1
|
Ambrosino L, Riccardi A, Welling MS, Lauritano C. Comparative Transcriptomics to Identify RNA Writers and Erasers in Microalgae. Int J Mol Sci 2024; 25:8005. [PMID: 39125576 PMCID: PMC11312118 DOI: 10.3390/ijms25158005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Epitranscriptomics is considered as a new regulatory step in eukaryotes for developmental processes and stress responses. The aim of this study was, for the first time, to identify RNA methyltransferase (writers) and demethylase (erasers) in four investigated species, i.e., the dinoflagellates Alexandrium tamutum and Amphidinium carterae, the diatom Cylindrotheca closterium, and the green alga Tetraselmis suecica. As query sequences for the enzymatic classes of interest, we selected those ones that were previously detected in marine plants, evaluating their expression upon nutrient starvation stress exposure. The hypothesis was that upon stress exposure, the activation/deactivation of specific writers and erasers may occur. In microalgae, we found almost all plant writers and erasers (ALKBH9B, ALKBH10B, MTB, and FIP37), except for three writers (MTA, VIRILIZER, and HAKAI). A sequence similarity search by scanning the corresponding genomes confirmed their presence. Thus, we concluded that the three writer sequences were lacking from the studied transcriptomes probably because they were not expressed in those experimental conditions, rather than a real lack of these genes from their genomes. This study showed that some of them were expressed only in specific culturing conditions. We also investigated their expression in other culturing conditions (i.e., nitrogen depletion, phosphate depletion, and Zinc addition at two different concentrations) in A. carterae, giving new insights into their possible roles in regulating gene expression upon stress.
Collapse
Affiliation(s)
- Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| | - Alessia Riccardi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Melina S. Welling
- Marine Biology Research Group, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium;
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
2
|
Cvetkovska M, Vakulenko G, Smith DR, Zhang X, Hüner NPA. Temperature stress in psychrophilic green microalgae: Minireview. PHYSIOLOGIA PLANTARUM 2022; 174:e13811. [PMID: 36309822 DOI: 10.1111/ppl.13811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic algae are the main primary producers in polar regions, form the basis of polar food webs, and are responsible for a significant portion of global carbon fixation. Many cold-water algae are psychrophiles that thrive in the cold but cannot grow at moderate temperatures (≥20°C). Polar regions are at risk of rapid warming caused by climate change, and the sensitivity of psychrophilic algae to rising temperatures makes them, and the ecosystems they inhabit, particularly vulnerable. Recent research on the Antarctic psychrophile Chlamydomonas priscuii, an emerging algal model, has revealed unique adaptations to life in the permanent cold. Additionally, genome sequencing of C. priscuii and its relative Chlamydomonas sp. ICE-L has given rise to a plethora of computational tools that can help elucidate the genetic basis of psychrophily. This minireview summarizes new advances in characterizing the heat stress responses in psychrophilic algae and examines their extraordinary sensitivity to temperature increases. Further research in this field will help determine the impact of climate change on psychrophiles from threatened polar environments.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, London, Canada
| | - Xi Zhang
- Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Norman P A Hüner
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Page TM, McDougall C, Bar I, Diaz-Pulido G. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae. BMC Genomics 2022; 23:729. [PMID: 36303112 PMCID: PMC9615231 DOI: 10.1186/s12864-022-08931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Crustose coralline algae (CCA) are calcifying red macroalgae that play important ecological roles including stabilisation of reef frameworks and provision of settlement cues for a range of marine invertebrates. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found magnitude of effect to be species-specific. Response to OW and OA could be linked to divergent underlying molecular processes across species. RESULTS Here we show Sporolithon durum, a species that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast, Porolithon onkodes, a major coral reef builder, reduced photosynthetic rates and had a labile transcriptomic response with over 400 significantly differentially expressed genes, with differential regulation of genes relating to physiological processes such as carbon acquisition and metabolism. The differential gene expression detected in P. onkodes implicates possible key metabolic pathways, including the pentose phosphate pathway, in the stress response of this species. CONCLUSIONS We suggest S. durum is more resistant to OW and OA than P. onkodes, which demonstrated a high sensitivity to climate stressors and may have limited ability for acclimatisation. Understanding changes in gene expression in relation to physiological processes of CCA could help us understand and predict how different species will respond to, and persist in, future ocean conditions predicted for 2100.
Collapse
Affiliation(s)
- Tessa M Page
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia.
- School of Ocean and Earth Science University of Southampton Waterfront Campus, National Oceanography Centre, Southampton, UK.
| | - Carmel McDougall
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia
| | - Ido Bar
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia
- Centre for Planetary Health and Food Security Nathan Campus, Griffith University, Nathan, QLD, Australia
| | - Guillermo Diaz-Pulido
- Griffth University School of Environment and Science Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Australian Rivers Institute Nathan Campus, Griffith University, Nathan, QLD, Australia.
