1
|
Baran B, Derua R, Janssens V, Niewiadomski P. PP2A phosphatase regulatory subunit PPP2R3C is a new positive regulator of the hedgehog signaling pathway. Cell Signal 2024; 123:111352. [PMID: 39173855 DOI: 10.1016/j.cellsig.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cellular signaling pathways rely on posttranslational modifications (PTMs) to finely regulate protein functions, particularly transcription factors. The Hedgehog (Hh) signaling cascade, crucial for embryonic development and tissue homeostasis, is susceptible to aberrations that lead to developmental anomalies and various cancers. At the core of Hh signaling are Gli proteins, whose dynamic balance between activator (GliA) and repressor (GliR) states shapes cellular outcomes. Phosphorylation, orchestrated by multiple kinases, is pivotal in regulating Gli activity. While kinases in this context have been extensively studied, the role of protein phosphatases, particularly Protein Phosphatase 2A (PP2A), remains less explored. This study unveils a novel role for the B″gamma subunit of PP2A, PPP2R3C, in Hh signaling regulation. PPP2R3C interacts with Gli proteins, and its disruption reduces Hedgehog pathway activity as measured by reduced expression of Gli1/2 and Hh target genes upon Hh signaling activation, and reduced growth of a Hh signaling-dependent medulloblastoma cell line. Moreover, we establish an antagonistic connection between PPP2R3C and MEKK1 kinase in Gli protein phosphorylation, underscoring the intricate interplay between kinases and phosphatases in Hh signaling pathway. This study sheds light on the previously understudied role of protein phosphatases in Hh signaling and provides insights into their significance in cellular regulation.
Collapse
Affiliation(s)
- Brygida Baran
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Kinnunen PC, Humphries BA, Luker GD, Luker KE, Linderman JJ. Characterizing heterogeneous single-cell dose responses computationally and experimentally using threshold inhibition surfaces and dose-titration assays. NPJ Syst Biol Appl 2024; 10:42. [PMID: 38637530 PMCID: PMC11026493 DOI: 10.1038/s41540-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs. We first explore the connection between population and single-cell dose responses using a computational model, revealing that multiple heterogeneous populations can yield nearly identical population dose responses. We demonstrate that a single-cell analysis method, which we term a threshold inhibition surface, can differentiate among these populations. To demonstrate the applicability of this method, we develop a dose-titration assay to measure dose responses in single cells. We apply this assay to breast cancer cells responding to phosphatidylinositol-3-kinase inhibition (PI3Ki), using clinically relevant PI3Kis on breast cancer cell lines expressing fluorescent biosensors for kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose responses with some cells requiring over ten-fold higher concentrations than the population average to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an emerging paradigm of single-cell tumor heterogeneity.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brock A Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
4
|
Johnson SC, Annamdevula NS, Leavesley SJ, Francis CM, Rich TC. Hyperspectral imaging and dynamic region of interest tracking approaches to quantify localized cAMP signals. Biochem Soc Trans 2024; 52:191-203. [PMID: 38334148 PMCID: PMC11115359 DOI: 10.1042/bst20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.
Collapse
Affiliation(s)
- Santina C Johnson
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Naga S Annamdevula
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Silas J Leavesley
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, U.S.A
| | - C Michael Francis
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Thomas C Rich
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| |
Collapse
|
5
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of protein kinase A activity dynamics. Sci Rep 2024; 14:3054. [PMID: 38321128 PMCID: PMC10847463 DOI: 10.1038/s41598-024-53313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Ph.D. Program in Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Judina A, Niglas M, Leonov V, Kirkby NS, Diakonov I, Wright PT, Zhao L, Mitchell JA, Gorelik J. Pulmonary Hypertension-Associated Right Ventricular Cardiomyocyte Remodelling Reduces Treprostinil Function. Cells 2023; 12:2764. [PMID: 38067192 PMCID: PMC10705885 DOI: 10.3390/cells12232764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Pulmonary hypertension (PH)-associated right ventricular (RV) failure is linked to a reduction in pulmonary vasodilators. Treprostinil has shown effectiveness in PAH patients with cardiac decompensation, hinting at potential cardiac benefits. We investigated treprostinil's synergy with isoprenaline in RV and LV cardiomyocytes. We hypothesised that disease-related RV structural changes in cardiomyocytes would reduce contractile responses and cAMP/PKA signalling activity. (2) We induced PH in male Sprague Dawley rats using monocrotaline and isolated their ventricular cardiomyocytes. The effect of in vitro treprostinil and isoprenaline stimulation on contraction was assessed. FRET microscopy was used to study PKA activity associated with treprostinil stimulation in AKAR3-NES FRET-based biosensor-expressing cells. (3) RV cells exhibited maladaptive remodelling with hypertrophy, impaired contractility, and calcium transients compared to control and LV cardiomyocytes. Combining treprostinil and isoprenaline failed to enhance inotropy in PH RV cardiomyocytes. PH RV cardiomyocytes displayed an aberrant contractile behaviour, which the combination treatment could not rectify. Finally, we observed decreased PKA activity in treprostinil-treated PH RV cardiomyocytes. (4) PH-associated RV cardiomyocyte remodelling reduced treprostinil sensitivity, inotropic support, and impaired relaxation. Overall, this study highlights the complexity of RV dysfunction in advanced PH and suggests the need for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Judina
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Marili Niglas
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Vladislav Leonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular Science, The University of Verona, 37134 Verona, Italy
| | - Nicholas S. Kirkby
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Peter T. Wright
- Definitely School of Life and Health Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
| | - Lan Zhao
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Jane A. Mitchell
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (A.J.); (M.N.); (V.L.); (N.S.K.); (I.D.); (L.Z.); (J.A.M.)
