1
|
Liu Y, Xie M, Zhou Y, Che L, Zhang B. Interleukin-17 receptor D is a favorable biomarker of glioblastoma. J Neurosurg Sci 2024; 68:320-326. [PMID: 35380198 DOI: 10.23736/s0390-5616.22.05552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequent glioma in adults. The prognosis of GBM is very poor and new prognostic biomarkers are in urgent need to better select high-risk patients and guide the individual treatments. METHODS In our study, we compared the expression of interleukin-17 receptor D (IL17RD) between GBMs and normal tissues from TCGA database, and detected IL17RD mRNA in 17 fresh GBM pairs with qPCR. With immunohistochemistry, we investigated the expression of IL17RD in 156 GBM tissues and further evaluated its clinical significance. The associations between IL17RD and clinicopathological factors were assessed by Chi-square test. The prognostic significance of IL17RD was evaluated by univariate analysis with Kaplan-Meier method, and by multivariate analysis with Cox-regression Hazard model. RESULTS The TPMs and mRNAs of IL17RD in GBM were substantially lower than those in normal brain tissues. The rates of low or high expression of IL17RD accounted for 41.67% and 58.33% respectively. IL17RD was significantly associated with higher survival rates of GBM. The 3-year overall survival rates of patients with low and high IL17RD were 7.2% and 19.5% respectively. In the Cox-regression model, the IL17RD expression was defined as an independent prognostic biomarker of GBM. Patients with high IL17RD expression had a more favorable outcome than those with low IL17RD. CONCLUSIONS High IL17RD expression was an independent prognostic indicator of GBM, suggesting a more favorable prognosis. Our results suggested that IL17RD detection may help find the high-risk patients which may receive more severe surveillance and more individual treatments.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, Suizhou Hospital, HuBei University of Medicine of the People's Republic of China, Suizhou, China
| | - Mingshui Xie
- Department of Laboratory Medicine, Suizhou Hospital, HuBei University of Medicine of the People's Republic of China, Suizhou, China
| | - Ye Zhou
- Departments of Neurosurgery, Weifang Central Hospital, Weifang, China
| | - Lili Che
- Departments of Neurosurgery, Weifang Central Hospital, Weifang, China
| | - Bin Zhang
- Departments of Neurosurgery, Taian Municipal Hospital, Taian, China -
| |
Collapse
|
2
|
Fu Y, Liu S, Li M, Ren F, Wang Y, Chang Z. IL-17RD/sef exacerbates experimental mouse colitis and inflammation-associated tumorigenesis by regulating the proportion of T cell subsets. FEBS Lett 2021; 596:427-436. [PMID: 34939667 DOI: 10.1002/1873-3468.14266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
T helper cells, especially Th1 and Th17 cells, were reported to play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD). However, the underlying factors regulating T cell functions in IBD progression remain to be fully elucidated. Here, we revealed that IL-17RD/Sef exacerbates DSS-induced colitis by regulating the balance of T cell subsets and their secretion of associated cytokines. We also observed that IL-17RD/Sef promotes colitis-associated tumorigenesis and negatively correlates with survival in both mouse and colorectal cancer patients. Our results suggested that IL-17RD/Sef functions as a regulator of T cell subsets to promote the inflammatory responses in the pathogenesis of IBD and colitis-associated colon cancer.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.,State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Sihan Liu
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
4
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
5
|
Girondel C, Meloche S. Interleukin-17 Receptor D in Physiology, Inflammation and Cancer. Front Oncol 2021; 11:656004. [PMID: 33833999 PMCID: PMC8021910 DOI: 10.3389/fonc.2021.656004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-17 receptor D (IL-17RD) is an evolutionarily conserved member of the IL-17 receptor family. Originally identified as a negative regulator of fibroblast growth factor (FGF) signaling under the name of Sef (Similar expression to FGF genes), IL-17RD was subsequently reported to regulate other receptor tyrosine kinase signaling pathways. In addition, recent studies have shown that IL-17RD also modulates IL-17 and Toll-like receptor (TLR) signaling. Combined genetic and cell biology studies have implicated IL-17RD in the control of cell proliferation and differentiation, cell survival, lineage specification, and inflammation. Accumulating evidence also suggest a role for IL-17RD in tumorigenesis. Expression of IL-17RD is down-regulated in various human cancers and recent work has shown that loss of IL-17RD promotes tumor formation in mice. However, the exact mechanisms underlying the tumor suppressor function of IL-17RD remain unclear and some studies have proposed that IL-17RD may exert pro-tumorigenic effects in certain contexts. Here, we provide an overview of the signaling functions of IL-17RD and review the evidence for its involvement in cancer.