- Coastal and Marine Research Centre Nathan Campus, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
4
|
Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Hüner NPA. A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. PLANT, CELL & ENVIRONMENT 2022; 45:156-177. [PMID: 34664276 DOI: 10.1111/pce.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xi Zhang
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Galyna Vakulenko
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Benzaquen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Nina Malczewski
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - David R Smith
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms 2020; 8:microorganisms8121957. [PMID: 33317109 PMCID: PMC7764121 DOI: 10.3390/microorganisms8121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
The Arctic and Antarctic regions constitute 14% of the total biosphere. Although they differ in their physiographic characteristics, both are strongly affected by snow and ice cover changes, extreme photoperiods and low temperatures, and are still largely unexplored compared to more accessible sites. This review focuses on microalgae and bacteria from polar marine environments and, in particular, on their physiological and molecular responses to harsh environmental conditions. The data reported in this manuscript show that exposure to cold, increase in CO2 concentration and salinity, high/low light, and/or combination of stressors induce variations in species abundance and distribution for both polar bacteria and microalgae, as well as changes in growth rate and increase in cryoprotective compounds. The use of -omics techniques also allowed to identify specific gene losses and gains which could have contributed to polar environmental adaptation, and metabolic shifts, especially related to lipid metabolism and defence systems, such as the up-regulation of ice binding proteins, chaperones and antioxidant enzymes. However, this review also provides evidence that -omics resources for polar species are still few and several sequences still have unknown functions, highlighting the need to further explore polar environments, the biology and ecology of the inhabiting bacteria and microalgae, and their interactions.
Collapse
|
6
|
Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110737. [PMID: 32505758 DOI: 10.1016/j.ecoenv.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 μg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 μg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 μg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yi Bai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
7
|
Coleine C, Gevi F, Fanelli G, Onofri S, Timperio AM, Selbmann L. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS One 2020; 15:e0233805. [PMID: 32460306 PMCID: PMC7253227 DOI: 10.1371/journal.pone.0233805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antarctic cryptoendolithic communities are self-supporting borderline ecosystems spreading across the extreme conditions of the Antarctic desert and represent the predominant life-form in the ice-free areas of McMurdo Dry Valleys, accounted as the closest terrestrial Martian analogue. Components of these communities are highly adapted extremophiles and extreme-tolerant microorganisms, among the most resistant known to date. Recently, studies investigated biodiversity and community composition in these ecosystems but the metabolic activity of the metacommunity has never been investigated. Using an untargeted metabolomics, we explored stress-response of communities spreading in two sites of the same location, subjected to increasing environmental pressure due to opposite sun exposure, accounted as main factor influencing the diversity and composition of these ecosystems. Overall, 331 altered metabolites (206 and 125 unique for north and south, respectively), distinguished the two differently exposed communities. We also selected 10 metabolites and performed two-stage Receiver Operating Characteristic (ROC) analysis to test them as potential biomarkers. We further focused on melanin and allantoin as protective substances; their concentration was highly different in the community in the shadow or in the sun. These results clearly indicate that opposite insolation selected organisms in the communities with different adaptation strategies in terms of key metabolites produced.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
- * E-mail: (AMT); (LS)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
- * E-mail: (AMT); (LS)
| |
Collapse
|
8
|
Song H, He M, Wu C, Gu C, Wang C. Global transcriptomic analysis of an Arctic Chlorella-Arc reveals its eurythermal adaptivity mechanisms. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Rugiu L, Panova M, Pereyra RT, Jormalainen V. Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genomics 2020; 21:42. [PMID: 31931708 PMCID: PMC6958763 DOI: 10.1186/s12864-020-6470-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Rockweeds are among the most important foundation species of temperate rocky littoral shores. In the Baltic Sea, the rockweed Fucus vesiculosus is distributed along a decreasing salinity gradient from the North Atlantic entrance to the low-salinity regions in the north-eastern margins, thus, demonstrating a remarkable tolerance to hyposalinity. The underlying mechanisms for this tolerance are still poorly understood. Here, we exposed F. vesiculosus from two range-margin populations to the hyposaline (2.5 PSU - practical salinity unit) conditions that are projected to occur in the region by the end of this century as a result of climate change. We used transcriptome analysis (RNA-seq) to determine the gene expression patterns associated with hyposalinity acclimation, and examined the variation in these patterns between the sampled populations. RESULTS Hyposalinity induced different responses in the two populations: in one, only 26 genes were differentially expressed between salinity treatments, while the other population demonstrated up- or downregulation in 3072 genes. In the latter population, the projected future hyposalinity induced an acute response in terms of antioxidant production. Genes associated with membrane composition and structure were also heavily involved, with the upregulation of fatty acid and actin production, and the downregulation of ion channels and alginate pathways. Changes in gene expression patterns clearly indicated an inhibition of the photosynthetic machinery, with a consequent downregulation of carbohydrate production. Simultaneously, energy consumption increased, as revealed by the upregulation of genes associated with respiration and ATP synthesis. Overall, the genes that demonstrated the largest increase in expression were ribosomal proteins involved in translation pathways. The fixation rate of SNP:s was higher within genes responding to hyposalinity than elsewhere in the transcriptome. CONCLUSIONS The high fixation rate in the genes coding for salinity acclimation mechanisms implies strong selection for them. The among-population differentiation that we observed in the transcriptomic response to hyposalinity stress suggests that populations of F. vesiculosus may differ in their tolerance to future desalination, possibly as a result of local adaptation to salinity conditions within the Baltic Sea. These results emphasise the importance of considering interspecific genetic variation when evaluating the consequences of environmental change.