| |
Collapse
|
7
|
Zaïmia N, Obeid J, Varrault A, Sabatier J, Broca C, Gilon P, Costes S, Bertrand G, Ravier MA. GLP-1 and GIP receptors signal through distinct β-arrestin 2-dependent pathways to regulate pancreatic β cell function. Cell Rep 2023; 42:113326. [PMID: 37897727 DOI: 10.1016/j.celrep.2023.113326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIPR) receptors are G-protein-coupled receptors involved in glucose homeostasis. Diabetogenic conditions decrease β-arrestin 2 (ARRB2) levels in human islets. In mouse β cells, ARRB2 dampens insulin secretion by partially uncoupling cyclic AMP (cAMP)/protein kinase A (PKA) signaling at physiological doses of GLP-1, whereas at pharmacological doses, the activation of extracellular signal-related kinase (ERK)/cAMP-responsive element-binding protein (CREB) requires ARRB2. In contrast, GIP-potentiated insulin secretion needs ARRB2 in mouse and human islets. The GIPR-ARRB2 axis is not involved in cAMP/PKA or ERK signaling but does mediate GIP-induced F-actin depolymerization. Finally, the dual GLP-1/GIP agonist tirzepatide does not require ARRB2 for the potentiation of insulin secretion. Thus, ARRB2 plays distinct roles in regulating GLP-1R and GIPR signaling, and we highlight (1) its role in the physiological context and the possible functional consequences of its decreased expression in pathological situations such as diabetes and (2) the importance of assessing the signaling pathways engaged by the agonists (biased/dual) for therapeutic purposes.
Collapse
Affiliation(s)
- Nour Zaïmia
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Joelle Obeid
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Annie Varrault
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Patrick Gilon
- Université Catholique de Louvain, Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète, et Nutrition, Brussels, Belgium
| | - Safia Costes
- IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | | |
Collapse
|
8
|
Tilden EI, Maduskar A, Oldenborg A, Sabatini BL, Chen Y. A Cre-dependent reporter mouse for quantitative real-time imaging of Protein Kinase A activity dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565028. [PMID: 37961214 PMCID: PMC10635033 DOI: 10.1101/2023.10.31.565028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intracellular signaling dynamics play a crucial role in cell function. Protein kinase A (PKA) is a key signaling molecule that has diverse functions, from regulating metabolism and brain activity to guiding development and cancer progression. We previously developed an optical reporter, FLIM-AKAR, that allows for quantitative imaging of PKA activity via fluorescence lifetime imaging microscopy and photometry. However, using viral infection or electroporation for the delivery of FLIM-AKAR is invasive, cannot easily target sparse or hard-to-transfect/infect cell types, and results in variable expression. Here, we developed a reporter mouse, FL-AK, which expresses FLIM-AKAR in a Cre-dependent manner from the ROSA26 locus. FL-AK provides robust and consistent expression of FLIM-AKAR over time. Functionally, the mouse line reports an increase in PKA activity in response to activation of both Gαs and Gαq-coupled receptors in brain slices. In vivo, FL-AK reports PKA phosphorylation in response to neuromodulator receptor activation. Thus, FL-AK provides a quantitative, robust, and flexible method to reveal the dynamics of PKA activity in diverse cell types.
Collapse
Affiliation(s)
- Elizabeth I. Tilden
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Ph. D. Program in Neuroscience, Washington University in St. Louis
| | - Aditi Maduskar
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Anna Oldenborg
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Baran B, Kosieradzka K, Skarzynska W, Niewiadomski P. MRCKα/β positively regulates Gli protein activity. Cell Signal 2023; 107:110666. [PMID: 37019250 DOI: 10.1016/j.cellsig.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Posttranslational modifications (PTMs) are key regulatory events for the majority of signaling pathways. Transcription factors are often phosphorylated on multiple residues, which regulates their trafficking, stability, or transcriptional activity. Gli proteins, transcription factors that respond to the Hedgehog pathway, are regulated by phosphorylation, but the sites and the kinases involved have been only partially described. We identified three novel kinases: MRCKα, MRCKβ, and MAP4K5 which physically interact with Gli proteins and directly phosphorylate Gli2 on multiple sites. We established that MRCKα/β kinases regulate Gli proteins, which impacts the transcriptional output of the Hedgehog pathway. We showed that double knockout of MRCKα/β affects Gli2 ciliary and nuclear localization and reduces Gli2 binding to the Gli1 promoter. Our research fills a critical gap in our understanding of the regulation of Gli proteins by describing their activation mechanisms through phosphorylation.