Collapse
Affiliation(s)
- Charlotte Girondel
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Pande S, Yang X, Friesel R. Interleukin-17 receptor D (Sef) is a multi-functional regulator of cell signaling. Cell Commun Signal 2021; 19:6. [PMID: 33436016 PMCID: PMC7805053 DOI: 10.1186/s12964-020-00695-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-17 receptor D (IL17RD or IL-17RD) also known as Sef (similar expression to fibroblast growth factor), is a single pass transmembrane protein that is reported to regulate several signaling pathways
. IL17RD was initially described as a feedback inhibitor of fibroblast growth factor (FGF) signaling during zebrafish and frog development. It was subsequently determined to regulate other receptor tyrosine kinase signaling cascades as well as several proinflammatory signaling pathways including Interleukin-17A (IL17A), Toll-like receptors (TLR) and Interleukin-1α (IL1α) in several vertebrate species including humans. This review will provide an overview of IL17RD regulation of signaling pathways and functions with emphasis on regulation of development and pathobiological conditions. We will also discuss gaps in our knowledge about IL17RD function to provide insight into opportunities for future investigation. Video Abstract
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04496, USA.
| |
Collapse
|
7
|
Loss of interleukin-17 receptor D promotes chronic inflammation-associated tumorigenesis. Oncogene 2020; 40:452-464. [PMID: 33177649 DOI: 10.1038/s41388-020-01540-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.
Collapse
|
8
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
9
|
Chang YS, Chang CC, Huang HY, Lin CY, Yeh KT, Chang JG. Detection of Molecular Alterations in Taiwanese Patients with Medullary Thyroid Cancer Using Whole-Exome Sequencing. Endocr Pathol 2018; 29:324-331. [PMID: 30120715 DOI: 10.1007/s12022-018-9543-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic and epigenetic alterations are associated with the progression and prognosis of medullary thyroid carcinoma (MTC). We performed whole-exome sequencing of tumor tissue from seven patients with sporadic MTC using an Illumina HiSeq 2000 sequencing system. We conducted Sanger sequencing to confirm the somatic mutations in both tumor and matched normal tissues. We applied Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis with the Database for Annotation, Visualization, and Integrated Discovery and STRING for pathway analysis. We detected new somatic mutations in the BICD2, DLG1, FSD2, IL17RD, KLHL25, PAPPA2, PRDM2, PSEN1, SCRN1, and TTC1 genes. We found a somatic mutation in the PDE4DIP gene that had previously been discovered mutated in other tumors but that had not been characterized in MTC. We investigated pathway deregulation in MTC. Data regarding 1152 MTCs were assembled from the Catalogue of Somatic Mutations in Cancer (COSMIC) and seven of our patients. Ontological analysis revealed that most of the variants aggregated in pathways that included the signaling pathways of thyroid cancer, central carbon metabolism, microRNAs in cancer, PI3K-Akt, ErbB, MAPK, mTOR, VEGF, and RAS. In conclusion, we conducted wide-ranging exome-wide analysis of the mutational spectrum of MTC in Taiwan's population and detected novel genes with potential associations with MTC tumorigenesis and irregularities in pathways that resulted in MTC pathogenesis.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsi-Yuan Huang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.