Collapse
Affiliation(s)
- Luca Rugiu
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Ricardo Tomás Pereyra
- Department of Marine Sciences –Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - Veijo Jormalainen
- Department of Biology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
10
|
Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative Transcriptomics of Cold Growth and Adaptive Features of a Eury- and Steno-Psychrophile. Front Microbiol 2018; 9:1565. [PMID: 30108551 PMCID: PMC6080646 DOI: 10.3389/fmicb.2018.01565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Permafrost subzero environments harbor diverse, active communities of microorganisms. However, our understanding of the subzero growth, metabolisms, and adaptive properties of these microbes remains very limited. We performed transcriptomic analyses on two subzero-growing permafrost isolates with different growth profiles in order to characterize and compare their cold temperature growth and cold-adaptive strategies. The two organisms, Rhodococcus sp. JG3 (-5 to 30°C) and Polaromonas sp. Eur3 1.2.1 (-5 to 22°C), shared several common responses during low temperature growth, including induction of translation and ribosomal processes, upregulation of nutrient transport, increased oxidative and osmotic stress responses, and stimulation of polysaccharide capsule synthesis. Recombination appeared to be an important adaptive strategy for both isolates at low temperatures, likely as a mechanism to increase genetic diversity and the potential for survival in cold systems. While Rhodococcus sp. JG3 favored upregulating iron and amino acid transport, sustaining redox potential, and modulating fatty acid synthesis and composition during growth at -5°C compared to 25°C, Polaromonas sp. Eur3 1.2.1 increased the relative abundance of transcripts involved in primary energy metabolism and the electron transport chain, in addition to signal transduction and peptidoglycan synthesis at 0°C compared to 20°C. The increase in energy metabolism may explain why Polaromonas sp. Eur3 1.2.1 is able to sustain growth rates at 0°C comparable to those at higher temperatures. For Rhodococcus sp. JG3, flexibility in use of carbon sources, iron acquisition, control of membrane fatty acid composition, and modulating redox and co-factor potential may be ways in which this organism is able to sustain growth over a wider range of temperatures. Increasing our understanding of the microbes in these habitats helps us better understand active pathways and metabolisms in extreme environments. Identifying novel, thermolabile, and cold-active enzymes from studies such as this is also of great interest to the biotechnology and food industries.
Collapse
Affiliation(s)
| | - Julien Tremblay
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
11
|
Xiang R, Shi J, Zhang H, Dong C, Liu L, Fu J, He X, Yan Y, Wu Z. Chlorophyll a fluorescence and transcriptome reveal the toxicological effects of bisphenol A on an invasive cyanobacterium, Cylindrospermopsis raciborskii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:188-196. [PMID: 29775926 DOI: 10.1016/j.aquatox.2018.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A has attracted worldwide attention due to its harmful effects on humans, animals and plants. In this study, the toxicological effects of BPA on Cylindrospermopsis raciborskii were assessed based on chlorophyll a fluorescence and transcriptome analyses. The results showed that the growth of C. raciborskii was significantly inhibited when BPA exceeded 0.1 mg L-1. A marked rise of phase J was observed at a concentration greater than 0.1 mg L-1, while a K phase appeared at 20 mg L-1. The chlorophyll a fluorescence parameters of RC/CS0, F0, φP0, φE0, and ψ0, underwent a significant decline under all treatments of BPA, whereas a significant increase in both VJ and M0 occurred under all concentrations of BPA. Additionally, ABS/RC and DIo/RC markedly increased at 10 mg L-1 and 20 mg L-1. The transcriptome analysis revealed that the genes of photosynthesis, including psbA, psbB, psbC, psbD, apcA, apcB, cpcA, and cpcB, as well as those of chlorophyll and carotenoid biosynthesis, namely hemN, acsF, chlL, chlN, chlP, crtB, pds, were all down-regulated. Moreover, BPA also inhibited the oxidative phosphorylation, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), and fatty acid metabolism in C. raciborskii. Taken together, these results suggest BPA can negatively affect the expression of multiple genes and the vital energy metabolism process to arrest the growth and photosynthesis of C. raciborskii.
