)
- Jiangang Hou
- Div. of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thompson JW, Narayanan SV, Perez-Pinzon MA. Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 2013; 10:354-69. [PMID: 23730259 PMCID: PMC3520045 DOI: 10.2174/157015912804143577] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 12/28/2022] Open
Abstract
There is extensive evidence that the restoration of blood flow following cerebral ischemia contributes greatly to the pathophysiology of ischemia mediated brain injury. The initiating stimulus of reperfusion injury is believed to be the excessive production of reactive oxygen (ROS) and nitrogen (RNS) species by the mitochondria. ROS and RNS generation leads to mitochondrial protein, lipid and DNA oxidation which impedes normal mitochondrial physiology and initiates cellular death pathways. However not all ROS and RNS production is detrimental. It has been demonstrated that low levels of ROS production are protective and may serve as a trigger for activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sublethal ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Numerous proteins and signaling pathways have been implicated in the ischemic preconditioning neuroprotective response. In this review we examine the origin and mechanisms of ROS and RNS production following ischemic/reperfusion and the role of free radicals in modulating proteins associated with ischemic preconditioning neuroprotection.
Collapse
Affiliation(s)
- John W Thompson
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136
| | | | | |
Collapse
|
35
|
Okita Y, Kamoshida A, Suzuki H, Itoh K, Motohashi H, Igarashi K, Yamamoto M, Ogami T, Koinuma D, Kato M. Transforming growth factor-β induces transcription factors MafK and Bach1 to suppress expression of the heme oxygenase-1 gene. J Biol Chem 2013; 288:20658-67. [PMID: 23737527 PMCID: PMC3711329 DOI: 10.1074/jbc.m113.450478] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-β (TGF-β) has multiple functions in embryogenesis, adult homeostasis, tissue repair, and development of cancer. Here, we report that TGF-β suppresses the transcriptional activation of the heme oxygenase-1 (HO-1) gene, which is implicated in protection against oxidative injury and lung carcinogenesis. HO-1 is a target of the oxidative stress-responsive transcription factor Nrf2. TGF-β did not affect the stabilization or nuclear accumulation of Nrf2 after stimulation with electrophiles. Instead, TGF-β induced expression of transcription factors MafK and Bach1. Enhanced expression of either MafK or Bach1 was enough to suppress the electrophile-inducible expression of HO-1 even in the presence of accumulated Nrf2 in the nucleus. Knockdown of MafK and Bach1 by siRNA abolished TGF-β-dependent suppression of HO-1. Furthermore, chromatin immunoprecipitation assays revealed that Nrf2 substitutes for Bach1 at the antioxidant response elements (E1 and E2), which are responsible for the induction of HO-1 in response to oxidative stress. On the other hand, pretreatment with TGF-β suppressed binding of Nrf2 to both E1 and E2 but marginally increased the binding of MafK to E2 together with Smads. As TGF-β is activated after tissue injury and in the process of cancer development, these findings suggest a novel mechanism by which damaged tissue becomes vulnerable to oxidative stress and xenobiotics.