- Center for Precision Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Spred negatively regulates lens growth by modulating epithelial cell proliferation and fiber differentiation. Exp Eye Res 2018; 178:160-175. [PMID: 30290165 DOI: 10.1016/j.exer.2018.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Spred, like Sprouty (Spry) and also Sef proteins, have been identified as important regulators of receptor tyrosine kinase (RTK)-mediated MAPK/ERK-signaling in various developmental systems, controlling cellular processes such as proliferation, migration and differentiation. Spreds are widely expressed during early embryogenesis, and in the eye lens, become more localised in the lens epithelium with later development, overlapping with other antagonists including Spry. Given the synexpression of Spreds and Spry in lens, in order to gain a better understanding of their specific roles in regulating growth factor mediated-signaling and cell behavior, we established and characterised lines of transgenic mice overexpressing Spred1 or Spred2, specifically in the lens. This overexpression of Spreds resulted in a small lens phenotype during ocular morphogenesis, retarding its growth by compromising epithelial cell proliferation and fiber differentiation. These in situ findings were shown to be dependent on the ability of Spreds to suppress MAPK-signaling, in particular FGF-induced ERK1/2-signaling in lens cells. This was validated in vitro using lens epithelial explants, that highlighted the overlapping role of Spreds with Spry2, but not Spry1. This study provides insights into the putative function of Spreds and Spry in situ, some overlapping and some distinct, and their importance in regulating lens cell proliferation and fiber differentiation contributing to lens and eye growth.
Collapse
|
11
|
Pekow J, Meckel K, Dougherty U, Huang Y, Chen X, Almoghrabi A, Mustafi R, Ayaloglu-Butun F, Deng Z, Haider HI, Hart J, Rubin DT, Kwon JH, Bissonnette M. miR-193a-3p is a Key Tumor Suppressor in Ulcerative Colitis-Associated Colon Cancer and Promotes Carcinogenesis through Upregulation of IL17RD. Clin Cancer Res 2017; 23:5281-5291. [PMID: 28600480 DOI: 10.1158/1078-0432.ccr-17-0171] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
Purpose: Patients with ulcerative colitis are at increased risk for colorectal cancer, although mechanisms underlying neoplastic transformation are poorly understood. We sought to evaluate the role of microRNAs in neoplasia development in this high-risk population.Experimental Design: Tissue from 12 controls, 9 ulcerative colitis patients without neoplasia, and 11 ulcerative colitis patients with neoplasia was analyzed. miRNA array analysis was performed and select miRNAs assayed by real-time PCR on the discovery cohort and a validation cohort. DNA methylation of miR-193a was assessed. Following transfection of miR-193a-3p, proliferation, IL17RD expression, and luciferase activity of the 3'UTR of IL17RD were measured. Tumor growth in xenografts as well as EGFR signaling were assessed in HCT116 cells expressing IL17RD with either a mutant 3' untranslated region (UTR) or wild-type (WT) 3'UTR.Results: miR-31, miR-34a, miR-106b, and miR-193a-3p were significantly dysregulated in ulcerative colitis-neoplasia and adjacent tissue. Significant down-regulation of miR-193a-3p was also seen in an independent cohort of ulcerative colitis cancers. Changes in methylation of miR-193a or expression of pri-miR-193a were not observed in ulcerative colitis cancer. Transfection of miR-193a-3p resulted in decreased proliferation, and identified IL17RD as a direct target of miR-193a-3p. IL17RD expression was increased in ulcerative colitis cancers, and miR-193a-3p treatment decreased growth and EGFR signaling of HCT116 cells in xenografts expressing both IL17RD with WT 3'UTR compared with cells expressing IL17RD with mutant 3'UTR.Conclusions: miR-193a-3p is downregulated in ulcerative colitis neoplasia, and its loss promotes carcinogenesis through upregulation of IL17RD. These findings provide novel insight into inflammation-driven colorectal cancer and could suggest new therapeutic targets in this high-risk population. Clin Cancer Res; 23(17); 5281-91. ©2017 AACR.