Collapse
Affiliation(s)
- Rong Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - JunKe Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Yanjun Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
12
|
Sun M, Yang Z, Wawrik B. Metabolomic Fingerprints of Individual Algal Cells Using the Single-Probe Mass Spectrometry Technique. FRONTIERS IN PLANT SCIENCE 2018; 9:571. [PMID: 29760716 PMCID: PMC5936784 DOI: 10.3389/fpls.2018.00571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/11/2018] [Indexed: 05/21/2023]
Abstract
Traditional approaches for the assessment of physiological responses of microbes in the environment rely on bulk filtration techniques that obscure differences among populations as well as among individual cells. Here, were report on the development on a novel micro-scale sampling device, referred to as the "Single-probe," which allows direct extraction of metabolites from living, individual phytoplankton cells for mass spectrometry (MS) analysis. The Single-probe is composed of dual-bore quartz tubing which is pulled using a laser pipette puller and fused to a silica capillary and a nano-ESI. For this study, we applied Single-probe MS technology to the marine dinoflagellate Scrippsiella trochoidea, assaying cells grown under different illumination levels and under nitrogen (N) limiting conditions as a proof of concept for the technology. In both experiments, significant differences in the cellular metabolome of individual cells could readily be identified, though the vast majority of detected metabolites could not be assigned to KEGG pathways. Using the same approach, significant changes in cellular lipid complements were observed, with individual lipids being both up- and down-regulated under light vs. dark conditions. Conversely, lipid content increased across the board under N limitation, consistent with an adjustment of Redfield stoichiometry to reflect higher C:N and C:P ratios. Overall, these data suggest that the Single-probe MS technique has the potential to allow for near in situ metabolomic analysis of individual phytoplankton cells, opening the door to targeted analyses that minimize cell manipulation and sampling artifacts, while preserving metabolic variability at the cellular level.
Collapse
Affiliation(s)
- Mei Sun
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Boris Wawrik
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK, United States
- *Correspondence: Boris Wawrik,
| |
Collapse
|
13
|
Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 2017; 19:4460-4479. [PMID: 28834033 DOI: 10.1111/1462-2920.13893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
Abstract
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to -15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and -10°C with 12% w/v NaCl. Many proteins with increased abundances at -10°C versus 23°C also increased at 23C-salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at -10°C, including PlsX and KASII (FA metabolism), DD-transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At -10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.
Collapse
Affiliation(s)
- Isabelle Raymond-Bouchard
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Ianina Altshuler
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Lyle G Whyte
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
14
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|
15
|
Acclimation of Antarctic Chlamydomonas to the sea-ice environment: a transcriptomic analysis. Extremophiles 2016; 20:437-50. [PMID: 27161450 DOI: 10.1007/s00792-016-0834-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
The Antarctic green alga Chlamydomonas sp. ICE-L was isolated from sea ice. As a psychrophilic microalga, it can tolerate the environmental stress in the sea-ice brine, such as freezing temperature and high salinity. We performed a transcriptome analysis to identify freezing stress responding genes and explore the extreme environmental acclimation-related strategies. Here, we show that many genes in ICE-L transcriptome that encoding PUFA synthesis enzymes, molecular chaperon proteins, and cell membrane transport proteins have high similarity to the gens from Antarctic bacteria. These ICE-L genes are supposed to be acquired through horizontal gene transfer from its symbiotic microbes in the sea-ice brine. The presence of these genes in both sea-ice microalgae and bacteria indicated the biological processes they involved in are possibly contributing to ICE-L success in sea ice. In addition, the biological pathways were compared between ICE-L and its closely related sister species, Chlamydomonas reinhardtii and Volvox carteri. In ICE-L transcripome, many sequences homologous to the plant or bacteria proteins in the post-transcriptional, post-translational modification, and signal-transduction KEGG pathways, are absent in the nonpsychrophilic green algae. These complex structural components might imply enhanced stress adaptation capacity. At last, differential gene expression analysis at the transcriptome level of ICE-L indicated that genes that associated with post-translational modification, lipid metabolism, and nitrogen metabolism are responding to the freezing treatment. In conclusion, the transcriptome of Chlamydomonas sp. ICE-L is very useful for exploring the mutualistic interaction between microalgae and bacteria in sea ice; and discovering the specific genes and metabolism pathways responding to the freezing acclimation in psychrophilic microalgae.