Collapse
Affiliation(s)
- Yukari Okita
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
37
|
Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012; 53:2043-53. [PMID: 23000245 PMCID: PMC3604744 DOI: 10.1016/j.freeradbiomed.2012.09.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/21/2022]
Abstract
The cell renews, adapts, or expands its mitochondrial population during episodes of cell damage or periods of intensified energy demand by the induction of mitochondrial biogenesis. This bigenomic program is modulated by redox-sensitive signals that respond to physiological nitric oxide (NO), carbon monoxide (CO), and mitochondrial reactive oxygen species production. This review summarizes our current ideas about the pathways involved in the activation of mitochondrial biogenesis by the physiological gases leading to changes in the redox milieu of the cell, with an emphasis on the responses to oxidative stress and inflammation. The cell's energy supply is protected from conditions that damage mitochondria by an inducible transcriptional program of mitochondrial biogenesis that operates in large part through redox signals involving the nitric oxide synthase and the heme oxygenase-1/CO systems. These redox events stimulate the coordinated activities of several multifunctional transcription factors and coactivators also involved in the elimination of defective mitochondria and the expression of counterinflammatory and antioxidant genes, such as IL10 and SOD2, as part of a unified damage-control network. The redox-regulated mechanisms of mitochondrial biogenesis schematically outlined in the graphical abstract link mitochondrial quality control to an enhanced capacity to support the cell's metabolic needs while improving its resistance to metabolic failure and avoidance of cell death during periods of oxidative stress.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center and the Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
38
|
Kästle M, Woschee E, Grune T. Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition. Free Radic Biol Med 2012; 53:2092-101. [PMID: 23010497 DOI: 10.1016/j.freeradbiomed.2012.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
The proteasome is responsible for the degradation of polyubiquitinated proteins. Inhibition of the proteasome leads to an accumulation of polyubiquitinated proteins and thus to an impairment of the cellular protein homeostasis. To prevent cellular damage on proteasome inhibition there is an up-regulation of several heat shock proteins (Hsps), including Hsp27, Hsp70, and heme oxygenase-1 (HO-1). It was demonstrated that the induction of classical Hsps, such as Hsp27 and Hsp70, is dependent on a HDAC6-dependent mechanism which releases HSF-1 and induces the expression of newly synthesized Hsps. In this study we demonstrate that the up-regulation of HO-1 on proteasome inhibition is mediated by p38MAPK and Nrf-2. Interestingly we found additional evidence, proving the involvement of HDAC6 in the up-regulation of HO-1. By using RNAi technologies against HDAC6 we demonstrate that there is a lack of the expected induction of HO-1, Nrf-2, and phosphorylated p38 (pp38) after proteasome inhibition. Furthermore, we can show that p38 is acetylated in unstressed cells and is a good substrate for HDAC6-mediated deacetylation. Therefore, we propose that on proteasome inhibition HDAC6 deacetylates p38, allowing the subsequent phosphorylation of p38 and resultant activation of NRF-2. NRF-2 enters the nucleus and functions as a transcription factor for HO-1.
Collapse
Affiliation(s)
- Marc Kästle
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, Dornburger-Strasse 24, 07743 Jena, Germany
| | | | | |
Collapse
|
39
|
Liu W, Wang D, Liu K, Sun X. Nrf2 as a converging node for cellular signaling pathways of gasotransmitters. Med Hypotheses 2012; 79:308-10. [PMID: 22682031 DOI: 10.1016/j.mehy.2012.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 04/22/2012] [Accepted: 05/10/2012] [Indexed: 12/30/2022]
Abstract
Gasotransmitters is a family of endogenous molecules of gases or gaseous signaling molecules. To date, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) have been found to be important gasotransmitters in humans. Three gasotransmitters at high concentrations have been confirmed to be detrimental to human health, while evidence shows they at low concentrations may confer protective effects. There are important interactions among three gasotransmitters. Recent evidence reveals that these gasotransmitters may converge at Nrf2, an important transcription factor able to induce the expressions of some critical antioxidant enzymes, which may attribute to the protective effects of these gasotransmitters. Thus, we hypothesize that Nrf2 serves as a converging node for cellular signaling pathways of gasotransmitters, which adds evidence on the interactions among them.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Diving Medicine, The Second Military Medical University, Shanghai, PR China
| | | | | | | |
Collapse
|
40
|
Schoenfeld MP, Ansari RR, Nakao A, Wink D. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures. Med Gas Res 2012; 2:8. [PMID: 22475015 PMCID: PMC3348081 DOI: 10.1186/2045-9912-2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/04/2012] [Indexed: 12/26/2022] Open
Abstract
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR) injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.