Collapse
|
10
|
Botman D, Kanagasabapathi S, Savakis P, Teusink B. Using the AKAR3-EV biosensor to assess Sch9p- and PKA-signalling in budding yeast. FEMS Yeast Res 2023; 23:foad029. [PMID: 37173282 PMCID: PMC10237333 DOI: 10.1093/femsyr/foad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sineka Kanagasabapathi
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Philipp Savakis
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kwon Y, Mehta S, Clark M, Walters G, Zhong Y, Lee HN, Sunahara RK, Zhang J. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 2022; 611:173-179. [PMID: 36289326 PMCID: PMC10031817 DOI: 10.1038/s41586-022-05343-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized β2-adrenergic receptor (β2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that β2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated β2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal β2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.
Collapse
Affiliation(s)
- Yonghoon Kwon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mary Clark
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Geneva Walters
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Weeks R, Zhou X, Yuan TL, Zhang J. Fluorescent Biosensor for Measuring Ras Activity in Living Cells. J Am Chem Soc 2022; 144:17432-17440. [PMID: 36122391 PMCID: PMC10031818 DOI: 10.1021/jacs.2c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small GTPase Ras is a critical regulator of cell growth and proliferation. Its activity is frequently dysregulated in cancers, prompting decades of work to pharmacologically target Ras. Understanding Ras biology and developing effective Ras therapeutics both require probing Ras activity in its native context, yet tools to measure its activities in cellulo are limited. Here, we developed a ratiometric Ras activity reporter (RasAR) that provides quantitative measurement of Ras activity in living cells with high spatiotemporal resolution. We demonstrated that RasAR can probe live-cell activities of all the primary isoforms of Ras. Given that the functional roles of different isoforms of Ras are intimately linked to their subcellular distribution and regulation, we interrogated the spatiotemporal regulation of Ras utilizing subcellularly targeted RasAR and uncovered the role of Src kinase as an upstream regulator to inhibit HRas. Furthermore, we showed that RasAR enables capture of KRasG12C inhibition dynamics in living cells upon treatment with KRasG12C covalent inhibitors, including ARS1620, Sotorasib, and Adagrasib. We found in living cells a residual Ras activity lingers for hours in the presence of these inhibitors. Together, RasAR represents a powerful molecular tool to enable live-cell interrogation of Ras activity and facilitate the development of Ras inhibitors.
Collapse
Affiliation(s)
- Ryan Weeks
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tina L. Yuan
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: Jin Zhang, 9500 Gilman Drive, BRF-II 1120, La Jolla, CA 92093-0702, phone (858) 246-0602,
| |
Collapse
|
14
|
McGlone ER, Ansell TB, Dunsterville C, Song W, Carling D, Tomas A, Bloom SR, Sansom MSP, Tan T, Jones B. Hepatocyte cholesterol content modulates glucagon receptor signalling. Mol Metab 2022; 63:101530. [PMID: 35718339 PMCID: PMC9254120 DOI: 10.1016/j.molmet.2022.101530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels. METHODS We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations. Glucagon responsiveness was measured in mice fed a high cholesterol diet with or without simvastatin to modulate hepatocyte cholesterol content. RESULTS GCGR cAMP signalling was reduced by higher cholesterol levels across different cellular models. Ex vivo glucagon-induced glucose output from mouse hepatocytes was enhanced by simvastatin treatment. Mice fed a high cholesterol diet had increased hepatic cholesterol and a blunted hyperglycaemic response to glucagon, both of which were partially reversed by simvastatin. Simulations identified likely membrane-exposed cholesterol binding sites on the GCGR, including a site where cholesterol is a putative negative allosteric modulator. CONCLUSIONS Our results indicate that cellular cholesterol content influences glucagon sensitivity and indicate a potential molecular basis for this phenomenon. This could be relevant to the pathogenesis of non-alcoholic fatty liver disease, which is associated with both hepatic cholesterol accumulation and glucagon resistance.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom.
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Cecilia Dunsterville
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - David Carling
- Cellular Stress Research Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, United Kingdom.
| | - Alejandra Tomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
15
|
Svec KV, Howe AK. Protein Kinase A in cellular migration—Niche signaling of a ubiquitous kinase. Front Mol Biosci 2022; 9:953093. [PMID: 35959460 PMCID: PMC9361040 DOI: 10.3389/fmolb.2022.953093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 12/28/2022] Open
Abstract
Cell migration requires establishment and maintenance of directional polarity, which in turn requires spatial heterogeneity in the regulation of protrusion, retraction, and adhesion. Thus, the signaling proteins that regulate these various structural processes must also be distinctly regulated in subcellular space. Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in innumerable cellular processes. In the context of cell migration, it has a paradoxical role in that global inhibition or activation of PKA inhibits migration. It follows, then, that the subcellular regulation of PKA is key to bringing its proper permissive and restrictive functions to the correct parts of the cell. Proper subcellular regulation of PKA controls not only when and where it is active but also specifies the targets for that activity, allowing the cell to use a single, promiscuous kinase to exert distinct functions within different subcellular niches to facilitate cell movement. In this way, understanding PKA signaling in migration is a study in context and in the elegant coordination of distinct functions of a single protein in a complex cellular process.