Collapse
|
16
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
17
|
Goss R, Lepetit B. Biodiversity of NPQ. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:13-32. [PMID: 24854581 DOI: 10.1016/j.jplph.2014.03.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 05/21/2023]
Abstract
In their natural environment plants and algae are exposed to rapidly changing light conditions and light intensities. Illumination with high light intensities has the potential to overexcite the photosynthetic pigments and the electron transport chain and thus induce the production of toxic reactive oxygen species (ROS). To prevent damage by the action of ROS, plants and algae have developed a multitude of photoprotection mechanisms. One of the most important protection mechanisms is the dissipation of excessive excitation energy as heat in the light-harvesting complexes of the photosystems. This process requires a structural change of the photosynthetic antenna complexes that are normally optimized with regard to efficient light-harvesting. Enhanced heat dissipation in the antenna systems is accompanied by a strong quenching of the chlorophyll a fluorescence and has thus been termed non-photochemical quenching of chlorophyll a fluorescence, NPQ. The general importance of NPQ for the photoprotection of plants and algae is documented by its wide distribution in the plant kingdom. In the present review we will summarize the present day knowledge about NPQ in higher plants and different algal groups with a special focus on the molecular mechanisms that lead to the structural rearrangements of the antenna complexes and enhanced heat dissipation. We will present the newest models for NPQ in higher plants and diatoms and will compare the features of NPQ in different algae with those of NPQ in higher plants. In addition, we will briefly address evolutionary aspects of NPQ, i.e. how the requirements of NPQ have changed during the transition of plants from the aquatic habitat to the land environment. We will conclude with a presentation of open questions regarding the mechanistic basis of NPQ and suggestions for future experiments that may serve to obtain this missing information.
Collapse
Affiliation(s)
- Reimund Goss
- Institut für Biologie, Universität Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | - Bernard Lepetit
- Institut für Biologie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| |
Collapse
|
18
|
Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju JH, Song C, Hyun JK, Jin E. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J 2014; 28:4924-35. [PMID: 25114178 DOI: 10.1096/fj.14-256388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structure and function of the Antarctic marine diatom Chaetoceros neogracile antifreeze protein (Cn-AFP), as well as its expression levels and characteristics of the ice-binding site, were analyzed in the present study. In silico analysis revealed that the Cn-AFP promoter contains both light- and temperature-responsive elements. Northern and Western blot analyses demonstrated that both Cn-AFP transcript and protein expression were strongly and rapidly stimulated by freezing, as well as temperature and high light stress. Immunogold labeling revealed that Cn-AFP is preferentially localized to the intracellular space near the chloroplast membrane. Recombinant Cn-AFP had clear antifreeze activity. Protein-folding simulation was used to predict the putative ice-binding sites in Cn-AFP, and site-directed mutagenesis of the Cn-AFP b-face confirmed their identification.
Collapse
Affiliation(s)
- Yunho Gwak
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Woongsic Jung
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea; Division of Polar Life Science, Korea Polar Research Institute, Incheon, Republic of Korea; and
| | - Yew Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ji Sook Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Chul Geun Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hyun Ju
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Chihong Song
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jae-Kyung Hyun
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea;
| |
Collapse
|
19
|
Lyon BR, Mock T. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. BIOLOGY 2014; 3:56-80. [PMID: 24833335 PMCID: PMC4009763 DOI: 10.3390/biology3010056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 02/02/2023]
Abstract
Polar Regions are unique and highly prolific ecosystems characterized by extreme environmental gradients. Photosynthetic autotrophs, the base of the food web, have had to adapt physiological mechanisms to maintain growth, reproduction and metabolic activity despite environmental conditions that would shut-down cellular processes in most organisms. High latitudes are characterized by temperatures below the freezing point, complete darkness in winter and continuous light and high UV in the summer. Additionally, sea-ice, an ecological niche exploited by microbes during the long winter seasons when the ocean and land freezes over, is characterized by large salinity fluctuations, limited gas exchange, and highly oxic conditions. The last decade has been an exciting period of insights into the molecular mechanisms behind adaptation of microalgae to the cryosphere facilitated by the advancement of new scientific tools, particularly "omics" techniques. We review recent insights derived from genomics, transcriptomics, and proteomics studies. Genes, proteins and pathways identified from these highly adaptable polar microbes have far-reaching biotechnological applications. Furthermore, they may provide insights into life outside this planet, as well as glimpses into the past. High latitude regions also have disproportionately large inputs into global biogeochemical cycles and are the region most sensitive to climate change.