Collapse
Affiliation(s)
- Joel Pekow
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois.
| | - Katherine Meckel
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Urszula Dougherty
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Yong Huang
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Xindi Chen
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Anas Almoghrabi
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Reba Mustafi
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Fatma Ayaloglu-Butun
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Zifeng Deng
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - Haider I Haider
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - John Hart
- University of Chicago, Department of Pathology, Chicago, Illinois
| | - David T Rubin
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| | - John H Kwon
- University of Texas Southwestern, Digestive and Liver Disease Division, Dallas, Texas
| | - Marc Bissonnette
- University of Chicago, Section of Gastroenterology, Hepatology, and Nutrition, Chicago, Illinois
| |
Collapse
|
12
|
Peng W, Lei Q, Jiang Z, Hu Z. Characterization of Golgi scaffold proteins and their roles in compartmentalizing cell signaling. J Mol Histol 2013; 45:435-45. [PMID: 24337566 DOI: 10.1007/s10735-013-9560-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization has become an important theme in cell signaling. In particular, the Golgi apparatus (GA) plays a prominent role in compartmentalizing signaling cascades that originate at the plasma membrane or other organelles. To precisely regulate this process, cells have evolved a unique class of organizer proteins, termed "scaffold proteins". Sef, PAQR3, PAQR10 and PAQR11 are scaffold proteins that have recently been identified on the GA and are referred to as Golgi scaffolds. The major cell growth signaling pathways, such as Ras/MAPK, PI3K/AKT, insulin and VEGF (vascular endothelial growth factor), are tightly regulated spatially and temporally by these Golgi scaffolds to ensure a physiologically appropriate outcome. Here, we discuss the subcellular localization and characterization of the topology and functional domains of these Golgi scaffolds and summarize their roles in the compartmentalization of cell signaling. We also highlight the physiological and pathological roles of these Golgi scaffolds in tumorigenesis and developmental disorders.
Collapse
Affiliation(s)
- Wenna Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | | | | | | |
Collapse
|
13
|
Sun X, Wang Y, Yang S, Ren F, Xia Y, Chang Z. Activation of TAK1 by Sef-S induces apoptosis in 293T cells. Cell Signal 2013; 25:2039-46. [PMID: 23770285 DOI: 10.1016/j.cellsig.2013.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
Sef (similar expression to fgf genes, also named IL-17RD) was identified as a negative regulator of fibroblast growth factor signaling. Sef-S, an alternative splice isoform of Sef, inhibits FGF-induced NIH3T3 cell proliferation. Here we report that Sef-S physically interacts with TAK1, induces Lys63-linked TAK1 polyubiquitination on lysine 209 and TAK1-mediated JNK and p38 activation. Co-overexpression of TAK1 WT, K34R, K150R, K158R mutants with Sef-S induces Lys63-linked TAK1 polyubiquitination whereas TAK1 K63R and K209R mutants fail. Furthermore, co-overexpression of Sef-S and TAK1 induce 293T cells apoptosis. These results reveal Sef-S actives Lys63-linked TAK1 polyubiquitination on lysine 209, induces TAK1-mediated JNK and p38 activation and also results apoptosis in 293T cells.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
14
|
Murphy T, Hori S, Sewell J, Gnanapragasam VJ. Expression and functional role of negative signalling regulators in tumour development and progression. Int J Cancer 2010; 127:2491-9. [PMID: 20607827 DOI: 10.1002/ijc.25542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in intracellular signalling pathways such as the mitogen-activated protein kinases (MAPKs) are key common mechanisms of tumour development and progression. As such, there has been intense research into developing drugs that can inhibit or attenuate intracellular signalling. In recent years, there has been increasing recognition that the cell already has innate negative regulatory proteins that achieve this in normal homeostasis. These regulators provide a feedback inhibitory mechanism that controls the intensity and duration of activated signalling by exogenous stimuli. Members of this group include Raf kinase inhibitor protein 1, the MAPK phosphatases, the SPROUTY and SPRED families and similar expression to FGF. A number of studies have now demonstrated significant alterations in expression of negative regulators in malignant tissue in different cancer types. In functional studies, manipulated expression of these regulators has been shown to significantly influence tumour cell behaviour and phenotype. Here, we summarise the evidence for the functional expression of negative signalling regulators in tumour growth and progression and discuss their potential role as cancer biomarkers and targets for novel drug therapy.