Collapse
Affiliation(s)
- Kathryn V. Svec
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, V T, United States
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
- *Correspondence: Alan K. Howe,
| |
Collapse
|
16
|
Kim H, Choi G, Suk ME, Kim TJ. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022; 10:885394. [PMID: 35794864 PMCID: PMC9251444 DOI: 10.3389/fcell.2022.885394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
After the development of Cameleon, the first fluorescence resonance energy transfer (FRET)-based calcium indicator, a variety of FRET-based genetically encoded biosensors (GEBs) have visualized numerous target players to monitor their cell physiological dynamics spatiotemporally. Many attempts have been made to optimize GEBs, which require labor-intensive effort, novel approaches, and precedents to develop more sensitive and versatile biosensors. However, researchers face considerable trial and error in upgrading biosensors because examples and methods of improving FRET-based GEBs are not well documented. In this review, we organize various optimization strategies after assembling the existing cases in which the non-fluorescent components of biosensors are upgraded. In addition, promising areas to which optimized biosensors can be applied are briefly discussed. Therefore, this review could serve as a resource for researchers attempting FRET-based GEB optimization.
Collapse
Affiliation(s)
- Heonsu Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Myung Eun Suk
- Department of Mechanical Engineering, IT Convergence College of Materials and Components Engineering, Dong-Eui University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| | - Tae-Jin Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| |
Collapse
|
17
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
Affiliation(s)
- Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - James Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Janice Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Frank Schwede
- Biolog Life Science Institute GmbH & Co KG, Bremen, Germany
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
18
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
19
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
20
|
Dyachok O, Xu Y, Idevall-Hagren O, Tengholm A. Fluorescent Translocation Reporters for Sub-plasma Membrane cAMP Imaging. Methods Mol Biol 2022; 2483:319-338. [PMID: 35286685 DOI: 10.1007/978-1-0716-2245-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A wide range of fluorescent sensors with different properties have been developed for imaging of cAMP signals in living cells and tissues. Most cAMP reporters have been designed to undergo changes in fluorescence resonance energy transfer but there are alternative techniques with advantages for certain applications. Here, we describe protocols for cAMP recordings in the sub-plasma membrane space based on detection of translocation of engineered, fluorescent protein-tagged protein kinase A subunits between the plasma membrane and the cytoplasm. Changes in reporter localization can be detected with either confocal or total internal reflection fluorescence microscopy but signal changes are more robust and image analyses less complicated with the latter technique. We show how translocation reporters can be used to study sub-plasma membrane cAMP signals, including oscillations, in insulin-secreting β-cells stimulated with glucose and G-protein-coupled receptor agonists. We also demonstrate how translocation reporters can be combined with other sensors for simultaneous recordings of the cytosolic Ca2+ concentration, protein kinase A activity or plasma-membrane binding of the cAMP effector protein Epac2. Fluorescent translocation reporters thus provide a versatile complement to the growing cAMP imaging toolkit for elucidating sub-plasma membrane cAMP signals in various types of cells.
Collapse
Affiliation(s)
- Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Yunjian Xu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
21
|
Colombo S, Longoni E, Gnugnoli M, Busti S, Martegani E. Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 2022; 92:110262. [DOI: 10.1016/j.cellsig.2022.110262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
|
22
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
23
|
Zhang L, Takahashi Y, Schroeder JI. Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells. PLANT PHYSIOLOGY 2021; 187:527-536. [PMID: 35142856 PMCID: PMC8491035 DOI: 10.1093/plphys/kiab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/16/2021] [Indexed: 05/15/2023]
Abstract
Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor's working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.
Collapse
Affiliation(s)
- Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | | |
Collapse
|
24
|
Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods 2021; 362:109298. [PMID: 34339753 PMCID: PMC8659126 DOI: 10.1016/j.jneumeth.2021.109298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.
Collapse
Affiliation(s)
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Zhang JF, Mehta S, Zhang J. Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors. Annu Rev Pharmacol Toxicol 2021; 61:587-608. [PMID: 33411579 DOI: 10.1146/annurev-pharmtox-010617-053137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How cells muster a network of interlinking signaling pathways to faithfully convert diverse external cues to specific functional outcomes remains a central question in biology. Through their ability to convert dynamic biochemical activities to rapid and precise optical readouts, genetically encoded fluorescent biosensors have become instrumental in unraveling the molecular logic controlling the specificity of intracellular signaling. In this review, we discuss how the use of genetically encoded fluorescent biosensors to visualize dynamic signaling events within their native cellular context is elucidating the different strategies employed by cells to organize signaling activities into discrete compartments, or signaling microdomains, to ensure functional specificity.
Collapse
Affiliation(s)
- Jin-Fan Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
26
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
27
|
Cai E, Zhang J, Ge X. Control of the Hedgehog pathway by compartmentalized PKA in the primary cilium. SCIENCE CHINA-LIFE SCIENCES 2021; 65:500-514. [PMID: 34505970 DOI: 10.1007/s11427-021-1975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.
Collapse
Affiliation(s)
- Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA.
| |
Collapse
|
28
|
A proximity-dependent biotinylation map of a human cell. Nature 2021; 595:120-124. [PMID: 34079125 DOI: 10.1038/s41586-021-03592-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.