Collapse
Affiliation(s)
- Barbara R Lyon
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
20
|
Boo SY, Wong CMVL, Rodrigues KF, Najimudin N, Murad AMA, Mahadi NM. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 2012. [DOI: 10.1007/s00300-012-1268-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Barnett MJ, Pearce DA, Cullen DC. Advances in the in-field detection of microorganisms in ice. ADVANCES IN APPLIED MICROBIOLOGY 2012; 81:133-67. [PMID: 22958529 DOI: 10.1016/b978-0-12-394382-8.00004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function.
Collapse
Affiliation(s)
- Megan J Barnett
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | |
Collapse
|
22
|
Raymond JA, Kim HJ. Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 2012; 7:e35968. [PMID: 22567121 PMCID: PMC3342323 DOI: 10.1371/journal.pone.0035968] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Diatoms and other algae not only survive, but thrive in sea ice. Among sea ice diatoms, all species examined so far produce ice-binding proteins (IBPs), whereas no such proteins are found in non-ice-associated diatoms, which strongly suggests that IBPs are essential for survival in ice. The restricted occurrence also raises the question of how the IBP genes were acquired. Proteins with similar sequences and ice-binding activities are produced by ice-associated bacteria, and so it has previously been speculated that the genes were acquired by horizontal transfer (HGT) from bacteria. Here we report several new IBP sequences from three types of ice algae, which together with previously determined sequences reveal a phylogeny that is completely incongruent with algal phylogeny, and that can be most easily explained by HGT. HGT is also supported by the finding that the closest matches to the algal IBP genes are all bacterial genes and that the algal IBP genes lack introns. We also describe a highly freeze-tolerant bacterium from the bottom layer of Antarctic sea ice that produces an IBP with 47% amino acid identity to a diatom IBP from the same layer, demonstrating at least an opportunity for gene transfer. Together, these results suggest that the success of diatoms and other algae in sea ice can be at least partly attributed to their acquisition of prokaryotic IBP genes.
Collapse
Affiliation(s)
- James A Raymond
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America.
| | | |
Collapse
|
23
|
Dittami SM, Proux C, Rousvoal S, Peters AF, Cock JM, Coppée JY, Boyen C, Tonon T. Microarray estimation of genomic inter-strain variability in the genus Ectocarpus (Phaeophyceae). BMC Mol Biol 2011; 12:2. [PMID: 21226968 PMCID: PMC3027116 DOI: 10.1186/1471-2199-12-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/13/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Brown algae of the genus Ectocarpus exhibit high levels of genetic diversity and variability in morphological and physiological characteristics. With the establishment of E. siliculosus as a model and the availability of a complete genome sequence, it is now of interest to analyze variability among different species, ecotypes, and strains of the genus Ectocarpus both at the genome and the transcriptome level. RESULTS We used an E. siliculosus gene expression microarray based on EST sequences from the genome-sequenced strain (reference strain) to carry out comparative genome hybridizations for five Ectocarpus strains: four E. siliculosus isolates (the male genome strain, a female strain used for outcrosses with the genome strain, a strain isolated from freshwater, and a highly copper-tolerant strain), as well as one strain of the sister species E. fasciculatus. Our results revealed significant genomic differences between ecotypes of the same species, and enable the selection of conserved probes for future microarray experiments with these strains. In the two closely related strains (a male and a female strain used for crosses), genomic differences were also detected, but concentrated in two smaller genomic regions, one of which corresponds to a viral insertion site. CONCLUSION The high variability between strains supports the concept of E. siliculosus as a complex of cryptic species. Moreover, our data suggest that several parts of the Ectocarpus genome may have evolved at different rates: high variability was detected particularly in transposable elements and fucoxanthin chlorophyll a/c binding proteins.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- Current Address: Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Caroline Proux
- Institut Pasteur, Plate-Forme 2- Puces à ADN, 25 rue du docteur Roux, 75724 Paris Cedex 15, France
| | - Sylvie Rousvoal
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
| | - Akira F Peters
- BEZHIN ROSKO, 40 rue des pêcheurs, 29250 Santec, France
- MBA Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - J Mark Cock
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-Forme 2- Puces à ADN, 25 rue du docteur Roux, 75724 Paris Cedex 15, France