Collapse
Affiliation(s)
- Michael P Schoenfeld
- National Aeronautics and Space Administration Marshall Space Flight Center, Huntsville, Alabama, USA.
| | | | | | | |
Collapse
|
41
|
Piantadosi CA, Suliman HB. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. Biochim Biophys Acta Gen Subj 2012; 1820:532-41. [PMID: 22265687 DOI: 10.1016/j.bbagen.2012.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 01/07/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells avoid major mitochondrial damage and energy failure during systemic inflammatory states, such as severe acute infections, by specific targeting of the inflammatory response and by inducing anti-inflammatory and anti-oxidant defenses. Recent evidence indicates that these cell defenses also include mitochondrial biogenesis and the clearance of damaged mitochondria through autophagy. SCOPE OF REVIEW This review addresses a group of transcriptional signaling mechanisms that engage mitochondrial biogenesis, including energy-sensing and redox-regulated transcription factors and co-activators, after major inflammatory events. MAJOR CONCLUSIONS Stimulation of the innate immune system by activation of toll-like receptors (TLR) generates pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α)and interleukin-1β (IL-1β), necessary for optimal host defense, but which also contribute to mitochondrial damage through oxidative stress and other mechanisms. To protect its energy supply, host cells sense mitochondrial damage and initiate mitochondrial biogenesis under the control of an inducible transcriptional program that also activates anti-oxidant and anti-inflammatory gene expression. This multifunctional network not only increases cellular resistance to metabolic failure, oxidative stress, and cell death, but promotes immune tolerance as shown in the graphical abstract. GENERAL SIGNIFICANCE The post-inflammatory induction of mitochondrial biogenesis supports metabolic function and cell viability while helping to control inflammation. In clinical settings, patients recovering from severe systemic infections may develop transient immune suppression, placing them at risk for recurrent infection, but there may be therapeutic opportunities to enhance mitochondrial quality control that would improve the resolution of life-threatening host responses to such infections.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, and Durham VA Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
42
|
Kim HJ, Zheng M, Kim SK, Cho JJ, Shin CH, Joe Y, Chung HT. CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation. Immune Netw 2011; 11:376-82. [PMID: 22346778 PMCID: PMC3275707 DOI: 10.4110/in.2011.11.6.376] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 12/15/2022] Open
Abstract
Background Carbon monoxide (CO) is a cytoprotective and homeostatic molecule with important signaling capabilities in physiological and pathophysiological situations. CO protects cells/tissues from damage by free radicals or oxidative stress. NAD(P)H:quinone oxidoreductase (NQO1) is a highly inducible enzyme that is regulated by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which is central to efficient detoxification of reactive metabolites and reactive oxygen species (ROS). Methods We generated NQO1 promoter construct. HepG2 cells were treated with CO Releasing Molecules-2 (CORM-2) or CO gas and the gene expressions were measured by RT-PCR, immunoblot, and luciferase assays. Results CO induced expression of NQO1 in human hepatocarcinoma cell lines by activation of Nrf2. Exposure of HepG2 cells to CO resulted in significant induction of NQO1 in dose- and time-dependent manners. Analysis of the NQO1 promoter indicated that an antioxidant responsible element (ARE)-containing region was critical for the CO-induced Nrf2-dependent increase of NQO1 gene expression in HepG2 cells. Conclusion Our results suggest that CO-induced Nrf2 increases the expression of NQO1 which is well known to detoxify reactive metabolites and ROS.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
HO-1 (haem oxygenase-1) is a ubiquitously expressed inducible enzyme degrading haem to CO, biliverdin and Fe2+. Its activation reduces oxidative stress in cells and inhibits inflammation, both due to removal of haem and because of the biological activity of HO-1 products. CO may act similarly to NO, activating soluble guanylate cyclase and elevating cGMP production. It inhibits platelet aggregation, reduces leucocyte adhesion, decreases apoptosis and lowers the production of some pro-inflammatory cytokines. Biliverdin is converted into bilirubin by biliverdin reductase, and both compounds are potent antioxidants, free radical scavengers and inhibitors of the complement cascade. Iron ions can be potentially toxic, increasing the generation of hydroxyl radicals, but simultaneous induction of ferritin and activation of the Fe-ATPase iron transporter protects cells from oxidative stress. Importantly, basal and induced expression of HO-1 is very variable in the human population because of the highly polymorphic (GT)n fragment in the promoter, which may have clinical relevance. The recognized roles of HO-1 are far beyond cytoprotection. The enzyme is important in the regulation of cell proliferation, differentiation and apoptosis. Its activity improves neovascularization, attenuates inflammation and modulates the immune response, thereby influencing carcinogenesis, wound healing, transplant survival and the progression of cardiovascular diseases. Recent results indicate that HO-1 may also act through the regulation of microRNAs, which suggests a much broader involvement of HO-1 in the modulation of cell functions and offers a potential explanation for some well-known activities whose mechanism has hitherto been unclear.