Collapse
|
29
|
Simultaneous readout of multiple FRET pairs using photochromism. Nat Commun 2021; 12:2005. [PMID: 33790271 PMCID: PMC8012603 DOI: 10.1038/s41467-021-22043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/17/2021] [Indexed: 01/11/2023] Open
Abstract
Förster resonant energy transfer (FRET) is a powerful mechanism to probe associations in situ. Simultaneously performing more than one FRET measurement can be challenging due to the spectral bandwidth required for the donor and acceptor fluorophores. We present an approach to distinguish overlapping FRET pairs based on the photochromism of the donor fluorophores, even if the involved fluorophores display essentially identical absorption and emission spectra. We develop the theory underlying this method and validate our approach using numerical simulations. To apply our system, we develop rsAKARev, a photochromic biosensor for cAMP-dependent protein kinase (PKA), and combine it with the spectrally-identical biosensor EKARev, a reporter for extracellular signal-regulated kinase (ERK) activity, to deliver simultaneous readout of both activities in the same cell. We further perform multiplexed PKA, ERK, and calcium measurements by including a third, spectrally-shifted biosensor. Our work demonstrates that exploiting donor photochromism in FRET can be a powerful approach to simultaneously read out multiple associations within living cells. Performing multiple FRET measurements at once can be challenging. Here the authors report a method to discriminate between overlapping FRET pairs, even if the fluorophores display almost identical absorption and emission spectra, based on the photochromism of the donor fluorophores.
Collapse
|
30
|
Abreu N, Levitz J. Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods Mol Biol 2021; 2173:21-51. [PMID: 32651908 DOI: 10.1007/978-1-0716-0755-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Pham H, Miller LW. Lanthanide-based resonance energy transfer biosensors for live-cell applications. Methods Enzymol 2021; 651:291-311. [PMID: 33888207 DOI: 10.1016/bs.mie.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enable sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living mammalian cells. LRET biosensors are polypeptides that consist of an alpha-helical linker sequence sandwiched between a lanthanide complex-binding domain and a fluorescent protein (FP) with two interacting domains residing at each terminus. Interaction between the terminal affinity domains brings the lanthanide complex and FP in close proximity such that lanthanide-to-FP, LRET-sensitized emission is increased. A recent proof-of-concept study examined model biosensors that incorporated the affinity partners FKBP12 and the rapamycin-binding domain of m-Tor (FRB) as well as p53 (1-92) and HDM2 (1-128). The sensors contained an Escherichia coli dihydrofolate reductase (eDHFR) domain that binds with high selectivity and affinity to Tb(III) complexes coupled to the ligand trimethoprim (TMP). When cell lines that stably expressed the sensors were treated with TMP-Tb(III), TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. Much larger signal changes (>2500%) and Z'-factors of 0.5 or more were observed when cells were grown in 96-well or 384-well plates and analyzed using a TGL plate reader. In this chapter, we elaborate on the design and performance of LRET biosensors and provide detailed protocols to guide their use for live-cell microscopic imaging studies and high-throughput library screening.
Collapse
Affiliation(s)
- Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
32
|
Imaging Meets Cytometry: Analyzing Heterogeneous Functional Microscopic Data from Living Cell Populations. J Imaging 2021; 7:jimaging7010009. [PMID: 34460580 PMCID: PMC8321243 DOI: 10.3390/jimaging7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
Biological tissue consists of populations of cells exhibiting different responses to pharmacological stimuli. To probe the heterogeneity of cell function, we propose a multiplexed approach based on real‐time imaging of the secondary messenger levels within each cell of the tissue, followed by extraction of the changes of single‐cell fluorescence over time. By utilizing a piecewise baseline correction, we were able to quantify the effects of multiple pharmacological stimuli added and removed sequentially to pancreatic islets of Langerhans, thereby performing a deep functional profiling for each cell within the islet. Cluster analysis based on the functional profile demonstrated dose‐dependent changes in statistical inter‐relationships between islet cell populations. We therefore believe that the functional cytometric approach can be used for routine quantitative profiling of the tissue for drug screening or pathological testing.
Collapse
|
33
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
35
|
Nomura S, Tricoire L, Cohen I, Kuhn B, Lambolez B, Hepp R. Combined Optogenetic Approaches Reveal Quantitative Dynamics of Endogenous Noradrenergic Transmission in the Brain. iScience 2020; 23:101710. [PMID: 33196030 PMCID: PMC7645030 DOI: 10.1016/j.isci.2020.101710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023] Open
Abstract
Little is known about the real-time cellular dynamics triggered by endogenous catecholamine release despite their importance in brain functions. To address this issue, we expressed channelrhodopsin in locus coeruleus neurons and protein kinase-A activity biosensors in cortical pyramidal neurons and combined two-photon imaging of biosensors with photostimulation of locus coeruleus cortical axons, in acute slices and in vivo. Burst photostimulation of axons for 5-10 s elicited robust, minutes-lasting kinase-A activation in individual neurons, indicating that a single burst firing episode of synchronized locus coeruleus neurons has rapid and lasting effects on cortical network. Responses were mediated by β1 adrenoceptors, dampened by co-activation of α2 adrenoceptors, and dramatically increased upon inhibition of noradrenaline reuptake transporter. Dopamine receptors were not involved, showing that kinase-A activation was due to noradrenaline release. Our study shows that noradrenergic transmission can be characterized with high spatiotemporal resolution in brain slices and in vivo using optogenetic tools.