| | - Catherine Boyen
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UPMC Univ Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680 Roscoff, France
| |
Collapse
|
24
|
Dittami SM, Michel G, Collén J, Boyen C, Tonon T. Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 2010; 10:365. [PMID: 21110855 PMCID: PMC3008699 DOI: 10.1186/1471-2148-10-365] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/26/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chlorophyll-binding proteins (CBPs) constitute a large family of proteins with diverse functions in both light-harvesting and photoprotection. The evolution of CBPs has been debated, especially with respect to the origin of the LI818 subfamily, members of which function in non-photochemical quenching and have been found in chlorophyll a/c-containing algae and several organisms of the green lineage, but not in red algae so far. The recent publication of the Ectocarpus siliculosus genome represents an opportunity to expand on previous work carried out on the origin and function of CBPs. RESULTS The Ectocarpus genome codes for 53 CBPs falling into all major families except the exclusively green family of chlorophyll a/b binding proteins. Most stress-induced CBPs belong to the LI818 family. However, we highlight a few stress-induced CBPs from Phaeodactylum tricornutum and Chondrus crispus that belong to different sub-families and are promising targets for future functional studies. Three-dimensional modeling of two LI818 proteins revealed features common to all LI818 proteins that are likely to interfere with their capacity to bind chlorophyll b and lutein, but may enable binding of chlorophyll c and fucoxanthin. In the light of this finding, we examined the possibility that LI818 proteins may have originated in a chlorophyll c/fucoxanthin containing organism and compared this scenario to three alternatives: an independent evolution of LI818 proteins in different lineages, an ancient origin together with the first CBPs, before the separation of the red and the green lineage, or an origin in the green lineage and a transfer to an ancestor of haptophytes and heterokonts during a cryptic endosymbiosis event. CONCLUSIONS Our findings reinforce the idea that the LI818 family of CBPs has a role in stress response. In addition, statistical analyses of phylogenetic trees show an independent origin in different eukaryotic lineages or a green algal origin of LI818 proteins to be highly unlikely. Instead, our data favor an origin in an ancestral chlorophyll a/c-containing organism and a subsequent lateral transfer to some green algae, although an origin of LI818 proteins in a common ancestor of red and green algae cannot be ruled out.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Gurvan Michel
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Jonas Collén
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Catherine Boyen
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Thierry Tonon
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| |
Collapse
|
25
|
|
26
|
Gwak IG, Jung WS, Kim HJ, Kang SH, Jin E. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:630-639. [PMID: 20024694 DOI: 10.1007/s10126-009-9250-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 12/04/2009] [Indexed: 05/28/2023]
Abstract
The antifreeze protein gene (Cn-AFP) from the Antarctic marine diatom, Chaetoceros neogracile was cloned and characterized. The full-length Cn-AFP cDNA contained an open reading frame of 849 bp and the deduced 282 amino acid peptide chain encodes a 29.2 kDa protein, which includes a signal peptide of 30 amino acids at the N terminus. Both the Cn-AFP coding region with and without the signal sequence were cloned and expressed in Escherichia coli. Recombinant Cn-AFPs were shown to display antifreeze activities based on measuring the thermal hysteresis and modified morphology of single ice crystals. Recombinant mature Cn-AFP showed 16-fold higher thermal hysteresis activity than that of pre-mature Cn-AFP at the same concentration. The ice crystal shape changed to an elongated hexagonal shape in the presence of the recombinant mature Cn-AFP, while single ice crystal showed a circular disk shape in absence of Cn-AFP. Northern analysis demonstrated a dramatic accumulation of Cn-AFP transcripts when the cells were subjected to freezing stress. This rapid response to freeze stress, and the antifreeze activity of recombinant Cn-AFPs, indicates that Cn-AFP plays an important role in low temperature adaptation.
Collapse
Affiliation(s)
- In Gyu Gwak
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, 133-791 Seoul, South Korea
| | | | | | | | | |
Collapse
|
27
|
Bertrand M. Carotenoid biosynthesis in diatoms. PHOTOSYNTHESIS RESEARCH 2010; 106:89-102. [PMID: 20734232 DOI: 10.1007/s11120-010-9589-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin-diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data.