Collapse
|
44
|
Joe Y, Zheng M, Kim SK, Kim S, Uddin JMD, Min TS, Ryu DG, Chung HT. The role of carbon monoxide in metabolic disease. Ann N Y Acad Sci 2011; 1229:156-61. [DOI: 10.1111/j.1749-6632.2011.06121.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Pae HO, Kim EC, Chung HT. Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J Clin Biochem Nutr 2011; 42:197-203. [PMID: 18545641 PMCID: PMC2386522 DOI: 10.3164/jcbn.2008029] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/21/2008] [Indexed: 11/22/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the rate-limiting step in heme degradation to produce carbon monoxide (CO), iron, and biliverdin. Biliverdin is subsequently converted to bilirubin by its reductase, and iron is recycled for heme synthesis. The inducible HO isoform, HO-1, is involved in the protection of multiple tissues and organs. The mechanism of protective actions of HO-1 has not been completely elucidated, but recent evidence suggests that one or more of heme metabolites can mediate the protective effects of HO-1. Particularly, CO mimics the antioxidant, anti-inflammatory, anti-apoptotic and antiproliferative actions of HO-1. Many of these effects of CO depend on the production of cyclic guanosine monophosphate (cGMP), and the modulation of mitogen-activated protein kinase (MAPK) pathways. The transcription factors, including nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases, including MAPK pathway, play an important regulatory role in HO-1 expression by dietary antioxidants and drugs. This review attempts to concisely summarize the molecular and biochemical characteristics of HO-1, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by dietary antioxidants and drugs. In addition, the cytoprotective roles of HO-1 shall be discussed from the perspective of each of the metabolic by-products.
Collapse
Affiliation(s)
- Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan 570-749, Republic of Korea
| | | | | |
Collapse
|
46
|
Yun BR, Lee MJ, Kim JH, Kim IH, Yu GR, Kim DG. Enhancement of parthenolide-induced apoptosis by a PKC-alpha inhibition through heme oxygenase-1 blockage in cholangiocarcinoma cells. Exp Mol Med 2011; 42:787-97. [PMID: 20938215 DOI: 10.3858/emm.2010.42.11.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cholangiocarcinoma (CC) is a chemoresistant intrahepatic bile duct carcinoma with a poor prognosis. The aims of this study were to identify molecular pathways that enhance sesquiterpene lactone parthenolide (PTL)-induced anticancer effects on CC cells. The effects of PTL on apoptosis and hemoxygenase-1 (HO-1) induction were examined in CC cell lines. The enhancement of PTL-mediated apoptosis by modulation of HO-1 expression and the mechanisms involved were also examined in an in vitro cell system. Low PTL concentrations (5 to 10 microM) led to Nrf2-dependent HO-1 induction, which attenuated the apoptogenic effect of PTL in Choi-CK and SCK cells. PTL-mediated apoptosis was enhanced by the protein kinase C-alpha inhibitor Ro317549 (Ro) through inhibition of expression and nuclear translocation of Nrf2, resulting in blockage of HO-1 expression. Finally, HO-1 silencing resulted in enhancement of apoptotic cell death in CC cells. The combination of PTL and Ro efficiently improved tumor growth inhibition compared to treatment with either agent alone in an in vivo subcutaneous tumor model. In conclusion, the modulation of HO-1 expression substantially improved the anticancer effect of PTL. The combination of PTL and Ro could prove to be a valuable chemotherapeutic strategy for CC.