Collapse
Affiliation(s)
- Shinobu Nomura
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS UMR8246, INSERM U1130, Sorbonne Université UM119, 9 quai St Bernard case 16, 75005 Paris, France.,Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ludovic Tricoire
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS UMR8246, INSERM U1130, Sorbonne Université UM119, 9 quai St Bernard case 16, 75005 Paris, France
| | - Ivan Cohen
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS UMR8246, INSERM U1130, Sorbonne Université UM119, 9 quai St Bernard case 16, 75005 Paris, France
| | - Bernd Kuhn
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Bertrand Lambolez
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS UMR8246, INSERM U1130, Sorbonne Université UM119, 9 quai St Bernard case 16, 75005 Paris, France
| | - Régine Hepp
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS UMR8246, INSERM U1130, Sorbonne Université UM119, 9 quai St Bernard case 16, 75005 Paris, France
| |
Collapse
|
36
|
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020; 9:cells9102316. [PMID: 33081032 PMCID: PMC7603200 DOI: 10.3390/cells9102316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and mTOR signaling, essential for embryonic development and cellular metabolism, are both coordinated by the primary cilium. Observations from cancer cells strongly indicate crosstalk between Hh and mTOR signaling. This hypothesis is supported by several studies: Evidence points to a TGFβ-mediated crosstalk; Increased PI3K/AKT/mTOR activity leads to increased Hh signaling through regulation of the GLI transcription factors; increased Hh signaling regulates mTORC1 activity positively by upregulating NKX2.2, leading to downregulation of negative mTOR regulators; GSK3 and AMPK are, as members of both signaling pathways, potentially important links between Hh and mTORC1 signaling; The kinase DYRK2 regulates Hh positively and mTORC1 signaling negatively. In contrast, both positive and negative regulation of Hh has been observed for DYRK1A and DYRK1B, which both regulate mTORC1 signaling positively. Based on crosstalk observed between cilia, Hh, and mTORC1, we suggest that the interaction between Hh and mTORC1 is more widespread than it appears from our current knowledge. Although many studies focusing on crosstalk have been carried out, contradictory observations appear and the interplay involving multiple partners is far from solved.
Collapse
|
37
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|
38
|
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat Chem Biol 2020; 17:39-46. [PMID: 32989297 DOI: 10.1038/s41589-020-00660-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Protein kinases control nearly every facet of cellular function. These key signaling nodes integrate diverse pathway inputs to regulate complex physiological processes, and aberrant kinase signaling is linked to numerous pathologies. While fluorescent protein-based biosensors have revolutionized the study of kinase signaling by allowing direct, spatiotemporally precise kinase activity measurements in living cells, powerful new molecular tools capable of robustly tracking kinase activity dynamics across diverse experimental contexts are needed to fully dissect the role of kinase signaling in physiology and disease. Here, we report the development of an ultrasensitive, second-generation excitation-ratiometric protein kinase A (PKA) activity reporter (ExRai-AKAR2), obtained via high-throughput linker library screening, that enables sensitive and rapid monitoring of live-cell PKA activity across multiple fluorescence detection modalities, including plate reading, cell sorting and one- or two-photon imaging. Notably, in vivo visual cortex imaging in awake mice reveals highly dynamic neuronal PKA activity rapidly recruited by forced locomotion.
Collapse
|
39
|
Chen T, Pham H, Mohamadi A, Miller LW. Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions. iScience 2020; 23:101533. [PMID: 33083762 PMCID: PMC7509216 DOI: 10.1016/j.isci.2020.101533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022] Open
Abstract
Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enabled sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living cells. We prepared stable cell lines that expressed polypeptides composed of an alpha helical linker flanked by a Tb(III) complex-binding domain, GFP, and two interacting domains at each terminus. The PPIs examined included those between FKBP12 and the rapamycin-binding domain of m-Tor (FRB) and between p53 (1–92) and HDM2 (1–128). TGL microscopy revealed dramatic differences (>500%) in donor- or acceptor-denominated, Tb(III)-to-GFP LRET ratios between open (unbound) and closed (bound) states of the biosensors. We observed much larger signal changes (>2,500%) and Z′-factors of 0.5 or more when we grew cells in 96- or 384-well plates and analyzed PPI changes using a TGL plate reader. The modular design and exceptional dynamic range of lanthanide-based LRET biosensors will facilitate versatile imaging and cell-based screening of PPIs. Non-invasive, microscopic imaging or screening of protein-protein interactions Intracellular assembly of sensor polypeptides with luminescent Tb(III) complexes High dynamic range with time-gated detection of Tb(III)-to-GFP sensitized emission
Collapse
Affiliation(s)
- Ting Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Mohamadi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author
| |
Collapse
|
40
|
Rational Design of a Protein Kinase A Nuclear-cytosol Translocation Reporter. Sci Rep 2020; 10:9365. [PMID: 32518322 PMCID: PMC7283302 DOI: 10.1038/s41598-020-66349-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Kinase A (PKA) exists as a tetrameric holoenzyme which activates with increase of cAMP and plays an important role in many physiological processes including cardiac physiology, neuronal development, and adipocyte function. Although this kinase has been the subject of numerous biosensor designs, a single-fluorophore reporter that performs comparably to Förster resonance energy transfer (FRET) has not yet been reported. Here, we have used basic observations of electrostatic interactions in PKA substrate recognition mechanism and nucleus localization sequence motif to design a phosphorylation switch that shuttles between the cytosol and the nucleus, a strategy that should be generalizable to all basophilic kinases. The resulting reporter yielded comparable kinetics and dynamic range to the PKA FRET reporter, AKAR3EV. We also performed basic characterization and demonstrated its potential use in monitoring multiple signaling molecules inside cells using basic fluorescence microscopy. Due to the single-fluorophore nature of this reporter, we envision that this could find broad applications in studies involving single cell analysis of PKA activity.