Collapse
Affiliation(s)
- Tania Murphy
- Hutchison MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
15
|
Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease. Br J Cancer 2009; 101:1891-9. [PMID: 19888221 PMCID: PMC2788253 DOI: 10.1038/sj.bjc.6605379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. Methods: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. Results: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. Conclusions: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer.
Collapse
|
16
|
Li HG, Ren YM, Guo SC, Cheng L, Wang DP, Yang J, Chang ZJ, Zhao XQ. The protein level of hypoxia-inducible factor-1alpha is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. ACTA ACUST UNITED AC 2009; 311:134-41. [PMID: 19048601 DOI: 10.1002/jez.510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant species living only at 3,000-5,000 m above sea-level on the Qinghai-Tibetan plateau. Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates a variety of cellular and systemic adaptations to hypoxia. To investigate how the plateau pika adapts to a high-altitude hypoxic environment at the molecular level, we examined the expression pattern of the HIF-1alpha protein in the pika by Western blot and immunohistochemical analysis. We found that HIF-1alpha protein is expressed at a significantly high level in the pika, which is higher in most tissues (particularly in the lung, liver, spleen and kidney) of the plateau pika than that of mice living at sea-level. Importantly, we found that the protein levels of HIF-1alpha in the lung, liver, spleen and kidney of the pika were increased with increased habitat altitudes. We observed that the plateau pika HIF-1alpha localized to the nucleus of cells by an immunostaining analysis, and enhanced HRE-driven gene expression by luciferase reporter assays. Our study suggests that the HIF-1alpha protein levels are related to the adaptation of the plateau pika to the high-altitude hypoxic environment.
Collapse
Affiliation(s)
- Hong-Ge Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res 2009; 19:208-15. [PMID: 19079364 DOI: 10.1038/cr.2008.320] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interleukin-17 (IL-17 or IL-17A) production is a hallmark of T(H)17 cells, a new unique lineage of CD4(+) T lymphocytes contributing to the pathogenesis of multiple autoimmune and inflammatory diseases. IL-17 receptor (IL-17R or IL-17RA) is essential for IL-17 biological activity. Emerging data suggest that the formation of a heteromeric and/or homomeric receptor complex is required for IL-17 signaling. Here we show that the orphan receptor IL-17RD (Sef, similar expression to FGF genes or IL-17RLM) is associated and colocalized with IL-17R. Importantly, IL-17RD mediates IL-17 signaling, as evaluated using a luciferase reporter driven by the native promoter of 24p3, an IL-17 target gene. In addition, an IL-17RD mutant lacking the intracellular domain dominant-negatively suppresses IL-17R-mediated IL-17 signaling. Moreover, IL-17RD as well as IL-17R is associated with TRAF6, an IL-17R downstream molecule. These results indicate that IL-17RD is a part of the IL-17 receptor signaling complex, therefore providing novel evidence for IL-17 signaling through a heteromeric and/or homomeric receptor complex.