Collapse
Affiliation(s)
- Bo-Ra Yun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561-712, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Piantadosi CA, Withers CM, Bartz RR, MacGarvey NC, Fu P, Sweeney TE, Welty-Wolf KE, Suliman HB. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 2011; 286:16374-85. [PMID: 21454555 PMCID: PMC3091243 DOI: 10.1074/jbc.m110.207738] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/16/2011] [Indexed: 12/20/2022] Open
Abstract
The induction of heme oxygenase-1 (HO-1; Hmox1) by inflammation, for instance in sepsis, is associated both with an anti-inflammatory response and with mitochondrial biogenesis. Here, we tested the idea that HO-1, acting through the Nfe2l2 (Nrf2) transcription factor, links anti-inflammatory cytokine expression to activation of mitochondrial biogenesis. HO-1 induction after LPS stimulated anti-inflammatory IL-10 and IL-1 receptor antagonist (IL-1Ra) expression in mouse liver, human HepG2 cells, and mouse J774.1 macrophages but blunted tumor necrosis factor-α expression. This was accompanied by nuclear Nfe2l2 accumulation and led us to identify abundant Nfe2l2 and other mitochondrial biogenesis transcription factor binding sites in the promoter regions of IL10 and IL1Ra compared with pro-inflammatory genes regulated by NF-κΒ. Mechanistically, HO-1, through its CO product, enabled these transcription factors to bind the core IL10 and IL1Ra promoters, which for IL10 included Nfe2l2, nuclear respiratory factor (NRF)-2 (Gabpa), and MEF2, and for IL1Ra, included NRF-1 and MEF2. In cells, Hmox1 or Nfe2l2 RNA silencing prevented IL-10 and IL-1Ra up-regulation, and HO-1 induction failed post-LPS in Nfe2l2-silenced cells and post-sepsis in Nfe2l2(-/-) mice. Nfe2l2(-/-) mice compared with WT mice, showed more liver damage, higher mortality, and ineffective CO rescue in sepsis. Nfe2l2(-/-) mice in sepsis also generated higher hepatic TNF-α mRNA levels, lower NRF-1 and PGC-1α mRNA levels, and no enhancement of anti-inflammatory Il10, Socs3, or bcl-x(L) gene expression. These findings disclose a highly structured transcriptional network that couples mitochondrial biogenesis to counter-inflammation with major implications for immune suppression in sepsis.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Toyama T, Shinkai Y, Sumi D, Kumagai Y. Carbon monoxide derived from heme oxygenase-2 mediates reduction of methylmercury toxicity in SH-SY5Y cells. Toxicol Appl Pharmacol 2010; 249:86-90. [DOI: 10.1016/j.taap.2010.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/17/2010] [Accepted: 08/21/2010] [Indexed: 11/16/2022]
|
50
|
Abiko Y, Shinkai Y, Sumi D, Kumagai Y. Reduction of arsenic-induced cytotoxicity through Nrf2/HO-1 signaling in HepG2 cells. J Toxicol Sci 2010; 35:419-23. [PMID: 20519851 DOI: 10.2131/jts.35.419] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Our previous study indicated that Nrf2 is a key transcription factor in cellular defenses against inorganic arsenite (iAsIII). However, the role of heme oxygenase-1 (HO-1), which is regulated by Nrf2, in iAsIII-induced cytotoxicity is poorly understood. To address this issue, we examined the contribution of HO-1 to iAsIII-mediated Nrf2 activation and in protection against iAsIII cytotoxicity in HepG2 cells. Exposure of HepG2 cells to iAsIII (10 microM) caused persistent induction of HO-1 accompanied by prolonged Nrf2 activation, whereas siRNA-mediated knockdown of HO-1 decreased prolonged Nrf2 activation. Pretreatment with either HO-1 siRNA or HO inhibitor (tin protoporphyrin IX) significantly enhanced iAsIII-induced cytotoxicity. These results suggest that iAsIII-induced HO-1 appears, at least in part, to act as a positive feedback regulator of Nrf2 activation, thereby diminishing its cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Yumi Abiko
- Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | | | | | |
Collapse
|