Collapse
|
41
|
Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, Lindner M, Bouadjel K, Dessillons M, Gaudin F, Lefebvre F, Mateo P, Lechène P, Gomez S, Domergue V, Robert P, Coquard C, Algalarrondo V, Samuel JL, Michel JB, Charpentier F, Ghigo A, Hirsch E, Fischmeister R, Leroy J, Vandecasteele G. Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation 2020; 142:161-174. [PMID: 32264695 DOI: 10.1161/circulationaha.119.042573] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac β-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but β-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.
Collapse
Affiliation(s)
- Sarah Karam
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | | | - Aurélia Bourcier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Audrey Varin
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Ibrahim Bedioune
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Marta Lindner
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Kaouter Bouadjel
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Matthieu Dessillons
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Françoise Gaudin
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Florence Lefebvre
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Philippe Mateo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Patrick Lechène
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Susana Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Pauline Robert
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Charlène Coquard
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Vincent Algalarrondo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jane-Lise Samuel
- UMR-S 942, Inserm, Paris University, 75010 Paris, France (J.-L.S.)
| | - Jean-Baptiste Michel
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.).,UMR-S 1148, INSERM, Paris University, X. Bichat hospital, 75018 Paris, France (J.-B.M.)
| | - Flavien Charpentier
- Institut du thorax, Inserm, CNRS, Univ. Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France (F.C.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| |
Collapse
|
42
|
Vandecasteele G, Bedioune I. Investigating cardiac β-adrenergic nuclear signaling with FRET-based biosensors. ANNALES D'ENDOCRINOLOGIE 2020; 82:198-200. [PMID: 32482343 DOI: 10.1016/j.ando.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
By activating membrane β-adrenergic receptors (β-AR), noradrenaline and adrenaline are the most powerful stimulators of cardiac function. β-ARs are coupled to the synthesis of cAMP, which activates the cAMP-dependent protein kinase (PKA). PKA regulates the key proteins of excitation-contraction coupling but also gene expression. While an acute activation of the cAMP/PKA pathway allows adaptation of cardiac output to exercise, its chronic activation is deleterious by promoting pathological remodeling of the heart. The use of probes based on fluorescence resonance energy transfer (FRET) and located specifically at the level of the cytoplasm or the nucleus make it possible to highlight the differential mechanisms by which β-ARs control PKA activation in these two compartments. The characterization of these mechanisms is important in order to better understand the deleterious effects of chronic activation of the β-adrenergic pathway in the heart.
Collapse
Affiliation(s)
- Grégoire Vandecasteele
- Inserm, signaling and cardiovascular pathophysiology, UMR-S1180, université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Ibrahim Bedioune
- Inserm, signaling and cardiovascular pathophysiology, UMR-S1180, université Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
43
|
Studying signal compartmentation in adult cardiomyocytes. Biochem Soc Trans 2020; 48:61-70. [PMID: 32104883 PMCID: PMC7054744 DOI: 10.1042/bst20190247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/04/2023]
Abstract
Multiple intra-cellular signalling pathways rely on calcium and 3′–5′ cyclic adenosine monophosphate (cAMP) to act as secondary messengers. This is especially true in cardiomyocytes which act as the force-producing units of the cardiac muscle and are required to react rapidly to environmental stimuli. The specificity of functional responses within cardiomyocytes and other cell types is produced by the organellar compartmentation of both calcium and cAMP. In this review, we assess the role of molecular localisation and relative contribution of active and passive processes in producing compartmentation. Active processes comprise the creation and destruction of signals, whereas passive processes comprise the release or sequestration of signals. Cardiomyocytes display a highly articulated membrane structure which displays significant cell-to-cell variability. Special attention is paid to the way in which cell membrane caveolae and the transverse-axial tubule system allow molecular localisation. We explore the effects of cell maturation, pathology and regional differences in the organisation of these processes. The subject of signal compartmentation has had a significant amount of attention within the cardiovascular field and has undergone a revolution over the past two decades. Advances in the area have been driven by molecular imaging using fluorescent dyes and genetically encoded constructs based upon fluorescent proteins. We also explore the use of scanning probe microscopy in the area. These techniques allow the analysis of molecular compartmentation within specific organellar compartments which gives researchers an entirely new perspective.