Collapse
|
18
|
Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J 2008; 412:287-98. [PMID: 18321244 PMCID: PMC2474557 DOI: 10.1042/bj20071512] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DUSP6 (dual-specificity phosphatase 6), also known as MKP-3 [MAPK (mitogen-activated protein kinase) phosphatase-3] specifically inactivates ERK1/2 (extracellular-signal-regulated kinase 1/2) in vitro and in vivo. DUSP6/MKP-3 is inducible by FGF (fibroblast growth factor) signalling and acts as a negative regulator of ERK activity in key and discrete signalling centres that direct outgrowth and patterning in early vertebrate embryos. However, the molecular mechanism by which FGFs induce DUSP6/MKP-3 expression and hence help to set ERK1/2 signalling levels is unknown. In the present study, we demonstrate, using pharmacological inhibitors and analysis of the murine DUSP6/MKP-3 gene promoter, that the ERK pathway is critical for FGF-induced DUSP6/MKP-3 transcription. Furthermore, we show that this response is mediated by a conserved binding site for the Ets (E twenty-six) family of transcriptional regulators and that the Ets2 protein, a known target of ERK signalling, binds to the endogenous DUSP6/MKP-3 promoter. Finally, the murine DUSP6/MKP-3 promoter coupled to EGFP (enhanced green fluorescent protein) recapitulates the specific pattern of endogenous DUSP6/MKP-3 mRNA expression in the chicken neural plate, where its activity depends on FGFR (FGF receptor) and MAPK signalling and an intact Ets-binding site. These findings identify a conserved Ets-factor-dependent mechanism by which ERK signalling activates DUSP6/MKP-3 transcription to deliver ERK1/2-specific negative-feedback control of FGF signalling.
Collapse
|
19
|
Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol 2008; 40:2040-52. [DOI: 10.1016/j.biocel.2008.03.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 02/06/2023]
|
20
|
hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Signal 2007; 20:518-33. [PMID: 18096367 DOI: 10.1016/j.cellsig.2007.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 12/15/2022]
Abstract
Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings.
Collapse
|
21
|
Ren Y, Li Z, Rong Z, Cheng L, Li Y, Wang Z, Chang Z. Tyrosine 330 in hSef is critical for the localization and the inhibitory effect on FGF signaling. Biochem Biophys Res Commun 2007; 354:741-6. [PMID: 17266935 DOI: 10.1016/j.bbrc.2007.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 01/09/2007] [Indexed: 11/16/2022]
Abstract
Sef (similar expression to fgf genes) was identified as an inhibitor of FGF signaling. The regulation of this inhibitory effect was largely unknown. In this report we demonstrated that tyrosine 330 in hSef protein plays a critical role in the control of the protein localization and thereby in the regulation of Ras/MAPK signaling pathway. We found that the tyrosine 330 is in the form of the YXXcapital EF, Cyrillic signal context and mutation of this residue resulted in preferred plasma membrane localization of hSef. We also observed that both Sef and SefY330F (where tyrosine is substituted by phenylalanine) interacted and co-localized with FGFR in the co-immunoprecipitation assay, and immunostaining assay respectively. We further revealed that the increased amount of Sef localization in the plasma membrane was coupled with the enhanced inhibitory effect on the FGF signaling pathway, indicating that Sef might exert its inhibitory function on the plasma membrane. This paper revealed that tyrosine 330 is critical for the inhibitory function of Sef on FGF signaling.
Collapse
Affiliation(s)
- Yongming Ren
- Department of Biological Sciences and Biotechnology, School of Medicine, Institute of Biomedicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Ziv I, Fuchs Y, Preger E, Shabtay A, Harduf H, Zilpa T, Dym N, Ron D. The human sef-a isoform utilizes different mechanisms to regulate receptor tyrosine kinase signaling pathways and subsequent cell fate. J Biol Chem 2006; 281:39225-35. [PMID: 17035228 DOI: 10.1074/jbc.m607327200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.
Collapse
Affiliation(s)
- Inbal Ziv
- Department of Biology, Technion Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|