Collapse
Affiliation(s)
- Martine Bertrand
- MiMeTox, National Institute for Marine Sciences and Techniques, CNAM, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| |
Collapse
|
28
|
Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 2010; 14:329-37. [DOI: 10.1007/s00792-010-0313-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
|
29
|
Park S, Jung G, Hwang YS, Jin E. Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. PLANTA 2010; 231:349-360. [PMID: 19924439 DOI: 10.1007/s00425-009-1044-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Large-scale RNA profiling revealed that high irradiance differentially regulated 577 out of 1,439 non-redundant genes of the Antarctic marine diatom Chaetoceros neogracile, represented on a custom cDNA chip, during 6 h of treatment. Among genes that were up- or down-regulated more than twofold within 30 min of treatment (310/1,439), about half displayed an acclimatory response during 6 h under high light. Expression of the remaining non-acclimatory genes also rapidly returned to initial levels within 30 min following a shift to low irradiance. High light altered expression of most of the photosynthesis genes (48/70), in contrast to genes in other functional categories. In addition, opposite response patterns were provoked in genes encoding fucoxanthin chlorophyll a/c binding protein (FCP), the main component of the diatom light-harvesting complex; high irradiance caused a decrease in expression of most FCP genes, but drove the rapid and specific up-regulation of ten others. C. neogracile responded very promptly to a change in light intensity by rapidly adjusting the transcript levels of FCP genes up-regulated by high light, and these dynamic adjustments coincided well with diatoxanthin (Dtx) levels formed by the xanthophyll cycle under the same conditions. The observation that the non-photochemical quenching (NPQ) capacity of this polar diatom was highly dependent on Dtx, which could bind to FCP and trigger NPQ, suggests that the up-regulated FCP gene products may participate in a photoprotective process as Dtx-binding proteins.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Dittami SM, Scornet D, Petit JL, Ségurens B, Da Silva C, Corre E, Dondrup M, Glatting KH, König R, Sterck L, Rouzé P, Van de Peer Y, Cock JM, Boyen C, Tonon T. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 2009; 10:R66. [PMID: 19531237 PMCID: PMC2718500 DOI: 10.1186/gb-2009-10-6-r66] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/04/2009] [Accepted: 06/16/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Brown algae (Phaeophyceae) are phylogenetically distant from red and green algae and an important component of the coastal ecosystem. They have developed unique mechanisms that allow them to inhabit the intertidal zone, an environment with high levels of abiotic stress. Ectocarpus siliculosus is being established as a genetic and genomic model for the brown algal lineage, but little is known about its response to abiotic stress. RESULTS Here we examine the transcriptomic changes that occur during the short-term acclimation of E. siliculosus to three different abiotic stress conditions (hyposaline, hypersaline and oxidative stress). Our results show that almost 70% of the expressed genes are regulated in response to at least one of these stressors. Although there are several common elements with terrestrial plants, such as repression of growth-related genes, switching from primary production to protein and nutrient recycling processes, and induction of genes involved in vesicular trafficking, many of the stress-regulated genes are either not known to respond to stress in other organisms or are have been found exclusively in E. siliculosus. CONCLUSIONS This first large-scale transcriptomic study of a brown alga demonstrates that, unlike terrestrial plants, E. siliculosus undergoes extensive reprogramming of its transcriptome during the acclimation to mild abiotic stress. We identify several new genes and pathways with a putative function in the stress response and thus pave the way for more detailed investigations of the mechanisms underlying the stress tolerance of brown algae.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
| | - Delphine Scornet
- UPMC Univ Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
| | - Jean-Louis Petit
- CEA, DSV, Institut de Génomique, Génoscope, rue Gaston Crémieux, CP5706, 91057 Evry, France
- CNRS, UMR 8030 Génomique métabolique des genomes, rue Gaston Crémieux, CP5706, 91057 Evry, France
- Université d'Evry, UMR 8030 Génomique métabolique des genomes, 91057 Evry, France
| | - Béatrice Ségurens
- CEA, DSV, Institut de Génomique, Génoscope, rue Gaston Crémieux, CP5706, 91057 Evry, France
- CNRS, UMR 8030 Génomique métabolique des genomes, rue Gaston Crémieux, CP5706, 91057 Evry, France
- Université d'Evry, UMR 8030 Génomique métabolique des genomes, 91057 Evry, France
| | - Corinne Da Silva
- CEA, DSV, Institut de Génomique, Génoscope, rue Gaston Crémieux, CP5706, 91057 Evry, France
- CNRS, UMR 8030 Génomique métabolique des genomes, rue Gaston Crémieux, CP5706, 91057 Evry, France
- Université d'Evry, UMR 8030 Génomique métabolique des genomes, 91057 Evry, France
| | - Erwan Corre
- SIG-FR 2424 CNRS UPMC, Station Biologique, 29680 Roscoff, France
| | - Michael Dondrup
- Center for Biotechnology (CeBiTec), University of Bielefeld, 33594 Bielefeld, Germany
| | - Karl-Heinz Glatting
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Rainer König
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Lieven Sterck
- VIB Department of Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Pierre Rouzé
- VIB Department of Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- VIB Department of Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - J Mark Cock
- UPMC Univ Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
| | - Catherine Boyen
- UPMC Univ Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
| | - Thierry Tonon
- UPMC Univ Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
- CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique, 29680 Roscoff, France
| |
Collapse
|