Collapse
|
44
|
O'Banion CP, Yasuda R. Fluorescent sensors for neuronal signaling. Curr Opin Neurobiol 2020; 63:31-41. [PMID: 32203701 DOI: 10.1016/j.conb.2020.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Dissecting neuronal structure and function in relation to behavior is an immense undertaking. Researchers require imaging tools to study neuronal activity and biochemical signaling in situ in order to study the roles of neuronal and biochemical activity in information processing. A large number of genetically encoded fluorescent biosensors have been reported in the literature over the past few years as there is a push to develop new technology in neuroscience. Here, we review the classes and characteristics of fluorescent biosensors and highlight some considerations that investigators should keep in mind when choosing their tool. In addition, we discuss recent advances in biosensor development.
Collapse
Affiliation(s)
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, United States.
| |
Collapse
|
45
|
Reubi JC, Fourmy D, Cordomi A, Tikhonova IG, Gigoux V. GIP receptor: Expression in neuroendocrine tumours, internalization, signalling from endosomes and structure-function relationship studies. Peptides 2020; 125:170229. [PMID: 31857104 DOI: 10.1016/j.peptides.2019.170229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland.
| | - Daniel Fourmy
- LPCNO, ERL 1226 INSERM, Université De Toulouse, CNRS, INSA, UPS, 135 Avenue De RAngueil, 31077 Toulouse, France.
| | - Arnau Cordomi
- Laboratori De Medicina Computacional, Unitat De Bioestadística, Facultat De Medicina, Universitat Autònoma De Barcelona, Barcelona, Spain.
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | - Véronique Gigoux
- LPCNO, ERL 1226 INSERM, Université De Toulouse, CNRS, INSA, UPS, 135 Avenue De RAngueil, 31077 Toulouse, France.
| |
Collapse
|
46
|
Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors. Biochem Soc Trans 2020; 47:1733-1747. [PMID: 31724693 DOI: 10.1042/bst20190246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022]
Abstract
The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
Collapse
|
47
|
Schmitt DL, Mehta S, Zhang J. Illuminating the kinome: Visualizing real-time kinase activity in biological systems using genetically encoded fluorescent protein-based biosensors. Curr Opin Chem Biol 2020; 54:63-69. [PMID: 31911398 PMCID: PMC7131877 DOI: 10.1016/j.cbpa.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
Genetically encoded fluorescent protein-based kinase biosensors are a central tool for illumination of the kinome. The adaptability and versatility of biosensors have allowed for spatiotemporal observation of real-time kinase activity in living cells and organisms. In this review, we highlight various types of kinase biosensors, along with their burgeoning applications in complex biological systems. Specifically, we focus on kinase activity reporters used in neuronal systems and whole animal settings. Genetically encoded kinase biosensors are key for elucidation of the spatiotemporal regulation of protein kinases, with broader applications beyond the Petri dish.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
48
|
Bedioune I, Lefebvre F, Lechêne P, Varin A, Domergue V, Kapiloff MS, Fischmeister R, Vandecasteele G. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes. Cardiovasc Res 2019; 114:1499-1511. [PMID: 29733383 DOI: 10.1093/cvr/cvy110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
Aims β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. Methods and results We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. Although the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP early repressor (ICER). Inhibition of phosphodiesterase (PDE)4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. Conclusions β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.
Collapse
Affiliation(s)
- Ibrahim Bedioune
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Florence Lefebvre
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Patrick Lechêne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Audrey Varin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM
| | - Valérie Domergue
- Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | - Michael S Kapiloff
- Cardiac Signal Transduction and Cellular Biology Laboratory, Departments of Pediatrics and Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, USA
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM.,Institut Paris Saclay d'Innovation Thérapeutique, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry Cedex, France
| | | |
Collapse
|
49
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
50
|
PKAc-directed interaction and phosphorylation of Ptc is required for Hh signaling inhibition in Drosophila. Cell Discov 2019; 5:44. [PMID: 31636957 PMCID: PMC6796939 DOI: 10.1038/s41421-019-0112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/04/2019] [Indexed: 01/20/2023] Open
Abstract
Ptc is a gatekeeper to avoid abnormal Hh signaling activation, but the key regulators involved in Ptc-mediated inhibition remain largely unknown. Here, we identify PKAc as a key regulator required for Ptc inhibitory function. In the absence of Hh, PKAc physically interacts with Ptc and phosphorylates Ptc at Ser-1150 and -1183 residues. The presence of Hh unleashes PKAc from Ptc and activates Hh signaling. By combining both in vitro and in vivo functional assays, we demonstrate that such Ptc–PKAc interaction and Ptc phosphorylation are both important for Ptc inhibitory function. Interestingly, we further demonstrate that PKAc is subjected to palmitoylation, contributing to its kinase activity on plasma membrane. Based on those novel findings, we establish a working model on Ptc inhibitory function: In the absence of Hh, PKAc interacts with and phosphorylates Ptc to ensure its inhibitory function; and Hh presence releases PKAc from Ptc, resulting in Hh signaling activation.
Collapse
|